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Abstract

The preferential attachment model is a natural and popular random graph model for a
growing network that contains very well-connected ‘hubs’. We study the higher-order
connectivity of such a network by investigating the topological properties of its clique
complex. We concentrate on the Betti numbers, a sequence of topological invariants of
the complex related to the numbers of holes (equivalently, repeated connections) of dif-
ferent dimensions. We prove that the expected Betti numbers grow sublinearly fast, with
the trivial exceptions of those at dimensions 0 and 1. Our result also shows that prefer-
ential attachment graphs undergo infinitely many phase transitions within the parameter
regime where the limiting degree distribution has an infinite variance. Regarding higher-
order connectivity, our result shows that preferential attachment favors higher-order
connectivity. We illustrate our theoretical results with simulations.
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1. Introduction

1.1. Preferential attachment graphs

In [2], the preferential attachment model was proposed to explain the emergence of well-
connected ‘hub’ nodes and of a power-law degree sequence in growing networks. Since then,
many variants have been proposed.
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FIGURE 1. Left: An illustration of the preferential attachment mechanism (cf. Equation (1) and
Definition 2.1) and the clique-building mechanism (cf. Definitions 2.3 and 1.5). When new nodes (drawn
as people) in the left column are added to the network, they are more likely to attach to already popular
nodes (which have high degrees), like the light blue person in the figure. Fully connected subsets of nodes
form triangles, tetrahedra, or their higher-dimensional analogues in the clique complex. Note that in order
to have triangles, each new node must connect to at least two nodes, but we draw only one connection
for each new node to keep the illustration simple. Right: An illustration of a simplicial complex X whose
simplices are {1, 2, 3}, {2, 4}, {3, 4}, {4, 5} and their nonempty subsets. Its homology groups are as fol-
lows: Hyo(X) = H(X) = Z and Hy(X) =0 for ¢ ¢ {0, 1}. The generator of H;(X) can be represented by
the cycle [2, 3]+ [3, 4] — [2, 4].

These graphs are typically built inductively. At each discrete time step, a new node is added
to the graph and it is randomly connected to m existing nodes, where m is a positive integer.
The key common feature of preferential attachment graphs is that

Pecurrent(2a new node connects to a node v) ox f(degree of v) (1)

for some increasing function f, where Pcyrrene denotes the conditional probability given the
current graph.

When f(k) = k + 8 with § > —m, such variants of preferential attachment graphs are called
affine. We precisely define the affine variant we consider in this paper in Definition 2.1, where
we spell out the initial graph and the dependency between the m edges. An illustration of the
preferential attachment mechanism is shown in the left panel of Figure 1.

The constant § quantifies the strength of preferential attachment. The smaller (or more neg-
ative) it is, the stronger the preferential attachment effect, i.e. the more likely new nodes attach
to nodes with large degrees. This gives rise to giant ‘hubs’ with large degrees.

This phenomenon manifests quantitatively as a heavier tail in the degree sequence.
For instance, for the variant affine preferential attachment graphs in Section 8.2 of [43],
Theorem 8.3 therein states that the (random) proportion p7(k) of nodes with degree k in the
graph with T nodes is approximately c,, sk~3*%/™ for some constant c,, s > 0 for large k

and 7. More precisely, let py = (2 + &/m) ll:Eﬁsz«S))FF((r;lcﬁigig%g Then pi = ¢ k—(3+5/m)(1 +

O(1/k)). The theorem states that, for some constant Cy, 5 > 0,

lim P (max [Pr(6) — pil = Cosy| &0 | =0
oo A T Pkl = Cm,s T =Vu.
See also [9, 33], and Lemma 5.9 of [44] for similar results for other variants.
In particular, the graph undergoes a phase transition when § becomes negative, as the
limiting variance of the degree distribution becomes infinite for 6 € (—m, 0).
Besides their degree distributions, there has been a lot of interest in the higher-order con-
nectivity of preferential attachment graphs. Their clustering coefficients (number of pairwise
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connected triples divided by a suitable normalization constant) have been well studied, and
they often vanish asymptotically unless the graphs are specifically engineered to behave oth-
erwise (see, for instance, [8, 15, 25, 36, 37]). In [20], the growth rates, often sublinear, of the
expected counts of small motifs (subgraphs isomorphic to a given finite graph) in preferential
attachment graphs were determined. In [5, 12], some forms of preferential attachment simpli-
cial complexes were considered, and power laws for some forms of higher-dimensional degrees
were found.
For details about preferential attachment graphs, we refer the reader to [43, 44].

1.2. Higher-order connectivity and algebraic topology

A simplicial complex may be seen as a hypergraph where each subset of a hyperedge is also
a hyperedge of the hypergraph. This closure condition enables us to investigate the higher-order
connectivity of this object using tools from algebraic topology.

Formally, we have the following definition.

Definition 1.1. (Simplicial complex [34, Section 3].) A finite simplicial complex X is a collec-
tion of nonempty subsets of a finite set that is closed under inclusion; i.e., for nonempty subsets
o,tof X, ift Coando €X, then T € X.

Elements of this collection are called simplices. Subsets of a simplex are called faces of
the simplex. The dimension of a simplex is one less than the number of elements. Simplices of
dimensions 0, 1, 2, and 3 are called vertices, edges, triangles, and tetrahedra, respectively.

Remark 1.2. Simplicial complexes as defined above are called abstract simplicial complexes
in [34], to distinguish them from their geometric realizations, which are simply called ‘sim-
plicial complexes’ there. In this paper, all simplicial complexes are abstract and we do not
concern ourselves with their geometric realizations.

We think of two- and three-dimensional simplices as triangles and tetrahedra. A geometric
illustration is shown in the right panel of Figure 1.

The higher-order connectivity of a simplicial complex can be measured by its Betti numbers,
which generalize component counts and cycle counts to the counts of repeated connection
(or equivalently, higher-dimensional holes). They have proven to be useful statistics in recent
topological-data-analytic applications [1, 10, 11]. For instance, it has been observed that the
way holes emerge in (biological) neural networks helps distinguish different stimuli to the
brains of different animals [39]. We present the formal definition below.

Definition 1.3. (Homology group, Betti number, cycle, and boundary [34, Section 5].) Let X
be a finite simplicial complex. Impose a total ordering on the vertices.

Denote by [xo, . . . , x4] the g-dimensional simplex o = {xo, . .., x4} withxo < ... < Xxy. For
each nonnegative integer q, let Cy(X) be the free abelian group generated by q-dimensional
simplices of X, and let 9, : Cy — C4—1 be the homomorphism defined by

Oglx0. - xgl= Y (=DVlx0. ..., Riv ..o Xy,
O=<i=q

where the hat means removal (e.g. [xo, X1, x2] = [x0, x2]). The homology group Hy(X) of X at
dimension q is the quotient group

H,(X) =ker d,/im 0,41,
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and its rank
Bg(X) =1k Hy(X)

is called the Betti number of X at dimension q. Elements of Hy(X), ker 0, im 9,41, and Cy(X)
are called, respectively, homology classes, cycles, boundaries, and chains of dimension q.

Remark 1.4. The homology groups, and hence the Betti numbers, are independent of the
choice of ordering of the vertices. The quotient in the definition of H,(X) is well-defined:
one can verify that 9,0,41 =0, and hence im 9,41 C ker 9.

The Betti number at dimension 0 is simply the number of connected components. The Betti
number at a higher dimension is often interpreted as the number of holes of that dimension.
Equivalently, it is also the number of repeated connections, since a hole can be decomposed
into two sides that ‘connect’ or ‘fill up’ their intersection, e.g. a loop can be formed by two
arcs with the same endpoints, and a sphere can be formed by two hemispheres that share the
same equator.

To utilize these concepts from algebraic topology for the study of random graphs, we
consider the clique complex of a graph, whose simplices are fully-connected cliques.

Definition 1.5. (Clique complex.) Let G be an undirected finite graph without loops and
repeated edges, and let V be its set of vertices. The clique complex associated with G is

{o € V : the induced subgraph of V on o is a nonempty complete graph}.

A finite simplicial complex K is said to be a clique complex if it is the clique complex of its
underlying graph, i.e. the graph with the same vertex set and edge set as K.

1.3. Literature review on random simplicial complexes

The literature on random simplicial complexes, especially on their Betti numbers, has been
growing rapidly in recent years. The Betti numbers of Erdos—Rényi clique complexes were
found to be supported at a critical dimension with high probability in [27, 29]. This result can
be seen as a generalization of the classical result on the phase transition of Erdos—Rényi graphs
[16]. For readers interested in percolation theory, the emergence of giant cycles, homological
analogues of giant components, on the torus (a lattice with periodic boundary condition) was
established in [14].

