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CONVERGENCE OF
RELAXED CHAOTIC PARALLEL ITERATIVE METHODS

PETER E. KLOEDEN AND DONG-JIN YUAN

Sufficient conditions involving uniform multisplittings are established for the con-
vergence of relaxed and AOR versions of asynchronous or chaotic parallel iterative
methods for solving a large scale nonsingular system of linear equations Ax = b.

1. INTRODUCTION

Parallel multisplitting iterative methods for solving a large system of linear equa-
tions

(1) Ax = b,

where A £ Knx™, take two basic forms, synchronous when all of the processors wait
until they are updated with the results of the current iteration before they begin with the
next iteration or asynchronous when they act more or less independently of each other,
using possibly delayed iterative values of the output of the other processors in computing
their next iterate. In view of the potential time saving inherent in them, asynchronous
iterative methods, or chaotic as they are often called, have attracted much attention
since the early paper of Chazan and Miranker [2] introduced them in the context of point
iterative schemes. Naturally, their convergence is of crucial interest and a number of
convergence results have been obtained. Since relaxation of standard iterative methods
often accelerates their convergence, the relaxation of asynchronous parallel methods may
offer further time saving advantages provided convergence is assured. In this paper we
investigate the convergence of two relaxed and three AOR methods which are based on
methods of Eisner and his coworkers [1, 3, 4] and of Su and Zhu [5] whose notation
will be used in what follows.
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2. NOTATION

Inequalities of vectors and matrices will be interpreted componentwise; in particular
for x = (x i , . . . ,xn) G Kn and A = (oy) G RnXn by x ^ 0 we mean that Xf ^ 0 for
i = 1, . . . , n and by 4̂ ̂  0 that a^ ^ 0 for i, j = 1, . . . , n, in which case we say that
x and A are nonnegative.

For a matrix A = (o,-j) G R n x n , the absolute value matrix is \A\ = (\a,ij\) while

the comparison matrix is (A) = ((o)^) where

/ k » i l if i = J
{ - \ a . i j \ i f i ^ j

A matrix A = (a.ij) £ K n x n is an M-matrix if it is nonsingular with A-1 ^ 0
and dij ^ 0 for all i ^ j . It is a J?-matrix if (A) is an M-matrix, and an Z-matrix if
an > 0 for i = 1, . . . , n and Ojj ^ 0 for all i ^ j .

A splitting of a matrix A = (ai7) G RnXTl is a pair of matrices M,N G KnXn with
det(M) 7̂  0 such that A = M - N. It is called a nonegative splitting if M^N ^ 0
and an M-splitting if M is an M-matrix and N ^ 0. For any k ^ 2 a multisplitting of
A G MnXn is a collection of k triples (Mi,Ni,Ei) of n x n real matrices, Z = 1, . . . , k,
for which each Ei is nonnegative diagonal, each Mi is invertible and the equalities

(2) A = Mi - Ni

for 1 = 1, . . . , k and

(3) ES' = /"
1=1

are satisfied. A multisplitting (Mi,Ni,Ei), I = 1, . . . , k is nonejoiive if the matrices
Mi,Ni for Z = 1, . . . , k are a nonnegative splittings of A and uniform if there exist a
scalar a G (0,1) and a vector x > 0 such that

(4) M^Nix^ax for Z = l , . . . ,fc.

Various conditions on the matrices A, Mi and TV; ensuring the uniformity of the mul-
tisplitting can be found in [1], for example, if A is an M-matrix and the Mi, Ni are
M-splittings of A.

Finally, a sequence of sets {Pi} with Pj C {1 , . . . ,fc} is admissible if every integer
1, . . . , k appears infinitely often in the Pi, while such an admissible sequence is regu-
lated if there exists a positive integer T such that each of the integers 1, . . . , k appears
at least once in any T consecutive sets of the sequence.
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Using this notation we can now describe two models of parallel iteration from [1]

for a given multisplitting of the coefficient matrix A. The first, model A, is relatively

straight forward with the form

for i — 0, 1, . . . , where the flu ^ 1 are given integers and Ff1' is the fiu-th. composition
of the affine mapping Fi defined by

(6) F, = M,"1 (N, x + b).

