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STRONGLY OSCILLATORY AND NONOSCILLATORY 
SUBSPACES OF LINEAR EQUATIONS 

J. MICHAEL DOLAN AND GENE A. KLAASEN 

Consider the nth order linear equation 

(1) yM + Z Pty""" = 0 where A € C[a, co), n ^ 2 
/ C = l 

and particularly the third order equation 

(2) / " + Z pky
iZ~k) = 0 where ^ G C[a, oo). 

A nontrivial solution of (l)„issaid to be oscillatory or nonoscillatory depending 
on whether it has infinitely many or finitely many zeros on [a, oo). Let S^, 
0yjV denote respectively the set of all solutions, oscillatory solutions, non-
oscillatory solutions of (l)w. £/* is an n-dimensional linear space. A subspace 
£T Ç <f is said to be nonoscillatory or strongly oscillatory respectively if 
every nontrivial solution of $~ is nonoscillatory or oscillatory. If £T contains 
both oscillatory and nonoscillatory solutions then S?~ is said to be weakly 
oscillatory. In case^7" = £/* satisfies any of the above mentioned properties of 
S~ we sometimes attribute the same title to the equation directly. 

The oscillatory behavior of equation (l)w is the subject of a vast quantity 
of literature. Good bibliographies on this subject can be found in Barrett [1] 
and Swanson [10]. Qualitatively, the question of oscillation is simple for 
n = 2, because Sturm's Theorem i m p l i e s ^ = 0 or Û = 0. For n ^ 3 however 
such a simple qualitative result is not true. The literature, for n ^ 3, abounds 
with results which indicate conditions when one or both of JV and Û are not 
empty. Also many results indicate the number of linearly independent solutions 
contained \nJV or Û; see Jones [5; 6], Kondratév [7], Hanan [4], Lazer [8] 
and Utz [11; 12] for results of this type. Our first theorem shows that for all 
n ^ 2 either^¥ or 0 contains n linearly independent solutions. 

It should be noted that linear combinations of oscillatory or nonoscillatory 
solutions need not be oscillatory or nonoscillatory respectively. Dolan [2], 
Kondratév [7], Hanan [4] and Lazer [8] have determined conditions for which 
there are two-dimensional non-oscillatory or strongly oscillatory subspaces of 
£f for n — 3 and Dolan [2] considered the problem of decomposing Sf into 
the direct sum of such subspaces. Our second theorem shows that such a 
decomposition always exists for n = 3 and we leave open the question for 
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higher dimensions. These results depend heavily on the cone structure oi^V 
and consequently the results include interesting facts about convex cones in 
three space with appropriate open questions about convex cones in n space 
for n > 3. 

In the article by Dolan and Klaasen [3] numerous examples are given of 
third order equations for whichc^K contains three linear independent solutions 
or Û contains three linearly independent solutions. The class I and II of 
Hanan [4] are specific classes of these examples. The following theorem indi­
cates that this property happens for all n ^ 2. 

THEOREM 1. Either 0 contains n linearly independent solutions or JV contains 
n linearly independent solutions. 

Proof. Let us suppose Û contains exactly p linearly independent solutions 
where 1 ^ p < n. Then we can write a basis for ^ of the form {yu . . . , yPf 

zp+i, . . . , zn} where yt G 0, 1 g i g p and zt £.JV, p + 1 ^ i S n. Con­
sequently, yi + zn ^^V for all 1 ^ i ^ p for if on the contrary there is an 
i such that yt + zn G © then [yu . . . , yp, yt + zn] is a set of p + 1 linearly 
independent solutions in Û which violates the definition of p. Hence 

{yi + Zn> • • • > yp + Zn, Zp+l, Zp+2, . . . , Z„} 

is a basis for S^ of elements oî^V. 

In order to prove our second theorem we introduce some notations and a 
lemma. 

The setJV of nonoscillatory solutions of (1) can be decomposed into two 
disjoint setsJV+ and^K" which denote respectively the eventually positive 
and eventually negative nonoscillatory solutions of (1). If &~ ÇI 5^, let 
^ 0 = £T \J {0} where 0 is the zero solution of (1). 

The concepts of convex set theory which are used in this paper are developed 
in Valentine [13]. 

LEMMA 1. If^V 7̂  0 for equation (1), then J/^ andJV§~ are convex cones. 

Proof. Since JVQ+ = —JV§~ it is sufficient to show that ^Vo+ is a convex 
cone. If y, z G JV^ and 0 ^ a ^ 1 then ay, (1 — a)z G ̂ V0

+ and hence 
ay + (I - a)z G JV^. Also if a ^ 0, ay G ^ / o + . 