A clique complex of a graph may be regarded as a (radius-1) Rips complex with respect
to the graph metric. Rips complexes are geometric clique complexes where nearby points are
connected. They have gained substantial attention because of their applications in topological
data analysis [6]. Limit theorems for the Betti numbers of random Rips complexes constructed
from independent and identically distributed points were established in [28, 31]. They are
generalizations of connectivity results for random geometric graphs in [38].

For a more comprehensive overview of the literature on general random simplicial
complexes, we refer the reader to [7, 30].

Regarding the preferential attachment mechanism, to the best of our knowledge, there have
been no prior analytical results on the Betti numbers of preferential attachment simplicial com-
plexes, with the notable exception of those of [35], which considers a two-dimensional model
and determines the asymptotics of the Betti number at dimension 1. After the public release of
our preprint, a central limit theorem was established for Betti numbers of a model of scale-free
graphs in the parameter regime where the degree distribution has a finite limiting variance [24].
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TABLE 1. Asymptotic notation

Notation Definition

f(n) =0(g(n)) f(n) < Cg(n) for large enough n for some positive constant factor C.

f(n) = Q(g(n)) f(n) > cg(n) for large enough n for some positive constant factor c.

f(n) = B(g(n)) cg(n) < f(n) < Cg(n) for large enough n for some positive constant
factors C and c.

f(n) =o(g(n)) lim,,, o0 f(n)/g(n) =0

1.4. Main result: the topology of preferential attachment clique complexes

Our main contribution is to determine the orders of magnitude of the expected Betti numbers
of preferential attachment clique complexes at all dimensions.

We now set up the notation to state our main results.

We adopt the asymptotic notation in Table 1, where f and g are assumed to be nonnegative
functions defined on N.

Let

x(6,m)=1-— e (0, 1), 2)

2+6/m
which is often denoted by x in the literature on preferential attachment graphs, e.g. in [20].
We deviate from this convention because x often denotes the Euler characteristic in algebraic
topology.

When § decreases (or becomes more negative), x decreases, and hence x decreases with
the strength of the preferential attachment. The quantity x controls the rate at which the prob-
ability that a late node is attached to an early node converges to 0. This is made precise at
Corollary 3.7.

Our main theorem is as follows.

Theorem 1.6. Let X(T, 8, m) be the preferential attachment clique complex, which is precisely
defined in Definition 2.3. Let ¢ > 2 and suppose m > 2q. Then

O(T'—24¥@.m)y  if 1 — 2gx(8, m) > 0,
E[B,X(T, §, m)] = { ©(logT) if 1 —2gx(5, m)=0,
o(l) otherwise,
where E denotes expectation, and the big-O and big-© constants (see Table 1) depend only on
q, 98, m.

One could keep track of the big-® constants in the proof. For instance, when m =7, § =
—5, g =2, the big-® constants can be chosen to be C =2.16 x 10" and c=1.18 x 10734,
Finding the optimal constants, however, is beyond the scope of this work.

The topological behavior at dimension 1 is different from the behavior at higher dimensions.
The proof technique is different as well.

Proposition 1.7. Let X(T,§, m) be the preferential attachment clique complex. Then
E[1(X(T, 8, m))] = (m — )T + o(T).

Next, we address the trivial cases left out by the results above.
Proposition 1.8. Let X(T, §, m) be the preferential attachment cliqgue complex. Then the
following hold:
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FIGURE 2. The log—log plot of the evolution of the mean Betti number at dimension 2 for 500 (synthetic)
preferential attachment clique complexes. The horizontal axis is the number of nodes in log scale; the
black curve corresponds to the mean Betti number, also in log scale. The dotted curves correspond to the
mean upper and lower bounds in our argument (specifically in Proposition 4.1). The slope of the shaded
region is the asymptotic growth rate of the expected Betti number. The position and the width of the
shaded region are chosen post hoc manually, because the theoretical constants are too conservative.

e Forq=0, Bo(X(T, 8, m))=1.
o Forg>2andm < 2q, By;(X(T, 5, m))=0.

1.5. Simulation

In Figure 2, we illustrate the sublinear growth of the average Betti number at dimen-
sion 2 through a simulation. Our theorem and our choice of parameters dictate that the
curve for the evolution of the expected Betti number is eventually contained in a band
with slope 2/9, which is the slope of the shaded region. The evolution of our estimate of
the expected Betti number is plotted as the solid curve, and it is plausible that it remains
inside the shaded region when extrapolated indefinitely. We discuss the simulation in greater
detail in Section 8. Codes for simulating Betti numbers of preferential attachment clique
complexes are available at the GitHub repository carolinerongyi/Preferential
Attachment Clique Complex.

1.6. Discussion

Theorem 1.6 suggests that preferential attachment graphs undergo infinitely many phase
transitions in the regime § < 0, where the limiting variance of the degree distribution is infinite.
Indeed, for each dimension larger than 1, when the strength of preferential attachment exceeds
a critical threshold, the expected Betti number at that dimension ceases to be bounded, and
diverges to infinity as the number of nodes increases. The critical thresholds for the lower
dimensions are illustrated in Figure 3.

Recall that Betti numbers can be interpreted as the number of higher-order repeated
connections. Our theorem then implies that with a stronger strength of preferential attach-
ment, there are more repeated connections of higher order (or equivalently, more holes of
higher dimensions) in expectation. In other words, preferential attachment favors higher-order
connectivity.
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dim 1 dim2 dim3 ..
. — | —5/m

2/3  4/5 6/7 i

FIGURE 3. The top dimensions with unbounded expected Betti numbers for different values of —§/m €
(—o0, 1) for m not too small (recall that —§/m increases with the strength of preferential attachment
effect; see Theorem 1.6 for the precise condition on m). The critical thresholds for dimensions 2, 3, and
4 respectively are 2/3, 4/5, and 6/7.

FIGURE 4. The graph I'3. All nodes marked by solid circles precede all nodes marked by hollow circles.

Our results suggest the following similarities between preferential attachment clique
complexes, Erdos—Rényi clique complexes [31], and random Rips complexes [28, 47]:

e The major contributions to the Betti numbers are due to holes (homology classes) repre-
sented by small cycles (recall from Definition 1.3 that homology classes are equivalence
classes of cycles).

e The expected Betti numbers have a dominating dimension, which is 1 in this case.

On the other hand, our complexes have two distinctive features:

e Unlike Erdos—Rényi clique complexes, there is a range of dimensions with positive
expected Betti numbers, which grows with the number of nodes.

e Compelled by the preferential attachment mechanism, holes (homology classes) are
predominantly represented by highly interconnected cycles.

An instance of a clique complex with such interconnected cycles at dimension 2 is illustrated
in Figure 4. We discuss such cycles more in Section 4.

1.7. Paper outline

The rest of the paper is organized as follows. We present the precise definition of preferential
attachment graphs and their clique complexes in Section 2. There, we also discuss some details
of our set-up. In Section 3, we review the background materials for our proofs. Technical
topological materials are deferred to Appendix B.

We begin proving the main theorem, Theorem 1.6, in Section 4 by presenting a proof syn-
opsis and a decomposition result. We complete the proof of Theorem 1.6 in Section 5. In
Section 6, we prove the edge cases of Propositions 1.7 and 1.8. We present and discuss simu-
lation results in Section 8, and we discuss future directions in Section 9. We collect technical
background materials in Appendices A and B.

https://doi.org/10.1017/apr.2024.66 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2024.66

Topology of preferential attachment clique complexes 947

2. Set-up

Throughout this paper, we adopt the following notation for degrees in an undirected graph
" without self-loops and with totally ordered nodes. Let v be anode in I".

e The degree of v is denoted by dr(v).

e The pre-degree (resp. post-degree) of a node v in a graph I', denoted by dP*r(, (resp.
dP°S'1(v)), is the number of nodes preceding (resp. preceded by) v that are connected to
v. For example, if I has exactly two nodes 1, 2, and exactly one edge, then dP*(1) = 0.

e I"’s sequence of degrees (resp. pre- or post-degrees) is the sequence whose kth term is
the degree (resp. pre- or post-degree) of the kth node of I'. This is not to be confused
with the degree sequence (resp. pre- or post-degree sequence), whose kth term is the
number of nodes whose degree (resp. pre- or post-degree) is k.

We now choose our variant of the preferential attachment model. We adopt the affine model
in [20], since we will rely heavily on the subgraph count results therein.

