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Abstract

In a recent line of research, two familiar concepts from logic programming semantics (unfounded
sets and splitting) were extrapolated to the case of epistemic logic programs. The property of
epistemic splitting provides a natural and modular way to understand programs without epis-
temic cycles but, surprisingly, was only fulfilled by Gelfond’s original semantics (G91), among
the many proposals in the literature. On the other hand, G91 may suffer from a kind of self-
supported, unfounded derivations when epistemic cycles come into play. Recently, the absence
of these derivations was also formalised as a property of epistemic semantics called founded-
ness. Moreover, a first semantics proved to satisfy foundedness was also proposed, the so-called
Founded Autoepistemic Equilibrium Logic (FAEEL). In this paper, we prove that FAEEL also
satisfies the epistemic splitting property something that, together with foundedness, was not
fulfilled by any other approach up to date. To prove this result, we provide an alternative char-
acterisation of FAEEL as a combination of G91 with a simpler logic we called Founded Epistemic
Equilibrium Logic (FEEL), which is somehow an extrapolation of the stable model semantics to
the modal logic S5.
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1 Introduction

The language of epistemic specifications (Gelfond 1991) or epistemic logic programs ex-

tends disjunctive logic programs, under the stable model (Gelfond and Lifschitz 1988)

semantics, with modal constructs called subjective literals. These constructs allow to

check whether a regular or objective literal l is true in every stable model (written K l)

or in some stable model (written M l) of the program. For instance, the rule:

a← ¬K b (1)

means that a should be derived whenever we cannot prove that all the stable models con-

tain b. The definition of a “satisfactory” semantics for epistemic specifications has proven

to be a non-trivial enterprise with a long list of alternative semantics (Gelfond 1991;

Wang and Zhang 2005; Truszczyński 2011; Gelfond 2011; Fariñas del Cerro et al. 2015;
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Kahl et al. 2015; Shen and Eiter 2017; Cabalar et al. 2019a). The main difficulty arises

because subjective literals query the set of stable models but, at the same time, occur

in rules that determine those stable models. As an example, the program consisting of:

b← ¬K a (2)

plus the above rule (1) has now two rules defining atoms a and b in terms of the

presence of those same atoms in all the stable models. To solve this kind of cyclic

interdependence, the original semantics by Gelfond (1991) (G91) considered different

alternative world views or sets of stable models. In the case of program (1)-(2), G91

yields two alternative world views1, [{a}] and [{b}], each one containing a single stable

model, and this is also the behaviour obtained in the remaining approaches developed

later on. As noted by (Truszczyński 2011), the feature that made G91 unconvincing,

though, was the generation of self-supported world views. A prototypical example for

this effect is the epistemic program consisting of the single rule:

a← K a (3)

whose world views under G91 are [∅] and [{a}]. The latter is considered as counter-

intuitive by all authors2 because it relies on a self-supported derivation: a is derived

from K a by rule (3), but the only way to obtain K a is rule (3) itself. Recently,

Cabalar et al. (2019a) proposed to characterise these unintended world views by extend-

ing the notion of unfounded sets (Gelder et al. 1991) from standard disjunctive logic

programs (Leone et al. 1997) to the case of epistemic logic programs. In that work, the

authors also provided a new semantics, called Founded Autoepistemic Equilibrium Logic

(FAEEL), that fulfills that requirement. In fact, FAEEL-world views are precisely those

G91-world views that are founded, that is, those that do not admit any unfounded set.

On the other hand, it is obvious that programs without epistemic cycles (i.e. cy-

cles involving epistemic literals) cannot have self-supported derivations. In this sense,

one could expect that proposals that tried to get rid of G91 self-supported deriva-

tions coincided with the latter, at least, for epistemically acyclic programs. However,

(Lecrerc and Kahl 2018) have recently pointed out that this is not the case: for instance,

while in G91, (purely) epistemic constraints always remove world views, this does not

hold in other semantics. Watson (2000) and Cabalar et al. (2018; 2019b) went a step

farther defining a property called epistemic splitting which, not only defines an intuitive

behaviour for stratified epistemic specifications, but also extends the splitting theorem,

well-known for autoepistemic logic (Gelfond and Przymusinska 1992) and standard logic

programs (Lifschitz and Turner 1994), to the case of epistemic logic programs. For in-

stance, if we consider a program consisting of rules (1)-(2) plus

c← K a (4)

we may expect to obtain the world views [{a, c}] and [{b}] resulting from adding the

atom c only to the belief sets of the world view that satisfies K a. This property is known

to be satisfied by the G91 semantics, but surprisingly not for those that tried to correct

its self-supported problem (Cabalar et al. 2018; Cabalar et al. 2019b).

