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Abstract

We show that the left regular representation of a countably infinite (discrete) group admits no finite-
dimensional invariant subspaces. We also discuss a consequence of this fact, and the reason for our
interest in this statement.

We then formally state, as a 'conjecture', a possible generalisation of the above statement to the
context of fusion algebras. We prove the validity of this conjecture in the case of the fusion algebra
arising from the dual of a compact Lie group.

We finally show, by example, that our conjecture is false as stated, and raise the question of whether
there is a 'good' class of fusion algebras, which contains (a) the two 'good classes' discussed above,
namely, discrete groups and compact group duals, and (b) only contains fusion algebras for which the
conjecture is valid.

2000 Mathematics subject classification: primary 46L37; secondary 43A65.

1. Introduction

The considerations of this paper were motivated by a question raised by Popa [6]
regarding the spectra of the adjacency matrices of the so-called 'principal graph
associated to a subfactor'. Specifically, in case this graph turns out to be infinite, he
asked whether the corresponding self-adjoint operator had 'only essential spectrum'.

Just about the only handle one has on the graph—in fact, even the manner in which it
is defined, or the boundedness of this operator is proved—is via the fusion rules obeyed
iy the various kinds of bimodules that are associated with the subfactor. This fusion
ilgebra structure was used to show [4] that the spectral measures of the self-adjoint
jperators so associated to a subfactor and its 'dual subfactor' are mutually absolutely
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continuous 'away from 0'; and that proof depended only on the 'regular representation'
of the underlying fusion algebra (albeit, with appropriate 'M2-grading'). Motivated
by that success, we hoped to deduce the truth of Popa's conjecture from another
conjecture about the regular representation of an infinite discrete fusion algebra.

We should mention that there is substantial literature (see [1], for instance) on
'hypergroups', which (at least the discrete ones) are very near relatives of what we
call fusion algebras. The simplest examples of these come from discrete groups
and the representation theory of compact Lie groups. The 'obvious version' of the
desired conjecture turns out to be true in these two special cases, as we show in
Proposition 2.1 and Proposition 2.6. (Both these examples also correspond to certain
subfactors, so Popa's conjecture is valid for those subfactors.) It turns out however,
as demonstrated in Example 2.7, that our 'obvious version' of the conjecture can be
false as stated. We still hope/believe that the conjecture would be valid for fusion
algebras that satisfy some additional hypotheses which are always met in the case of
fusion algebras coming from subfactors.

2. Main results

PROPOSITION 2.1. Let X. : G ^ S£(l%(G)) denote the left-regular representation
of a countably infinite (discrete) group. Then, X does not admit any non-zero finite-
dimensional sub- representations.

PROOF. Since sub-representations of X—the so-called discrete series representa-
tions ofG—are characterised (see [2], for instance) by the property that the associated
matrix coefficients yield square-summable functions on G, we see that it suffices to
prove the following:

Assertion (*) If n : G —*• S£( V) is a finite-dimensional unitary representation of G,
and if 0 / £ e V, then we have: £ , £ G | (*(*)£, £)|2 = +oo.

Indeed, if n is as above, then C = n{G) is a compact group (by the assumed finite-
dimensionality of n). Consider the function/ : C -*• C defined by / (x) — (x (§),£).
Clearly the function/ is continuous and non-zero (as / ( I ) = |||f||2 ^ 0). Hence if
€ > 0 is sufficiently small, then the set defined by U = {x 6 C : \f (x)\ > e} is a
non-empty open subset of C.

We assert that TT~1(U) is an infinite set in G. (This will show that the function
t H> | (7r(f)|i £) I is bounded below by e on an infinite set, and establish Assertion (*)
and complete the proof of the proposition.)

For this, we consider two cases. Firstly, if n{G) n U is an infinite set, the assertion
is obvious. Secondly, suppose n(G) n U is a finite set. Since U is open and non-
empty, and since n(G) is dense in C, it must be the case that U itself is a finite set;
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since U is a non-empty open set in C, and since the compact group C can be covered
by finitely many translates of U, this implies that C must itself be finite. Since G
is infinite, we see that K = kern must be an infinite subgroup of G; finally, pick
n(t0) e n(G)f) U—such a t0 must exist by density—and note that t0K C n~l(U);
the proof is complete. •

COROLLARY 2.2. Let G be as in Proposition 2.1, and suppose T is a normal
operator in the von Neumann algebra LG = k(G)" generated by X(G). (For instance,
we might have T = k(t) orT = k(t)+k(t~x),forany t € G.) Then, sp T= sp,, T, where
we write sp and spe to denote the spectrum and the essential spectrum, respectively,
of an operator.