Definition 2.1. (Affine preferential attachment graphs [20, Definition 1].) Let T, m be posi-
tive integers with T > 2 and let § € (—m, 00). The preferential attachment graph G(T, §, m)
is the random graph, with no self-loops but possibly with repeated edges, that is constructed
inductively as follows:

e The graph G(2, &, m) is the deterministic graph with two nodes, indexed by 1 and 2, and
m edges between the two nodes.

e The graph G(T, §, m) is constructed by adding a node, indexed by T, to G(T — 1, §, m)
and adding m edges between node T and m sequentially and randomly chosen nodes in
G(T — 1, m, §) from the following conditional distribution:

P(the ith edge of node T connecting it with node v|G(T — 1, §, m, i — 1))
1
T C(T, 5. m. )
for 1 <i<m, where G(T — 1,6, m,i— 1) is the graph after adding i — 1 edges between
T and nodes in G(T — 1,68, m), and the normalization constant is C(T, S5, m, i) =
AT —2ym~+i—1+(T—1)s.

Remark 2.2.

(dcr=1,5,m,i—1)(v) +6)

e In [20], the graph is said to be directed, with edges always pointing from later nodes to
earlier nodes. However, we simply treat the graph as an undirected graph, because the
edges’ orientations can be inferred from the vertex labels.

e Regarding equivalent models in the literature, to the best of our knowledge, the case for
m = 1 but with general § was first considered in [33]. The definition above is equivalent

to the model PAY(m, 8) in Definition 4.3.1 of [19] and PA(d) defined by (1.3.65)
of [44], modulo typos in the latter [45]. For lists of other variants of the preferential
attachment model, see [37] and Chapter 4.3 of [19].

We define the preferential attachment clique complex X(7', 8, m) as follows.
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Definition 2.3. (Preferential attachment clique complex.) Let G(T, §, m) be the preferential
attachment graph, and let Gsmple(T, 8, m) be the graph obtained by replacing all repeated
edges in G(T, 8, m) with simple edges. The preferential attachment clique complex X(T, 8, m)
is the clique complex of Ggimple(T, 8, m) in the sense of Definition 1.5.

We conclude this subsection by commenting on a few innocuous yet technical choices in
our set-up.

First, regarding the treatment of multiple edges, we simply replace them by simple edges,
because it is easier to define clique complexes for simple graphs. A notion of clique complex
for multigraphs is defined in [3]. Our argument gives the same bound for this notion of clique
complex upon slight modifications.

Second, to readers interested in persistent homology, we remark that our method gives esti-
mates of the expected persistent Betti numbers as well for the filtration of node arrival (the
complex at time ¢ consists of the first # nodes), because our proof also shows that the death of
homology classes occurs much less frequently than their birth. However, generalizing this to
persistence diagrams is difficult because the number of points in a box in a persistence diagram
is the difference of persistent Betti numbers, which have the same order of magnitude in this
case. To keep the exposition simple, we do not further discuss persistence in the present paper.

Finally, regarding the choice of coefficients for the homology groups, we prove our homo-
logical results with coefficients in Z. The same argument works for arbitrary field coefficients.
Homological computations of our numerical simulations are done with coefficients in Z/27Z.

3. Preliminaries

In this section we recall results in the literature that are relevant for our proofs. We defer
technical topological definitions and theorems to Appendix B.

First, we introduce a few simplicial complexes and subcomplexes in Section 3.1. In
particular, as in [29], spheres and links will play a crucial role in our proofs.

Then we state two technical results. In Section 3.2, we state the subgraph count results in
[20]. In Section 3.3, we generalize a result on minimal cycles due to [18, 27] to the setting of
relative homology using an exact sequence argument. (Relative homology and exact sequence
are defined in Appendix B.) Subgraph count results and the characterization of minimal cycles
are typically crucial in the estimation of Betti numbers in the literature random simplicial
complexes.

3.1. Instances of simplicial complexes

In this subsection, we define a few simplicial complexes and subcomplexes that will appear
in our proofs. A subcomplex is a collection of simplices in a simplicial complex that itself
forms a simplicial complex.

For an integer ¢ > 1, the octahedral g-sphere S7 is the clique complex of the graph whose

vertices are 1,...,2(q+ 1), and where i and j are connected by an edge if and only if
i —j#0mod (g4 1). It can be visualized in R¢*! as the £! unit sphere by mapping vertices
l,...,qg+1toeq,...,e4q1 and vertices g +2, ..., 2(g+2) to —ey, ..., —e4t1, Where the

e; are the standard basis of R4T!,

For an integer ¢ > 1, the octahedral (¢ + 1)-ball DY*! is the clique complex formed by
adding a vertex to S7 that is connected to all vertices of S7 by edges. It can be visualized in
R9+! as the closed £! unit ball by mapping the new vertex to the origin.
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FIGURE 5. Illustrations of the underlying graphs of the clique complexes S (left) and D? (right). The
clique complex D? has four triangles, whereas S' has none.

6

FIGURE 6. Illustrations of the underlying graphs of the clique complexes $2 (left) and D? (right). The
labels and the different line styles for the left illustration are for I'” in the proof of Lemma 5.1, and
those for the right illustration are for Example 4.2. Labels without parentheses denote node indices in
G(T, 8, m), and labels in parentheses denote edge multiplicity of the dashed edges in G(T', §, m).

For instance, S! and D?, illustrated in Figure 5, are the unfilled and filled squares. The clique
complexes S and D? are illustrated in Figure 6.
The homology groups of the spheres S” with n > 1 are as follows:

Z ifqe{0,n},
0  otherwise.

Hq(Sn) — {

Next we define some general subcomplexes. Let X be a simplicial complex.

The star of a vertex v in X, denoted by Stx(v), is the subcomplex of X consisting of all
simplices containing v (and the faces of these simplices). (Our notion of star is called the
closed star in [34, p. 11].)

The link of a vertex v in X, denoted by Lkx(v), is the subcomplex of Stx(v) consisting of all
simplices that do not contain v (cf. [34, p. 11]).

For instance, the link of the central vertex in D? is S?.

The star of a vertex is an example of a cone complex. The cone CK of a simplicial complex
K can be defined as follows: CK has all the vertices of K, as well as an extra vertex, denoted
by v. For each simplex o of K, let v« o = {v} Uo. Then

CK=KU{vxo:0€{J}UK}

https://doi.org/10.1017/apr.2024.66 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2024.66

950 C. SIU ET AL

(cf. Sections 8 and 62 of [34]). It can be readily verified that the star of a vertex is the cone of
the link of the vertex (cf. the proof of Lemma 35.4 in [34]). The homology groups of cones are
trivial.

Proposition 3.1. (Theorem 8.2 of [34].) Cones are acyclic, i.e. all their homology groups
are 0, except that Hy is Z. In particular, stars are acyclic.

3.2. Preferential attachment graphs

Recall that preferential attachment graphs are defined in Definition 2.1, and we need certain
subgraph count results, namely Theorem 3.4 and Proposition 3.6 below. We develop a few
definitions to simplify their statements.

The preferential attachment graph G(7, 8, m) is a random subgraph of the underlying
attachment graph U(T, m), which we define as follows.

Definition 3.2. (Attachment graph.) The (T, m)-attachment graph U(T, m) is the multigraph
such that

o the vertex setis {1, ..., T}, and
e there are m edges between any pair of distinct nodes.
The following definition will simplify the expression for the estimate in the theorem.
Definition 3.3 (Vertex power.) Let I be a subgraph of U(T, m), and let v be a vertex in I'. The

power pr(v; 8, m) of v is

pr(v; 8, m)=—[d”r(v) + (d**'r(v) — d”°r(V)(1 — x(8, m))]
=—[(1 = x(8, m))d***' r (v) + x(8, m)d™°r(v)] ,

where x(8, m) is defined in Equation (2).

This expression is called the power because it appears in the exponents of the asymptotics
of subgraph counts in the following two results.

Theorem 3.4. (Theorem 1 of [20].) Consider the preferential attachment graph G(T, §, m).
Let T" be a subgraph of U(T, m) with vertex set Vr ={vi < ... <Vyp|}, and with pre-degrees
bounded above by m and degrees bounded below by 1. Then the expected count of subgraphs
in G(T, §, m) that are isomorphic to T is

O(T*(log 7)™ h,

where A is the maximum value of the sequence ay, . . ., ajyy| defined by
ax=|Vr|—k+Y_ prv;s, m), 3)
I>k

and r is the number of maximizers. The big-® constants are independent of T but do depend
on m, §, and the sequences of pre- and post-degrees of T.