Here each processor in a parallel machine can carry out a varying number of iterations
locally until a mutual phase time is reached when all processors are ready to contribute
to the global iteration. The second, more complicated model B has

(7) xi+n = (/„ - EU) x ^ - 1 + Ei.Fi. (*'"),

for i = -k + 1, . . . , - 1 , 0, 1, . . . , where z* = ( ( x j + r ( 1 ' i ) ) T , . . . , ( x j l
+ r ( " ' ' ) ) T ) T , the

sequence {ji} is admissible and regulated for some positive integer T, 0 $J r(i,j) ^

r,- — 1 ^ T for j = 1, . . . , n, and x~k+1 = • • • x~* = x°. Each processor here can

update the global approximation or retrieve components of the global approximation

from a central processor at any time provided no two processors do so at the same

instant.

Both of the above models have been generalised by Su and Zhu [5] to allow for two

or more processors to communicate with the central processor at the same time instant,

in which case

(8) (
^ l€Pi

where the P,- C { 1 , . . . , k} are admissible and regulated.

3. RELAXED CHAOTIC ITERATIONS

Here we consider two relaxed versions of the above parallel iteration models. The
first, based on equation (5), uses a relaxation parameter w in the same way as in a
relaxation of the Jacobi method. It is

(9) xi+1 =w^2E, Ft" (*') + (1 - w) x\
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for t = 0 1 , . . . with w > 0, and obviously reduces to (5) when w — 1. The second is
based on (8) and takes the form

(10) si+1 = (ln - w £ £,) j + u,

for i = 0, 1, . . . with u > 0, where w^^1 = (j(x\~T<1'i))T ,...,(xn~
r(n>i))T>j and

For both of these relaxed methods we have convergence under similar conditions.

THEOREM 1. Suppose that A £ E n x n is invertible and (Mj, Nt, E{), I - 1, . . . , k,
is a nonegative uniform multisplitting of A. Then the relaxed parallel iterative method
(9) converges to x = A~xb lor any initial value x° £ Mn when the relaxation parameter
u) satisiEes

(11) 0< 2

1+0"

for the a in (4).

PROOF: TO prove the theorem it suffices to show that the monotonic norms [1] of
n x n real matrices Hi defined by

it

Hi = w V^ Ei (M^1 Nt)1*1' + (1 — u) In

satisfy H-ffjĤ - ^ /? for all i and some j3 G (0,1), where x~ is from (4). Let /3 =

aw+ |1 — u>|, so /? < 1 for all w satisfying (11). Post-multiplying the matrix Hi by the
vector x > 0 in (4), it follows from inequality (4) and the nonnegativity of the Ei and
the M~xNi that

\l-w\x ^ wax+ \l-w\ x = 0x.

Thus we have ||27i|lx- ^ f3 and convergence follows as in [1]. D

THEOREM 2 . Suppose that A S KnXn is invertible, that (MhNi,Ei), I =
1, . . . , k, is a nonegatfive uniform multisplitting of A, and that the index sequence
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{Pi} is admissible and regulated. Then the relaxed parallel iterative method (10) con-
verges to x — A~1b for any initial value x° 6 Rn when the relaxation parameter u>
satisfies (11).

PROOF: Let x* be the unique solution of Ax* = b,x the vector in the uniformity
inequality (4) and T ^ 2 the integer in the regulatedness of the admissible index
sequence {Pi}. Define nT-dimensional column vectors by

T

and nXnT matrices Zli = (Zf,..., Zji) with components 0 or 1 such that £) z'.i

for I = 1, . . . , k and i = 0, 1, . . . . Then *= 1

where

X* - Xi+1 = Hi (X* - X<)

/ „ 0 . . . 0
0 In . . . 0

0
0

.0 0 . . . / „ 0

with

and

u,

* = a, £ 25, (Mf1

for a = 2, . . . , T. Hence

X* — X1 = Hi • - - -Hi+1 (-X̂ * — X1 )

and since JTj ^ 0 for all i to verify that |.X"* — X*| —» 0 as i —> oo it suffices to show
that there exists a constant a £ [0,1) independent of i such that the monotonic norm

(12) \\Hi+2T-i3i+2T-2 • • • -ffi+illx ^ a

for all i.