PROOF. TO start with, it must be noted that the conclusion of Proposition 2.1 is valid,
with the left-regular representation X replaced by the right -regular representation p .
(Simply replace G by its 'opposite group' and appeal to the established result.)

To prove the corollary, we need to show that if £ € sp T, then f e spe T. So fix
such a £, and a typical open neighbourhood U of £; we need to show then that the
associated spectral projection P = \u(T) has infinite rank. Note that T e LG implies
P 6 LG = p(G)', and consequently the range of P yields a sub-representation of p .
Conclude from the first paragraph of this proof that ran P cannot be finite-dimensional,
as desired; the proof is complete. •

The reason for our interest in the preceding results (apart, of course, from their
intrinsic appeal) is that we seek to establish an analogue of the preceding corollary,
with 'countably infinite discrete group' replaced by 'fusion algebra with countably
infinite basis, which admits a dimension function'. In order to state the 'desired
analogue' mentioned above, we need a definition.

DEFINITION 2.3. By ̂ fusion algebra (with countable basis)—which we shall denote
by C#—we shall mean an associative, unital *-algebra over C, equipped with a
distinguished (countable) Hamel basis &, whose so-called structure constants {N%Y :
X,Y,Z e &}, defined by the equations X Y = J^zeV Nxrz f o r arbitrary X,Y €&,
are required to satisfy the following conditions, for all X, Y, Z € &:

(i) N$Y is a non-negative integer; (the Hamel-basis requirement implies that for
fixed X, Y, we can have N%r > 0 for at most finitely many Z);

(ii) Sf contains the (multiplicative) identity of CSf; and
(iii) there exists an involution $ B X \-> X e ^ such that:

(a) X = X"; and
(b) N2

XY = Nrz.

The fusion algebra C& is said to admit a dimension function if there exists a function
& 9 X i->- dx e (0, oo) such that dxdY = ^2Zey N^Ydz.
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Some familiar 'fusion algebras with countable basis, which admit a dimension
function' are listed in the following example.

EXAMPLE 2.4. (a) Let & = G denote a countable group, and let the structure
constants, involution, and dimension function be given by:

(b) For a compact second-countable group K, let <£ = K denote the collection of
isomorphism classes of irreducible unitary representations of K; define the structure
constants, involution, and dimension function by:

N^ = {n <S> n,a) = multiplicity of a in n <g> /it;

H = contragradient representation,

dn = degree of the representation n.

(c) If N C M is a 'finite-depth subfactor' and if &(M, N) denotes the set of irre-
ducible N — N bimodules which 'occur' in the tower of Jones' basic construction—see
[3], for instance—then C#(M, N) is a fusion algebra with countable basis, which ad-
mits the dimension function defined by dx = dimw_(X), the so-called 'TV-dimension'
of the left N-module X. (The structure constants and the adjoint are defined anal-
ogously to (b) above, except that 'tensor-products' and 'contragradients' are to be
interpreted appropriately.)

It is not very hard to show—see [4], for instance—that if C# is such a 'fusion
algebra with countable basis, which admits a dimension function', and \H2(&) denotes
a (necessarily separable) Hilbert space with orthonormal basis {t-x : X e #} indexed
by &, then there exists a unique 'left-regular representation' A. : C# -> -Sf (t2(&)),
which is a homomorphism of unital *-algebras, and satisfies:

This entire discussion was motivated by our desire to affirmatively settle the fol-
lowing conjecture for the case of the examples arising from a subfactor, as in Exam-
ple 2.4 (c). (Strictly speaking, we want to prove the analogue of Corollary 2.2, with
'group' replaced by 'fusion algebra' arising as in Example 2.4 (c).)

CONJECTURE. Let A. : C& - • S£{l2i^)) denote the left-regular representation of
an infinite-dimensional fusion algebra with countable basis, which admits a dimension
function. Then, k does not admit any non-zero finite-dimensional sub-representations.
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Actually, we would be happy to settle this conjecture in the case when the fusion
algebra satisfies condition (i) in the following lemma, since this condition is always
met in our motivating examples (as in Example 2.4 (c)).

LEMMA 2.5. Let $ = K be as in Example 2.4 (b). Then the following conditions
are equivalent:

(i) <£ is 'finitely generated' in the sense that there exists a finite set S G & such
that ifjr G # , then there exist P\, • •. , pn in S such that (px <g> • • • <g) pn, TT> =£ 0.

(ii) K is isomorphic to a closed subgroup of U(N) for some N (and is, in particular,
a Lie group).