Remark 3.5. The original theorem is stated in terms of v =3 4 §/m rather than §, m, or
x(8, m); see the end of Section 2.1 of [20].
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Theorem 3.4 can be proven from the following lemma, which we will need for the lower
bound on the expected Betti numbers.

Proposition 3.6. (Lemma 1 of [20].) Let I" be a subgraph of U(T, m) with vertex set Vr C
{1, ..., T} and with pre-degrees bounded above by m and degrees bounded below by 1. Then
the probability that G(T, §, m) contains T is

® 1_[ VPr(vid,m)
veVpr
where the big-® constants depend only on 8, m, and the post-degree sequence of T.
We discuss the intuition for and formulation of these results further in Appendix A.
This proposition gives an interpretation of the quantity x(§, m) as the order of magnitude of
the probability that a late node attaches to an early node. More precisely, we have the following

corollary. (See also Exercise 8.13 and Lemma 8.17 of [43] for an analogous theorem about a
slightly different preferential attachment model.)

Corollary 3.7 (Proposition 3.2 of [41].) Let v <T be positive integers. Denote by P(T — v)
the probability that node T is attached to node v in the preferential attachment graph via at

least one edge. Then
1
KT —v)=6 (le(a,m)Tx(a,m)> ’

where the big-® constants depend only on m and §. In particular, if v is treated as a constant,

then
1
P(T—v)=0 T=om )

where the big-® constants depend only on m, § and v.

Proof. Denote by P(T 5N v) the the probability that T is attached to v via the ith edge of 7.
Then Proposition 3.6 implies that

P00 =0 (s )

Vl —x(é,m)Tx(S,m)

The result then follows from the fact that P(T —1> V<P(T—v)< Zliiim P(T —l> V). O

We will not use this corollary in this paper other than to give an interpretation of x(8, m).

3.3. Minimal clique cycles

In this subsection, we state a result, namely Proposition 3.9, about minimal cycles in clique
complexes, which will be needed to characterize the I';’s in the introduction as the dominating
cycles. It is a slight generalization of Lemmas 5.2 and 5.3 in [27] and Lemma 2.1.4 in [18] to
the context of relative homology (defined in Appendix B.2). Its proof, which is based on an
exact sequence argument, is deferred to Section 7.

Definition 3.8 (Clique-minimal complex.) Let X be a clique complex and A a subcomplex.
For ¢ >0, X is said to be (A, q)-clique-minimal if for every clique subcomplex Y of X that
contains A,
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By(Y,A)>0Oifandonlyif X =Y.
If A is the empty set, we abbreviate (A, q)-clique-minimality as q-clique-minimality.

The expression f,(Y, A) is the Betti number of the pair (¥, A), which is defined in
Appendix B.2.

For example, for g > 0, the g-dimensional octahedral sphere is g-clique-minimal. The
g-dimensional octahedral sphere with an extra edge (i.e. the simplicial complex formed by
adding an extra node to the g-dimensional octahedral sphere and an extra edge connecting the
new node to one of the old nodes) is not g-clique-minimal, because the complex still has a
positive Betti number at dimension ¢ upon the removal of the extra edge.

Proposition 3.9. Let g > 0, and let A be an induced subcomplex of a clique complex X (i.e. A
contains a simplex o of X whenever A contains all vertices of o). Suppose X is (A, q)-clique-
minimal. Then the following hold:

o If A is just a vertex, then X has at least 2q + 2 vertices, otherwise, X has at least one
more vertex than A does.

o We have deg v > 2q for every vertex v in X not in A, where deg denotes the degree of a
vertex in the underlying graph of X.

Remark 3.10. Note that a clique-minimal complex is not necessarily minimal (as defined by
dropping all instances of ‘clique’ in the definition above). For example, let A be a triangulated
annulus whose inner boundary has three edges. Consider the simplicial complex 7" formed
by gluing together two identical copies of A along the boundaries. Let 7” be the simplicial
complex formed by gluing a triangle to the inner boundary of A in 7. Then T is 2-minimal
but not 2-clique-minimal (because T is not a clique complex). On the other hand, 7’ is not
2-minimal, but it is 2-clique-minimal, if the triangulation of A is nice enough.

4. Proof synopsis and a decomposition result

In this section, we begin our proof of Theorem 1.6.

4.1. Proof synopsis

Recall that in Section 1.6, homology classes in preferential attachment clique complexes are
said to be predominantly represented by small interconnected cycles, like those in the clique
complex in Figure 4. Now, we describe such cycles at dimension 2 in greater detail. The case
for higher dimensions is similar.

For each positive integer k, let 'y be the graph consisting of four vertices forming a square,
with no diagonals, and k other vertices that are each connected to all corners of the square.
(The graph I'k is unique up to the permutation of nodes in the square. Permuting the other
nodes gives the same graph.) The graph in Figure 4 is I'z.

Note that I'y contains k distinct (but not disjoint) copies of I';. Since one can show that

B2(Clique(T'y)) =k — 1,

where Clique(I'y) denotes the clique complex of I'y, the Betti number can be approximated by
the number of copies of I'y in the graph.

When we approximate the Betti number of the whole preferential attachment clique com-
plex X(T, §, m) with the number of copies of I'y in it, the error term consists of a few parts.
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First, other subcomplexes, such as (the clique complexes of) subgraphs with vertices attached
to pentagons rather than squares, may also add to the Betti number. However, such subcom-
plexes are more complicated, and hence fewer of them arise from the preferential attachment
mechanism.

On the other hand, copies of [y in X(T', §, m) may be boundaries (recall from Definition 1.3
that boundaries do not contribute to the Betti numbers). However, boundaries of higher-
dimensional chains are, again, more complicated, and fewer of them arise. For technical
reasons, we will analyze two types of boundaries separately.

In the next subsection, we make our approximation precise by establishing a decomposition
result, Proposition 4.1.

4.2. A decomposition result

Let X be a clique complex with vertices {1, ..., T}. We make the following definitions:

e Let X be the subcomplex of X such that X\ consists of all simplices of X whose
vertices are all in {1, ..., t}.

e Let L® be the link of 7 in X®, and let f® : L® — X“=D be the inclusion map (L €
XD because ¢ itself does not lie in its link; recall that ‘link’ and ‘inclusion’ are
respectively defined in Section 3.1 and Appendix B.1).

e For a subcomplex S of X, an integer ¢ > 2, nodes s, ¢ of X such that all indices of nodes
in § precede s, and 5 < 1, let S(S, ¢, s, t) be the event where

- S is isomorphic to $7~!, and
-SC LONLO.

Recall that S9! is the octahedral sphere in Section 3.1. Note that when S(S, ¢, s, 1) happens,
X contains a g-dimensional sphere with S as the equator and s and ¢ as the poles.

We need the following terms for our estimate (all of them depend on the dimension ¢, but
we drop the dependence from the notation since we will not change ¢g):

€S, 5)=1[S(S. g. 5. D],
bR(S, 5) =1[S(S, q, 5, HI[B,L?, ) > 0],

b = By (L),
u? = By (L),

where 1[ A] denotes the indicator of the event A, and ,Bq(L(’), S) is the relative Betti number of
the pair (L®, S) (defined in Appendix B.2).

The letters u and £ stand for ‘upper bound’ and ‘lower bound’, and b stands for ‘boundary’.
The subscripts IK and KL denote the two types of boundaries mentioned in the introduction,
and we will explain them below. Note that despite their notational difference, u” and b%‘ are
just Betti numbers of L® at different dimensions. They will be estimated in the same way in
Lemma 5.3.

We now state our decomposition result, which we prove at the end of this section.

Proposition 4.1. Let X be a cliqgue complex with vertices labeled by positive integers. Let ¢ > 2,
let S be a subcomplex of X, and let s be a node whose label is larger than all node labels in S.
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4

FIGURE 7. Illustration for the underlying graph of X® in Example 4.3.

Then
D €S, 5) = bIS ) = Y by <X <Y ul.

s<t<T t<T t<T

Returning to the discussion in the previous subsection regarding the number of copies of
['x as an approximation of the Betti number at dimension 2, one may check that, for each
t<T, u® =1 on the event where L® is a square, in which case the square along with vertex
t gives a copy of I';. We will show that the count for squares is the dominating term for ()
in expectation at the end of the proof of Lemma 5.3. Similarly, for a fixed S and s and each
s<t<T, (S, s) counts a subset of copies of I'; formed by S and ¢ in the complex. As
mentioned in the previous subsection, the Betti number of Clique(I'y) at dimension 2 is one
less than the number of copies of I'. Here we capture this difference by not counting the copy
of I'1 formed by S and s.