Define a = |1 — u>(l — <r)6\ where cr is from inequality (4) and

• T ' O " ' M C P / <ep.
mm

j = l,...,n
1=1, . . . ,k

j, : (E,),, > o} ,
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so 8 6 (0,1] . Hence a < 1 for w satisfying (11).

Finally define ~Xt = ((x\)T ,... , (zf ) T ) = #i+1.ff,+t_i • • • Hi+1Y for 1 ^ t <

2T — 1. From the uniformity inequality (4) and the definition of the Ht it follows that

x for 1 ^ s ^ T since HfX ^ X for all t ^ 1. Hence for each t ^ 1x ' < x

(13) x\ = (lB - « £ Ei) *U + « ( £ >

so by the properties of the multisplitting

I6P,

(14) ^ x - w ( l - ( 7 ) ~

Now if Y^, (El) • • — 0 for some j = 1, . . . , n, then it follows from (13) that (xj) . =
l€Pi '

(*t-i) • • On the other hand if Y, (EOjj > 0, then from (14) we have

, i \ I / — 1 \ I _ —

(15) (xt). = \{xt)^ ^ |1 - w(l - a)6\ XJ = axj.

Since the admissible sequence of index sets {Pi} is regulated, each integer 1, . . . , k
must appear at least once in any segment {Pi,... ,Pi+t} if t ^ T and hence (15) holds
for each j = 1, . . . , n if t ^ T. Also from the definition of the Ht it is clear that
X2T-1 = *2T-»-i f°r s = 1, ... , T —1. Hence (12) holds and the proof is complete. D

4. AOR CHAOTIC ITERATIONS

Let A £ R"x™ be nonsingular such that D = diag A is also nonsingular. For
I = 1, . . . , k let Li e K"x n be strictly lower triangular, define Ui - D - Li - A (which
need not be upper triangular) and let (D - Li, Ui,E{), I = 1, . . . , k, be a multisplitting
of A. Finally define

F[(T,W,X) = (D-rLi)~1 { [(I - w)D + (u - r)Li + will] x+wb}
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for r ^ 0, w > 0, x e R " and / = 1, . . . , jfc.

We consider three AOR versions of the above parallel iterative methods here. The
first, based on (5), is

(16) s'+1 = £>,*?"• (r.u,,**),
J=i

to which a positive relaxation parameter /? > 0 is introduced to yield the second,

(17) zi+1 =PY,E1F»< (r.o;,**) +(1 -/3) x\
1=1

while the final AOR method is the relaxed method (10) with wt~T'+1 replaced by

(18) xi+1

As before, the (in here are positive integers.

THEOREM 3 . Suppose that A G RnXn is an invertible H-matrix with multisplit-
ting (D-Li,Ui,Ei),l = l, ... ,k, such that

(i) D = diag A, Li is strictly lower triangular and Ui = D — L\ — A,
(ii) {A) = \B\-\Ll\-\Vl\

for each I = 1, ... , k. Then the AOR parallel iterative method (16) converges to
x = A~xb for any initial value x° £ Rn when the parameters r and w satisfy

2
(19) 0 ^ T < w and 0 < u <

1 + p*
where p* is the spectral radius of the matrix I-DI"1 (\D\ — (A)).

PROOF: AS before it suffices to find a constant a £ (0,1) which is independent of
i and an appropriate vector x £ Mn such that the monotonic norm H-Ĥ J",*!;̂ !!— ^ a
for all i ^ 1 where

k

(20) ffO-.wk = ^2E,{ (D-rLt)-1 [(l-u)D + (« - r)Lt + u>U,} } m .

Now A is an invertible .ff-matrix and L\ is strictly lower triangular, so (D — rL{)
is an i-matrix and {D — rLi}~ = (\D\ — r \I>i\)~ > 0. Hence D — rLi is an invertible
.ff-matrix and the matrix inequality

D - rL,)-1 ^(D- TLI)-1 = (|D| - r IL,])'1
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holds, from which it follows that

(£> — rLi) [ (1 — w)D + (u — r)Li + u>Ui]

^ (D - rLi)'1 |(1 - w)D + (u- r)Lt + uUt\.