PROOF, (ii) implies (i). If p : K ->• U(N) is a faithful (continuous unitary)
representation of G, let p\,... , pn denote the distinct irreducible subrepresentations
of p. Since every irreducible representation of U(N) is contained in some power of
the direct sum of the identity representation and its conjugate, the validity of (i)—with
S - [pu Pi, • • • ,pn, Pn\—is seen to follow.

(i) implies (ii). To start with, we assume, as we clearly may, that S is closed under
the formation of contragradients. Then, consider the subalgebraof C(K), generated by
the matrix entries associated with the representations in 5. The assumptions show that
this is a finitely generated self-adjoint subalgebra which contains the matrix entries of
all the irreducible representations of K. It follows, then, from the Stone-Weierstrass
and Peter-Weyl theorems that the direct sum of the representations in 5 must be a
faithful representation which is finite-dimensional since 5 is finite. •

PROPOSITION 2.6. If& = K is as in the above lemma, and if K is a compact Lie
group, then the conjecture is valid for if.

PROOF. Suppose AT is a compact Lie group. Then [xn : n e K) is an orthonormal
set in L2(K, dg); furthermore, the Weyl integration formula shows that there exists
a measure—call it v—on the maximal torus T of K such that [XAT '• n € K) is an
orthonormal set in L2(T, v). In fact, the linear span £/0 of {xn '• x € K], is dense, in
the uniform norm, in the space of those continuous functions on T which are invariant
under the action of the Weyl group W; the latter space can be identified with C(X),
where X is any suitable 'fundamental domain' in T for the W-action, which can be
chosen to be a 'compact polytope'.

It is thus seen—see any standard text on representation theory, such as [7], for
instance—that there exists a compact polytope X (in a sufficiently large dimensional
Euclidean space) and a dense unital *-subalgebra £?0 C C(X) such that <C# = S/Q
(as a *-algebra); and further, the Weyl integration formula shows that there exists a
probability measure fi on X which is mutually absolutely continuous with respect
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to the restriction to X of Lebesgue measure—with a continuous Radon-Nikodym
derivative—such that the above isomorphism from C& onto J2/O extends to a unitary
isomorphism of 12(&) onto L2(X, /x). However, all closed subspaces of L2(X, fx),
which are stable under the standard multiplication representation of C(X), are of the
form L2(E, fx) for some subset E C X of positive measure. The above description
of /x shows that all such subspaces are infinite-dimensional; and the proof of the
proposition is complete. •

REMARK. It follows from [5, Theorem 5.1] that if CSf is a commutative fusion
algebra with countable basis and dimension function, then there exists a canonical
pair (X, ix) of a compact Hausdorff space and a probability measure on it, and a
*-algebra isomorphism of CSf onto a dense *-subalgebra £/0 of C(X) which extends
to a unitary isomorphism of i2(&) onto L2{X, /x). It then follows as in the foregoing
proof that our conjecture, for this # , is equivalent to the requirement that the measure
/x has no atoms. (This is the most natural route to a proof of Proposition 2.1 in the
case of abelian groups.)

We shall now show, by example, that the conjecture, as stated, is false; but we still
hope that the conjecture might continue to be valid for all fusion algebras in some
restricted class which might contain all the fusion algebras arising from the context of
subfactors that initially motivated these considerations.

EXAMPLE 2.7. Let <S = [Xn : n e 1 \ {0}} \\{hk : 0 < k < 3} with the operations
defined as follows:

(a) the set [hJ : 0 < j < 3} is to be thought of as a cyclic group of order 4; thus, for
example, (hJ )* = hkifk = —j (mod 4); and h° is to be the multiplicative identity of
the fusion algebra;

(b) we require that hJ • Xn = Xn • W = Xn, for every j and n ^ 0;
(c) and finally,

v v _ v v _\2X"+n, i f n ^ - m ;

[Ek=ohJ ifn = -m,

so that, in particular, we have X*n = X_n.
It may be verified that the above definitions equip C^ with the structure of an

infinite-dimensional commutative fusion algebra which has a dimension function
satisfying dXn = 2 and dh* — 1 for every n and k.

Furthermore, the element £ = Yll=o(~^khk IS s e e n t o define an element of 12{^)
which spans a 1-dimensional invariant subspace for the left-regular representation
of <£'. In particular, the conjecture is not true for this example.
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QUESTION. IS there a class of fusion algebras, with dimension function, which
contains both infinite discrete groups and duals of infinite compact Lie groups, such
that the conjecture is valid for all fusion algebras in that class? Specifically, is the
conjecture valid for the fusion algebra of'N — N bimodules which arise in the tower
of the basic construction'?
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