KL stands for ‘kill’, as a cycle is killed in the homology group when a boundary is formed.
We give an example where bg?L =1.

Example 4.2 (Kill.) Ler g =2 and t =7. Let X© = 52, and let X7 be the clique complex with
vertex 7 connected to 1, 2, 3, 4, 5, 6. The underlying graph of X7 is shown in the right panel of
Figure 6. Then X7 = D3. The Betti number at dimension 2 drops by 1 when the new simplices
are added.

IK stands for ‘instant kill’, as the defining event happens when a new cycle is killed as soon
as it forms. We give an example where b;Z(S ,8)=1.

Example 4.3. (Instant kill.) Let g=2, s=15, t =6. Let X® = D2 with vertices 1,2,3,4 on the
boundary and vertex 5 in the center. Let S =X®. Let X©, which is illustrated in Figure 7,
be the clique complex with vertex 6 connected to 1, 2, 3, 4, 5. The addition of new simplices
creates a 2-cycle, namely a signed sum of the triangles of the two copies of (the clique complex
of) 'y spanned by 1, 2, 3, 4, 5 and 1, 2, 3, 4, 6. However, this does not add to the Betti
number, since the new cycle is also the boundary of a signed sum of all tetrahedra in X©. One
may check that indeed bg?()(X(“), 5)=1, as the exact sequence of the pair (L'©, X*) shows
Hy(L©, X = H (X)) = 7.

We now prove Proposition 4.1, which is a direct corollary of the first and third bullet points
of the following lemma.

Lemma 4.4. Let fq(t_)1 be the homomorphism between homology groups at dimension q — 1 that

is induced by the map f" (cf. Appendix B.1). Then the following statements are true under the
assumptions of Proposition 4.1:
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o We have

> [kkers) = LD = B0 =D 1 (L),

1<T t<T

o Suppose S(S, q, s, t) happens. Let j : Plugging in the definitions S — L") be the inclusion
map. If tkkerj, 1 =0, then rkkerf,”| > 1.

e Suppose S(S, q, s, t) happens. Ifﬁq(L(t), S) =0, thentk ker j,_1 =0, where j still denotes
the inclusion map of S in L', and hence rk ker ff_)l > 1.

We remark that we will not use the second bullet point until our discussion on our simulation
results in Section 8. Here it is merely a stepping stone towards the third bullet point.

Proof of Proposition 4.1. Plugging in the definitions of «” and bg?L(S, s) into the first bullet
point of the lemma gives

) " rkker fq(’_) L= Y b < B0 <Y U

t<T t<T 1<T

It remains to show that the first sum ), rk ker f;?l is at least

D @S ) = bS sH =Y 1US(S. q. 5. HIBLLY, $)=0]. )

s<t<T s<t<T

Since each term in ngT rk ker f(](?l is nonnegative, keeping only terms where
e s<I,
e S(S, g, s, t) happens, and
o B (LD, 5)=0
shows that ), rk ker f(y_) | is at least
D7 ALSES. g, 5. HIBLLY, $) =Olrk ke fq(’_) .
s<t<T

which, by the third bullet point of the lemma, is at least the right-hand side of Equation (4). [

Proof of Lemma 4.4. For the first bullet point, let C be the star of 7 in X\, Then by
Proposition 3.1, C is acyclic. Consider the Mayer—Vietoris sequence (Theorem B.3) for the
decomposition X = XDy C:

7P _ f(t—)l _
Hy(LD) =5 Hy(X"™ D) — H (XY — H,_ 1 (L9) “= Hy (XD,

where the trivial summands H,(C) = H,—1(C) = 0 are suppressed (we assume g > 2, and hence
q > q — 1 > 0). Hence we have the finite-length exact sequence

0— im £ — Hy(X"™D) > Hy(X") — ker fq‘? | —0.
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Since the alternating sum of ranks vanishes (Proposition B.2), we have
rk Hy(X?) — rtk Hy (X"~ ) = rk ker fq(fj , — rkim £,

where rk ker f;? | <tk Hy LDy = ,Bq_l(L(t)) because the latter group contains the former,

and rk im f(y) < /Sq(L(’)) by the rank—nullity theorem. The first bullet point then follows by
summing over .

For the second bullet point, inclusions induce the following commutative diagram (commu-
tativity follows from Lemma B.1):

Hy-1(S) — 2" H,_ (L)

L L
H,_1(Stxe-n(s)) — Hq_l(X(Fl)),

The left vertical map is 0 because Sty«—1)(s) is acyclic (cf. Proposition B.2). Commutativity
then implies im j,_; lies in ker f(y_)l, and hence

rkkerfi”| > rkimj, 1 =1—rkkerj,_1 =1,

where the first equality follows from the rank-nullity theorem (recall 8;,-1(S) = 1), and the
second one holds by assumption. The second bullet point then follows.

The first part of the last bullet point follows from the long exact sequence for (L, S, %)
(Theorem B.4):

rk ker j,_ =tk im (H,(L", §) — H,_1(S)) <tk Hy(L®, $)=0.
The second part follows from the second bullet point. (]

5. Proof of Theorem 1.6

It remains to estimate the expectations of all the terms in Proposition 4.1 for the preferential
attachment complex for some choice of S and s. Throughout our proof, we fix § = X% and
s=2q+1.

A direct application of Proposition 3.6 gives a lower bound on ) E[DX3D, 2g + 1)].

Lemma 5.1. Consider the preferential attachment complex X =X(T, 8, m). Let ¢ >0 and
suppose m > 2q. Then

> BV, 2g + 1)) =

t<T

Q(T'2ax@my - if 1 — 2gx(8, m) > 0,
Q(logT) if 1 —2gx(8, m)=0,

where the big-Q2 constants depend only on q, &, m.

Proof. Foreacht > 2g+ 1, let I'¥ be a subgraph of U(z, m) (possibly with repeated edges)
with the following properties:

e The vertices are 1, ...,2g+ 1 and .

e Each of  and 2¢g + 1 is connected to each of 1, . . ., 2¢, and 7 is not connected to 2¢g + 1.
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e All edges incident on ¢ are simple.
e The pre-degree of every vertex other than 1 and ¢ is m.

e Removing ¢ and edges incident on ¢ and replacing repeated edges with simple edges
gives the underlying graph of DY.

For example, for g = 2, I'¥ may be the graph illustrated in the left panel of Figure 6, which
by definition has the following edges:
e medges between 1 and 2, and m edges between 1 and 3;
e m — 1 edges between 4 and 2, and one edge between 4 and 3;
e m — 3 edges between 5 and 1, and one edge between 5 and each of 2, 3, 4; and
e one edge between ¢ and each of 1, 2, 3, 4.

The I'® can be chosen to be isomorphic to each other. Then S(X Qa) q, 2q + 1, 1) holds for
X(T, 8, m) whenever X(T, 8, m) contains I'¥).
To simplify notation, let p(v) = prw (v;8, m) for every vertex v of '™, Note that p) =
—2gx(8, m). By Proposition 3.6, we have
PISX®?, .2+ 1, 01=Q@? ] #¥)=q@?)=q@ ™).
k<2g+1

Summing over ¢ and applying the integral test gives the desired result. U

Next we use Theorem 3.4 and Proposition 3.9 to estimate Y E[u(®], ZE[I)E?L], and

> E[b%g(X(Zq), 2q + 1)], but before that, we need an auxiliary lemma to simplify the appli-
cation of Theorem 3.4.

Lemma 5.2. Let I" be a subgraph of U(T, m) with vertex set Vr = {v| < ... <vyy|}. Then the
sequence (ay) in Theorem 3.4 satisfies

=dr(vi)x(s, m) — 1 if "'k (v) =0,
> (dr(vi) —2)x(8, m)  if dP*'r(vr) > 0.

Proof. This can be verified directly. U

Ak — dk—1

The next lemma gives a matching upper bound on Y E[z®] and an upper bound on
> E[bg?L] with a smaller order of magnitude.

Lemma 5.3. Consider the preferential attachment complex X =X(T, 5, m). Let g>1 and
suppose m > 2(q + 1). Then
O(T' 2@+ DxGmy —if | —2(g + 1)x(8, m) > 0,
> EIB,(LD)] = { O(log T) if 1 —2(g+ 1x(8, m) =0,
1=T o(l) otherwise,

where the big-O constants depend only on g, §, m.