Since j ^ 7 is an ^-dimensional space it can be isomorphically identified with 
En. For example if {yi, y2, . . . , yn) is a basis for <5̂  over the reals R then the 
mapping A of En onto j ^ 7 defined by A(«i, . . . , an) = £)*=i «O7* is an algebraic 
isomorphism of En onto 5^. It follows that convex sets are mapped to convex 
sets and cones to cones. Hence any theorem about convex cones in ^-space 
implies results about^V0

+ a n d ^ o " in y . 
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S u p p o s e d Ç £ 3 . C(T) denotes the complement of T in £ 3 , AT denotes 
TU -T where -T = {-t\t £ T\. 

T h e following theorem about convex cones in 3-space does not seem to 
appear in the vas t l i terature on convex set theory. 

T H E O R E M 2. IfK is a convex cone in £ 3 , then there is a 2-dimensional subspace 
H of £3 such that N C AK or H C C(AK)Q. 

Proof. K is a closed convex cone with ver tex a t 0. If K = £3 then since K 
is convex it is easy to see t h a t K contains a 2-dimensional subspace. Suppose 
K y£ £3 . Then K is the intersection of the closed half spaces containing it 
and determined by the support ing planes of K [9, p . 71 , Exercise 24]. We will 
consider three a l ternate cases. Firs t suppose K is contained in the intersection 
of three half spaces determined by three planes which intersect only a t 0. In 
this case there is a plane in C(AK)Q. Secondly suppose the intersection of the 
family of all support ing planes of K is a line /. If the line / is not in AK then 
one of these support ing planes is in C(AK)0. If a point x ^ 0 of the line / is 
in K then the entire line / is in AK and the plane determined by I and a point 
y of K bu t not of / is a 2-dimensional subspace contained in AK. Finally 
suppose K is a half space. Then either the plane T support ing K is contained 
in C(AX) 0 or it contains a line / of AK. If -K contains a line / of AK then by the 
denseness of K in the half space and the convexity of K it follows t h a t the 
plane determined by / and y 6 K such t h a t y (£ T is in AK. 

T H E O R E M 3. The solution space 5f of equation (2) possesses a 2-dimensional 
subspace which is either strongly oscillatory or nono s dilatory. 

The val idi ty of Theorem 3 is a direct consequence of Lemma 1 and Theorem 2. 

COROLLARY 1. The solution spaced of equation (2) possesses a decomposition 
ff = H\ © H 2 such that Hi is strongly oscillatory and H2 is nono s dilator y. One 
of H\ may be degenerate. 

Proof. If Sf is nonoscillatory or strongly oscillatory then H\ = {0} and 
H2 = ¥ or Hi =5^ and H2 = {0} respectively. If S^ is weakly oscillatory, let 
H be the 2-dimensional subspace determined by Theorem 2. Since y is weakly 
oscillatory there is a solution y G y P \ C(H) which is oscillatory if H is 
nonoscillatory and which is nonoscillatory if H is strongly oscillatory. Hence 
with [y] = {ay\a G R}, it is easy to see t h a t 5^ = H © [y] in accordance with 
the conclusions of this corollary. 

T h e following example points the direction of generalizations of the previous 
two theorems to w-space. T h e solution set, S^, of the equat ion 

y * ) __ 4 y " + Qy» _ 43,' = 0 

has {1, e2x, ex sin x, ex cos x} as a basis and 5^ = H © K where / / = {a + 
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(3e2x\a, P G R} and K = {aex sin x + /3ex cos x\a, 0 £ R}. Notice t h a t H C yK0 

and i£ Ç ^ 0 . I t is easy to argue from vector space theory t ha t if Sf = Hi © Kx 

where H\ C ^KQ and 2£i Ç &\ then i7i and K\ must have the same dimen­
sion as H and K respectively. Hence J^7 contains no three dimensional strongly 
oscillatory or nonoscillatory subspace. In fact one can argue tha t if the pk are 
constants in equation (1) then the corresponding solution set 5f always 
possesses a decomposition as a direct sum of a nonoscillatory and strongly 
oscillatory subspace. Of course one of these may be degenerate. 

T h e following two conjectures accentuate the ideas obtained from this 
example. T h e first deals with wth order linear equations and the second is the 
analogue conjecture for convex cones in w-space. 

Conjecture 1. The solution space, 5^ , of (1) possesses a decomposition 
^f = H\ 0 H2 such t ha t Hi is strongly oscillatory and H2 is nonoscillatory. 
One of Hi and H2 may be degenerate. 

Conjecture 2. If K is a convex cone in Enj then there are subspaces Hi and 
H2 of En such t h a t Hi ç AK, H2 C C(AK)0 and En = Hi © if2. One of Hx 

and i?2 niay be degenerate. 

Another avenue of interest exposed by Corollary 1 is the possibility of 
decomposing the operator determined by equation (1) into two operators 
which in some sense relate to the subspace H\ and H2 of Corollary 1. 

F . Neuman, in a paper submit ted to the Journal of Differential Equa t ions , 
s ta tes a theorem equivalent to Theorem 3 of this paper. The approach is 
quite different and appears not to use the theory of convex cones. 
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