Define
= (\D\-r\Ll\) = (D-rLl).

I f O ^ r - < a ; ^ l define

J\r,(1)(r>«) = (1 - «) \D\ + {w - r) |£,| + u \Ui\

and note that
|(1 -u)D + (U-T)LI+UUI\ ^ N^\r,uj)

and
Mi(r) -Nl1)(r,w) = w(A).

Since Mi(r) is an M-matrix and JV, (r, w) ^ 0, the matrices Mj(r), iV; (r,o;) are

an M-splitting of us (A), which is also an M-matrix, so (Mi(r),iV, (r,u),Eij , I =

1, . . . , A;, is a uniform multisplitting of w (A), with an xi = xi(r,u>) > 0 and an

" i = ai(r,w) G (0,1) such that

(21) 1 ( 1 )

for / = 1, . . . , fc. Hence

k

(22)

On the other hand, if 0 ^ r < w and 1 < w < 2/(1 + p*) define

N\2\T,W) = (w - 1) |Z?| + (« - r) |£,| + u |CT,|

and note that
|(1 - «)/? + (« - r)Li + «^, | < iV,(2)(r,«)

and
M,(r) - iV,(1)(T-,w) = (2 - w) \D\ -u\B\.

Since Mj(r) is an M-matrix and N\ (r,u>) ̂  0, the matrices Mj(r),JVj (r,w) are

an M-sph'tting of the matrix (2 — w) \D\ — w \B\, which is an M-matrix for 1 < w <
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2/(1 + p*) by [6, Theorem 7.2]. In fact, (M,(r),W,(1)(r,w),.E,) , / = 1, . . . , Jfe, is

a uniform multisplitting of (2 — w) \D\ — w\B\, with an x2 = i j ( r ,w) > 0 and an

a2 — ct2(r,u}) £ (0,1) such that

(23) M i O - ) - 1 ^ ! - . * ; ) ^ < a2 x2

for / = 1, . . . , A;. Hence

(24) |ff(r,w).x2| < £ t f , { ̂ (rj-^p^r.w)}"" z2 ̂  ]T £, a2s2 ^ a2z2.
1=1 J=i

Inequalities (22) and (24) give the desired result. U

In the statement and proof of the next theorem the quantities X\, cti and af2, a2

are as in (21) and (23), respectively.

THEOREM 4 . Suppose that the assumptions of Theorem 3 hold. Then the AOR
parallel iterative method (17) converges to x = A~lb {or any initial value x° £ Rn

when the parameters r and w satisfy inequalities (19) and

O<0<0*{r,w)

where P*(r,u) = 2/(1 + ai(r,w)) if 0 < w < 1 and 0*{r,w) = 2/(1 + ct2(r,w)) if
1 < w < p*.

PROOF: Here too it suffices to find a constant A € (0,1) which is independent of
i and an appropriate vector x £ Rn such that the monotonic norm H-H^T-JW,/?)^— ^ X

for all i ^ 1 where

with H(r,w)i given by (20).

Define A,- = |1 - /?| + 0CLJ for j = 1 and 2.

Then Aj G (0,1) for 0 < r < w ^ 1 and 0 < /? < 2/(1 + a^r^)), so

On the other hand, A2 £ (0,1) for 0 < r < w, 1 ^ u < 2/(1 + p*) and 0 < j3 <
2/( l + a 2 ( r ,w)) , so

|fl-(r,«,/?)< x3 | ^ /3a 2 i 2 + |1 - p\ x2 = A2 x2.

These give the desired bound on the matrix norm. D

The proof of the our final result follows from those of Theorems 2 and 3.

THEOREM 5 . Suppose that the assumptions of Theorem 3 hold and that the index
sequence {Pi} is admissible and regulated. Then the AOR parallel iterative method
(18) converges to x — A~*b for any initial value x° £ R™ when t i e parameters r and
u) satisfy inequalities (19).
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