Proof. Since L") has at most m vertices, it has at most ( q'_f 1) simplices of dimension g,
where (#1 ) denotes the binomial coefficient. By the weak Morse inequality (Theorem 1.7 of

(17D,
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Ba(L™) < (JEDHUBLL?) > 0], Q)

and hence ) ﬂq(L(’)) is at most (qﬂl ) times the number of values of ¢ such that ﬂq(L(’)) > 0.
We will construct a distinct graph I'” for each such ¢, and bound the expected count of such
graphs. (These I'”) are different from those in Lemma 5.1.)

Whenever ,Bq(L(’)) > 0, L™ contains a g-clique-minimal subcomplex (note that L® is also
clique; see Lemma 7.1), which by Proposition 3.9 has at least 2g 4 2 vertices, whose degrees
are at least 2¢. Since these vertices are all connected to node ¢ in G(T, §, m), this gives rise to
a subgraph T'¥) in G(T', 8§, m) with the following properties:

e '™ has at least 2¢ + 3 vertices, and at most m + 1 vertices,
o the vertices of I'® all have degrees at least 2¢ + 1, and
o the last vertex of ' (which is #) is connected to all other vertices.

Note that for r # s, '® and I'® are distinct subgraphs in G(T', §, m) because their last nodes
are different.

Therefore, Equation (5) implies that ZE[ﬂq(L(’))] is at most ( q'fl) times the expected
number of subgraphs of G(T', §, m) satisfying the properties above.

We use Theorem 3.4 to give an upper bound on the expected count of all such subgraphs.
Since such subgraphs have at most m + 1 vertices, there are only finitely many isomorphism
classes of such graphs. Fix an isomorphism class and pick a representative I' in the class.

We claim the sequence (ai) in Equation (3) attains its maximum at |Vr| — 1 or |Vr|. To
establish this claim, it suffices to show ap <aj < ... <ayy—1. Let 0 <k < |Vr|. Then vy is
not the last vertex of I". Since its degree is at least 2¢ + 1 > 3, and since it is connected to the
last vertex, Lemma 5.2 implies that

ar — ax—1 > (3 —2)x(6, m) > 0.

The claim then follows.
By definition, ay.| = 0. Hence, by Lemma 5.2 again,

ayvp|—-1 = —(ar| — qvp|—1) = 1 — dr (Vias)x(8, m),
where vy is the last node of I'. Therefore, the expected count of I" is
O(T*T log'™ T),
where

Ar =max (0, 1 — dr (Vias))x(8, m)) ,
rr =1[1 — dr (Vias)x(8, m) =0].

The sum of counts for all isomorphism classes is dominated by the classes of the I'’s with
the minimum dr(vias). Our criteria for I' require dr(viast) > 2q + 2. The result then fol-
lows. Note that the minimal dr(vi,s) is attained by D91 which is the only minimizer such
that the corresponding ,Bq(L(’)) is positive, and this justifies our discussion of I'y’s in the
introduction. U
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A similar argument wusing relative homology gives an upper bound on
> <r El E[b{ (X2, 2 + 1)] with a smaller order of magnitude.

Lemma 5.4. Suppose q>?2 and m>2q. Let S be a (possibly random) subcomplex S of
X(T, §, m), and let s be a (possibly random) node in X(T, §, m) that is (almost surely) a later
node than all nodes in S. Then

O(T' =g+ Dx@my  §f 1 — (2g + D)x(8, m) > 0,
E[ Y bi(S. 9= {0(log T) if 1 —(2g+ Dx(8, m) =0,
s<t<T o(1) otherwise,

where the big-O constants depend only on q, &, m.

Proof. Again, on the event ,Bq(L(’), S) >0, L® contains an (S, g)-clique-minimal subcom-
plex, which by Proposition 3.9 has at least 2g + 1 vertices, 2q of them (from S) with degree at
least (2g — 2), and the rest with degree at least 2gq.

Since these vertices are all connected to node ¢ in G(T', §, m), this gives rise to a subgraph
' in G(T, 8, m) with the following properties:

o I'® has at least 2q + 2 vertices, and at most m + 1 vertices,

e 2g vertices of I' have degrees at least 2¢ — 1, and the rest have degrees at least 2qg + 1,
and

o the last vertex of I'® (which is 7) is connected to all other vertices.

Then E[ ), <1<T b(t) (S, )] is at most the expected number of such subgraphs.
Appealing to Theorem 3.4 again, for each such I', the maximum Ar of the sequence (ay) is
attained by one of the last two terms. The result then follows. (]

The proof of Theorem 1.6 is now completed by plugging the estimates in Lemmas 5.1, 5.3,
and 5.4 into Proposition 4.1.
6. Proofs of Propositions 1.7 and 1.8
We first handle the trivial cases.

Proof of Proposition 1.8. The claim for ¢ =0 is trivial, because preferential attachment
graphs are connected by construction. The claim for m < 2q follows from the fact that there are
not enough edges to form g-dimensional holes. This can be seen by applying Proposition 3.9
to the last node in a hypothetical g-minimal subcomplex. (]

Finally, we prove Proposition 1.7 using the Morse inequality.

Proof. Let |V|, |E|, |[F| be the expected numbers of vertices, edges, and triangles in
X(T, 8, m). The strong Morse inequality (Theorem 1.8 of [17]) implies that

|E| — V| — [F| < EB1(X(T, 8, m)) <EBo(X(T, 8, m)) + |E| — | V|.
Obviously, |V| =T and Bo(X(T, 8, m)) = 1. Theorem 3.4 implies that the expected numbers of

triangles and of bi-angles (the two-node graph with two distinct edges from one node to the
other) are both o(T), and hence
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m(T — 1) —20(T) < |E| <m(T — 1),
|F| =o(T).

The result then follows. O

7. Proof of Proposition 3.9

Our proof follows the argument of Lemmas 5.2 and 5.3 in [27]. We generalize these lemmas
to the setting of relative homology in Lemma 7.2. To ensure clique-minimality conditions are
met in our argument, we need Lemma 7.1 to ensure that certain subcomplexes of a clique
complex are clique complexes. Proposition 3.9 is a corollary of Lemma 7.2.

For every simplicial complex X and every vertex v of X, we denote by X — v the simplicial
complex that consists precisely of simplices that do not contain v. Note that Lkyv = Stxyv N
(X — v) (recall that Lk and St are the link and star in Section 3.1).

Lemma 7.1. If X is a clique complex, then Lkxv and X — v are clique complexes for every
vertex vin X.

Proof. The claim for X — v is trivial. For Lkxv, let wo, ..., w, be distinct and pairwise
connected vertices in Lkyv. It suffices to show that o = {wy, ..., wy} lies in the link. Since o
does not contain v, it lies in X — v; hence it suffices to show that o lies in Stxv.

Since each w; lies in the link, it is a vertex of a simplex in Stxv. This simplex contains v by
definition. Therefore, {w;, v} is an edge in this simplex, and hence in X.

Since this is true for all w;, the clique complex X contains the simplex vx*o, =
{wo, ..., wg} U {v}. By definition v * o lies in Stxv, and hence o does too. The result then
follows. O

Next, we generalize Lemmas 5.2 and 5.3 of [27] to the setting of relative homology. Only
the first part of the following lemma is novel. The second claim is Lemma 2.1.4 of [18] and
Lemma 5.3 of [27] phrased differently. We reproduce the proofs in those papers using our
terminology.

Lemma 7.2. Let X be a clique complex, and let A be a (not necessarily clique) subcomplex of
X. Suppose X is (A, q)-clique-minimal. Then the following statements are true:

e Forevery g > 0 and every vertex v in X but not in A,
Bq—1(Lkx(v), B) >0

whenever B is empty or it is an acyclic subcomplex of Lkx(v) N A.
e If g >0 and A consists of one single vertex, then X has at least 2q + 2 vertices.

Proof. For the first claim, fix a vertex v in X but not in A. We have the following
commutative diagram:
H,(Lkxv, B) —— H,(Stxv, B) —0) H,(Stxv, Lkxv) i} H,_1(Lkxv, B)

! ! Jon !

Hy(X = v, A) =203 Hy(X, A) — L H (X, X —v) —— Hy1(X v, A),
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where the two rows are long exact sequences of triples (Theorem B.4), and the vertical maps
are induced by inclusion (defined in Appendix B.1). We would like to show that the top-right
group has positive rank.

We first check commutativity. The far-right square commutes by the naturality of the long
exact sequence of triples, and the other squares commute because all maps are induced by
inclusions (cf. Lemma B.1).

