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APPROXIMATION BY UNIMODULAR FUNCTIONS:
CORRIGENDUM

STEPHEN FISHER

Professor J. Detraz has pointed out to me that the proof of part (b) of
[1, Theorem 1] is incorrect. The proof will be complete, however, once the
following proposition is proved.

PRroPOSITION. Let K be a compact subset of the unit circle T of zero Lebesgue
measure, and let \ be a real measure on K. If

sin(f — ¢t) <
(*) L 1 —cos(@ — 1) ) =0
for every 0 with e ¢ K, then A = 0.
Proof. Let

v(r,0) = f P.(0 — )d\(@)

be the harmonic extension of A to the unit disc U; here, P,(6) is the Poisson
kernel for re®. v may be continued harmonically across every point of 7" not
in K and v vanishes on 7' — K. If w(r, 6) is the harmonic conjugate of v on
U, then w is harmonic across 7' — K and the assumption (x) is that w < 0
on I — K.

The analytic function —w + v is in the Hardy class H? for 0 < p < 1
and has positive boundary values a.e. d§ on 7" by assumption. Hence, it is a
constant (see [2]). Thus A\ must be zero.

Acknowledgment. 1 would like to thank Professor H. S. Shapiro for pointing
out this proof to me which is much simpler than my original proof of this
proposition.
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