We explain the annotations in the diagram. The map ¢, marked by ‘EX’, is an isomorphism
by the excision theorem (Theorem B.5 with A and B being Stxv and X — v). The map marked
by ‘0’ is zero because Lemma B.7 implies H,(Stxv, B) =0 (recall from Proposition 3.1 that
Styv is acyclic). The map marked by ‘rk 0’ is rank-0 by the clique-minimality of X.

Exactness implies ¥ is injective. We also have

By(X, X —v) > rkim 5 = B,(X, A) — tkker n = B,(X, A) > 0, (5)

where the two equalities hold by the rank—nullity theorem and exactness, and the last inequality
holds by assumption.

Since the top-right group contains 1//‘(p_lHq(X , X —v), it must have a positive rank. The first
claim then follows.

For the second claim, the case for g =0 is trivial. For ¢ > 0, suppose for the sake of
contradiction that X has strictly fewer than 2¢q + 2 vertices.

We first consider the main case when there is a vertex v connected to the vertex in A. The
first claim implies B;—1(Lkx(v), A) > 0. Therefore, Lkx(v) has an (A, g — 1)-clique-minimal
subcomplex, and hence by induction the link has at least 2¢ nodes. Since we have assumed X
has strictly fewer than 2q + 2 vertices, all nodes other than v are in the link. Since X is a clique
complex, this means X is Sty (v), and hence is acyclic (Proposition 3.1), in contradiction to the
assumption of (A, g)-clique-minimality.

We now consider the case when A is not connected to any other vertices. Since 8,(X, A) > 0,
X — A has at least one edge, say with endpoints v, w in X — A. It can be directly verified that
X — A is g-minimal, and hence ({w}, g)-minimal. The main case above implies X — A has at
least 2g + 2 vertices, and hence so does X. O

Proof of Proposition 3.9. The first part of the first claim is just the second claim of
Lemma 7.2. The second part of the first claim is trivial, because if X has the same vertex
set as A, then X = A (because A is an induced subcomplex), and hence H, (X, A) =0.

The second claim is trivial for ¢ = 0. It is also straightforward for ¢ = 1: the minimality of
X implies that it has no degree-0 or degree-1 vertices outside of A, because their removal does
not change H,(X, A). For g > 1, since the removal of isolated vertices not in A does not change
the (relative) Betti number at dimension ¢, clique-minimality implies degv > 1, and hence
Lkx(v) is nonempty. The first claim in Lemma 7.2 implies 8, 1(Lkx(v), ¥) > 0, and hence
Bg—1(Lkx(v), {w}) > O whenever w € Lkx(v). The second claim of Lemma 7.2 then implies
Lkx(v) contains a subcomplex with at least 2g vertices. This means that v is connected to at
least 2¢ vertices in X. O

8. Numerical simulation

We discuss the simulation we mentioned in the introduction in greater detail. Recall that the
right panel of Figure 2 illustrates the evolution of the mean Betti numbers. Below, we explain
the set-up of the simulation, and in the last paragraph of this section we discuss the results
shown in Figure 2.

https://doi.org/10.1017/apr.2024.66 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2024.66

962 C. SIU ET AL

Numerical computations related to topology and graph theory are done with Ripser [4, 42]
and igraph [13], respectively. Other numerical computations are done with NumPy [22] and
SciPy [46]. Codes are compiled with Numba [32]. Plots are generated with Matplotlib [26].

We generate 500 preferential attachment clique complexes with 7= 10* nodes and with
parameters m =7 and § = —5. We compute the sample mean of their Betti numbers (with
coefficients in Z/27) at dimension g =2. The black curve corresponds to the evolution of
mean Betti numbers. We remark that the median of means gives a similar estimate of the
expectation.

We also compute the sample mean of the upper bound > u® in prop:decomposition and
the sample mean of a lower bound Y _,_, (£O(S, s) — 1352(5, ) =D et b%‘, where S, s,

and l?%g(S , s) will be defined below. The evolutions of the means of these bounds are plotted
in dotted lines. We compute these quantities for graphs with 7= 10> nodes, because their
computation is cheaper than that of Betti numbers.

We now define S, s and I;IK(S, s):

e Sis the first induced subcomplex of X*? (in an arbitrary but deterministically consistent
ordering) that is isomorphic to S9! if one exists; otherwise, it is the first subcomplex
of X0,

e s is the first node whose label is larger than all of those in S such that § C Lky(s), if it
exists; otherwise it is node 21;

° 1352(5, 5)=1[S5(S, q, s, H]l[tkker j,_1 = 1], where j:S§— L® denotes the inclusion
map.

We make the following remarks on these definitions:

e The ‘otherwise’ statements in the above definitions are unimportant, because in those
cases, L0(S, 5) =b2(S, 5) =0.

e We do not fix $=X?9 and s = 2g 4+ 1 as in our proofs, because S(X@D, q,2g+ 1,1
happens so rarely that E[ 3" £] is too small to be numerically estimated.

e We change the definition of ZA)% because the computation of relative Betti numbers is
numerically inconvenient. We numerically compute rk ker j,_; by computing the persis-
tence diagram for the inclusion S® C L® with Ripser. By the first two bullet points of
Lemma 4.4, the new expression does give a lower bound.

Finally, we draw a band that contains all curves. The slope of the band is determined
by Theorem 1.6. While the discussion following the theorem suggests some values for the
y-intercepts of the band, the corresponding band trivially covers the entire plot. Therefore we
manually choose other values for the y-intercepts.

It is apparent from the plot that the convergence is slow. In particular, at 7 = 10°, the mean
upper bound still grows at a rate faster than the asymptotic rate. However, it is obvious that the
curve is concave, and hence has a decreasing slope. We also note that the mean upper bound is
a good approximation of the mean Betti numbers.
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9. Future directions

We have established analytically the asymptotics of the expected Betti numbers of affine
preferential attachment clique complexes and illustrated them numerically. A number of open
questions remain.

It would be desirable to have sharper estimates of the expected Betti numbers, and finer
descriptions of the distributions of the Betti numbers.

Other topological properties of preferential attachment graphs are also of interest. To under-
stand the robustness of the complex, it would be helpful to understand the evolution of Betti
numbers as nodes are removed. One may also consider the Betti numbers of the Rips com-
plexes of the graph with respect to the graph metric. Beyond Betti numbers, one may also
consider the homotopy type of the random simplicial complexes. Since holes are filled by later
nodes, it is possible that all holes are filled if nodes are added ad infinitum and the number of
edges added each time grows slowly. In particular, in a private conversation, Weinberger con-
jectured that the resultant complex is contractible (X is said to be contractible if there exists
an xp € X and a map f : X x [0, 1] — X such that f(-, 0) is the identity on X, f(-, 1) =xo, and
f(xo, -)=xo; cf. [34, p. 108]).

Other scale-free simplicial complexes are also of interest. It is not even clear whether
our result is universal across different formulations of the preferential attachment models
(e.g. when m edges are added simultaneously rather than sequentially at each stage). The
configuration is another popular scale-free model. Different techniques are likely necessary,
as there is no natural ordering of the vertices in the configuration model. In [24], the topol-
ogy of the age-dependent random connected model is investigated. It remains open whether
the limiting distribution of Betti numbers is a heavy-tailed stable distribution when the degree
distribution has infinite variance.

Appendix A. More on subgraphs in preferential attachment graphs

In this appendix, we give the intuition behind Theorem 3.4, and we discuss the formulation
of Proposition 3.6, which is very different from its original form.

For the intuition for Theorem 3.4, the main idea is that one may count the isomorphic copies
of a graph I' in G(T, §, m) with node labels (or equivalently, the arrival times of the nodes)
having specific orders of magnitude separately. For example, one may count the number of
triangles such that the first node is approximately 70 = 1, the second node is approximately
T'/2, and the third node is approximately 7' = T. The order of magnitude of the total count
is then the maximum of all orders of magnitude for the counts with specified magnitudes
of node labels, and this gives rise to the optimization problem. It turns out the optimization
problem is linear in the logarithm of the vertex labels (0, 1/2, and 1 in our example), and hence
at the maximum they are either T9 =1 or T! = T. To determine the maximum, it suffices to
identify the first node label whose order of magnitude is 7' = T'. This is why the maximum in
Theorem 3.4 ranges from 0 to the number of nodes in I". We refer the reader to [20] for further
discussion on the theorem.

We drastically paraphrased Proposition 3.6 both to facilitate its application and to avoid a
potential confusion about the edge orientations. In Lemma 1 of [20], an ¢-edge subgraph I"
of U(T, m) is denoted by three vectors u = (uy, ..., up), v=wg, ..., ve),and j= (i, .. ., je),
where the kth edge of T is said to be the jith edge (among the m edges starting from uy) from
node u; to node vi. In the rest of the paper, edges point from later nodes to earlier nodes.
However, based on the steps in the proof, as well as the application of the lemma, one can see
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that nodes in u precede their counterparts in v. See, for instance, Equations (17) and (23) in the
proof in [20] and the application of the lemma at Equation (27) therein.
Now, we claim that

r(vié,m) __ l_[ x—1_—x
1_[ VP = w, v,

veVr 1<k<t

where the right-hand side is the expression used in [20] (we have changed the indexing variable
there from / to k, and we have changed x = 2”;::35 there to x, which is indeed the same as x
by Equation (2)). To see this, consider the right-hand side. For each node v in T, it appears as
an entry in u and in v for dP°S'r(v) times and dP™r(v) times, respectively. Collecting factors

shows that the exponent for v is (x — 1)dP*'r(v) — xdP™(v) = pr(v; §, m).

Appendix B. Homology theory

In this section, we develop the theory of simplicial homology by defining all relevant topo-
logical terminology and stating all relevant topological facts. We mainly follow the exposition
in [34] to minimize point-set topological technicalities. We refer the reader to [21] for an
elementary introduction, and to Chapter 2 of [23] for a thorough exposition.

B.1. Simplicial maps, inclusion, and induced homomorphisms (cf. [34, Section 2])

A simplicial map f : X — Y between two simplicial complexes is a function between the
vertex sets of the two complexes such that {f(v): v € ¢} is a simplex in Y for every simplex
oeX.

If X is a subcomplex of Y, the inclusion map j: X — Y is the simplicial map defined by
Jjv)=v.

For every integer g, every simplicial map f : X — Y induces a homomorphism f : C;(X) —
Cy(Y) defined as follows.

For each simplex [vo, ..., v4],if f(vo), . . ., f(v,) are distinct, we denote by 7 the permuta-
tion such that f(vz(0)), . . . , f(Vz(g)) is increasing with respect to the ordering of vertices in Y.
(Obviously 7 depends on [vg, ..., v4].) We define

sgn(m)f (V) - - - s fr@)] i f(vo), ..., f(vy) are distinct,
0 otherwise,

f#[vo,...,vq]z{

where sgn(rr) = %1 is the sign of the permutation .
This map in turn induces a homomorphism f; : H,(X) — H,(Y) defined by

faz+im 8 ) = fu(2) +im 8],

for every g-cycle z of X, where the two superscripted im d,1’s are the boundary groups of X
and Y respectively.
Induced homomorphisms are functorial, in the sense that

e (idx)qs =1idp,x) for every simplicial complex X, where id denotes the identity map or
homomorphism, and

o (gf)g = gq4fy Tor every integer g and every simplicial mapsf: X — Yand g: Y — Z.
(Cf. Theorem 12.2 of [34].)
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B.2. Pairs and relative homology (cf. [34, Section 9])

A 2-tuple (X, A) of simplicial complexes is said to be a pair if A is a subcomplex of X, and
a 3-tuple (Y, X, A) is said to be a triple if (Y, X) and (X, A) are two pairs. A simplicial complex
X can be identified with the pair (X, ¥J), where ¢ denotes the empty set.

For a pair (X, A), the gth relative chain group is the quotient group Cy,(X)/C4(A).
Elements of relative chain groups are called relative chains. The boundary homomor-
phism 9, : Cy(X) — C4—1(X) induces the relative boundary homomorphism 9, : Cy(X, A) —
Cy—1(X, A), defined by [vo, ..., v4]l+ Cy(A)— 3d[vo, ..., vyl + Cy—1(A). The gth relative
homology group H,(X, A) is the quotient group ker d,/im 941, where the boundary homo-
morphisms here are relative boundary homomorphisms. Its rank is called the (relative) Betti
number of the pair and is denoted by 8,(X, A). The elements of the kernels and the images of
relative boundary maps are called relative cycles and relative boundaries, respectively.

The interpretation of relative homology may be found in Proposition 2.22 of [23].

The definition of simplicial maps and induced homomorphisms extends to pairs, triples,
and relative homology. We refer the reader to Section 12 of [34] for the relevant details. In
particular, functoriality still holds, and we have the following lemma.

Lemma B.1. If (A,A) C(BNC, B NC') C(D, D) (entrywise inclusion), then the following
diagram commutes for every q:

Hy(A,A") —— Hy(B, B')

| !

H,(C,C") —— Hy (D, D’),
where all maps are induced by inclusion.

B.3. Exact sequences

An exact sequence is a sequence of abelian groups (4,) with homomorphisms ¢, : A,, —
An+1 between adjacent abelian groups, such that ker ¢,, = im ¢,,—1. The sequence is said to be
finite-length if it starts and ends with the trivial group 0. We used the following fact in our
proofs.

Proposition B.2. (Alternating sum of ranks of an exact sequence [40, Exercise 3.16].) Let 0 —
Ag— ...— A, — 0 be a finite-length exact sequence of finitely-generated abelian groups.
Then

Z (=¥ rk Ay = 0.
0<k<n
The case n = 3 gives the the rank—nullity theorem, which states that tk A =rk ker f 4 rk im f

for every homomorphism f : A — B between finitely-generated abelian groups.

B.4. Properties of homology groups

Finally, we state three key homological facts that are used in our proofs.

Theorem B.3. (Theorem 25.1 of [34].) Let X and Y be subcomplexes of a simplicial complex
Z. Then there exist maps such that the following sequence is exact:

o> HXNY) > Hy(X)®Hy(Y) > H)(XUY)—> Hy, ((XNY)— ...—> Hy(XUY)— 0.
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Theorem B.4. (Long exact sequence for triples; Exercise 24.1 and Lemma 24.4 of [34].) For
every triple (Y, X, A), there exists a homomorphism 9, : Hy(Y, X) — Hy,_1(X, A) for each g
such that the following sequence is exact:

0,
oo Hy(X, A) = Hy(Y, A) = Hy(Y, X) > Hy_y (X, A) — Hy_1(Y, A)— ... — Ho(Y, X) > 0.

All unmarked maps are induced by inclusions. Further, the map 0, is natural, in the following
sense: for every simplicial map f: (Y, X, A) — (Y', X', A) and every q, f; and f,_1 commute
with the boundary maps 8¢(IY’X’A) a,gy X.4)
(Y, X’, A’), i.e. the diagram

and in the long exact sequences of (Y, X, A) and

(Y, X,A)

Hy(Y. X) ~— Hy_i(X, A)

lfq lqul
ai[y’,x’.A’J
Hy(Y', X Hy (X', A))
commutes, where the two vertical maps are restrictions of f to the respective domains.

Theorem B.5. (Excision theorem for complexes;, Theorem 9.1 of [34] and Corollary 2.24 of
[23].) Let A and B be subcomplexes of a simplicial complex X. If X = A U B, then the inclusion
J:(A,ANB) — (X, B) induces an isomorphism j, : Hy(A, AN B) — Hy(X, B) for every q.

Remark B.6. The above form of the excision theorem is a special case of Corollary 2.24 of
[23], which is phrased in terms of the more general CW complexes. Theorem 9.1 of [34]
implies our versionif weput K =X, Ko=B,and U =X —A,andhence L=A and Lo =A N B.
We check that U is indeed an open set contained in |Kg| = B. Since K =AUB, U=X —-ACB.
Thus U is open because all subcomplexes are closed (cf. Lemma 2.2 of [34]).

We conclude with an elementary application of the long exact sequence for triples (Theorem
B.4).

Lemma B.7. Let g > 1 and let A be a subcomplex of X. If each of X and A is either empty or
acyclic, then Hy(X, A)=0.

Proof. Consider the following segment of the long exact sequence for (X, A, @):

Hy(X)— Hy(X,A) 5 H, 1 (A) 3, Hy 1(X).

The assumption on X implies that the first group is 0, and hence exactness implies that the
second homomorphism ¢ : Hy(X, A) — H,1(A) is injective. It therefore suffices to show that
im @ =0.

If g > 2 or A is empty, then H, (A) is also 0, and hence im ¢ must also be 0.

If g=1 and A is nonempty, then the last homomorphism ¥ : H,_1(A) — H,_1(X) in the
segment above is the identity on Z. (To see this, let a € A. Then Hy(A) and Hy(X) are generated
by the homology classes of a from the respective simplicial complexes.) Exactness then implies
im ¢ =ker ¢ Z0. O
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