The major contribution of this paper is the proof that FAEEL satisfies the epistemic

splitting property as defined in (Cabalar et al. 2018; Cabalar et al. 2019b). Joining this

1 For the sake of readability, sets of propositional interpretations are embraced with [ ] rather than { }.
2 This includes Gelfond himself, who proposed a new variant in (Gelfond 2011) motivated by this same
example and further modified this variant later on in (Kahl et al. 2015).

https://doi.org/10.1017/S1471068419000127 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000127


Founded (Auto)Epistemic Equilibrium Logic Satisfies Epistemic Splitting 673

result with the already known fact that this semantics also satisfies the foundedness

property shows that FAEEL is a solid candidate to serve as a semantics of epistemic

logic programs. A second contribution of this paper is the introduction of a logic that

we call Founded Epistemic Equilibrium Logic (FEEL) and which can be intuitively seen

as the combination of the Equilibrium Logic with the modal logic S5. For the sake of

comparative, FAEEL corresponds to the combination of the Equilibrium Logic with the

Moore’s Autoepistemic Logic (AEL; Moore 1985). In this sense, FEEL is the combination

of a non-monotonic logic with a monotonic one, while FAEEL is the combination of two

non-monotonic logics, a fact that makes FEEL much easier to study. This bring us to

the third contribution of the paper: FAEEL world views can be precisely characterised

as those G91 world views that are at the same time FEEL world views. This allows us

to study FAEEL properties by studying them independently in FEEL and G91 and then

combining their results. This is precisely the methodology used in proving the epistemic

splitting theorem for FAEEL.

The rest of the paper is organised as follows. Section 2 revisits the background knowl-

edge about equilibrium logic, epistemic specifications, the epistemic splitting property

and FAEEL necessary for the rest of the paper. Section 3 introduces FEEL and studies

the relation between this logic and FAEEL. In Section 4, we study the epistemic splitting

property in FEEL and FAEEL and, in Section 5, we discuss other existent approaches

to epistemic logic programs. Finally, Section 6 concludes the paper.

2 Background

We start by recalling the basic definitions needed for the rest of the paper. Given a set

of atoms At, an (epistemic) formula is defined according to the following grammar:

ϕ ::= ⊥ | a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Kϕ for any atom a ∈ At.

In our context, the epistemic reading of Kψ is that “ψ is one of the agent’s beliefs.”

Thus, a formula ϕ is said to be subjective if all its atom occurrences (having at least

one) are in the scope of K. Analogously, ϕ is said to be objective if K does not occur

in ϕ. For instance, ¬K a ∨K b is subjective, ¬a ∨ b is objective and ¬a ∨K b none of

the two. Given a formula ϕ, by Atoms(ϕ) we denote the set of all atoms occurring in

ϕ. For instance, Atoms(¬a ∨ K b) = {a, b}. As usual we define the following derived

operators: ϕ ↔ ψ def= (ϕ → ψ) ∧ (ψ → ϕ), (ϕ ← ψ) def= (ψ → ϕ), ¬ϕ def= (ϕ → ⊥) and

� def= ¬⊥. An (epistemic) theory is a (possibly infinite) set of formulas as defined above

and an objective theory is a theory whose formulas are objective. We write Atoms(ϕ) to

represent the set of atoms occurring in any formula ϕ and Atoms(Γ) to represent the

set of atoms occurring in any theory Γ. Recall that (Gelfond 1991) included a second

subjective operator M such that M l is readed as “the agent believes that l is possible.”

In this paper, we assume here that Mϕ is just an abbreviation3 for ¬K¬ϕ.

2.1 Equilibrium Logic and the Stable Models Semantics

A propositional interpretation T is a set of atoms T ⊆ At. We write T |= ϕ to represent

that T classically satisfies formula ϕ. An HT-interpretation is a pair 〈H,T 〉 (respectively

3 Several interpretations of M are possible in the logics considered in this paper depending on the level
of foundedness that it is expected to satisfy. We limit ourselves here to the simplest interpretation of
M , leaving other interpretations for a more detailed discussion in the future.

https://doi.org/10.1017/S1471068419000127 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000127


674 J. Fandinno

called “here” and “there”) of propositional interpretations such that H ⊆ T ⊆ At; it is

said to be total when H = T . We write 〈H,T 〉 |= ϕ to represent that 〈H,T 〉 satisfies a

formula ϕ under the recursive conditions:

• 〈H,T 〉 �|= ⊥
• 〈H,T 〉 |= p iff p ∈ H
• 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

• 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

• 〈H,T 〉 |= ϕ→ ψ iff both (i) T |= ϕ→ ψ and (ii) 〈H,T 〉 �|= ϕ or 〈H,T 〉 |= ψ

As usual, we say that 〈H,T 〉 is a model of a theory Γ, in symbols 〈H,T 〉 |= Γ, iff

〈H,T 〉 |= ϕ for all ϕ ∈ Γ. It is easy to see that 〈T, T 〉 |= Γ iff T |= Γ classically. For this

reason, we will identify 〈T, T 〉 simply as T and will use ‘|=’ indistinctly. Interpretation

〈T, T 〉 = T is a stable (or equilibrium) model of a theory Γ iff T |= Γ and there is no

H ⊂ T such that 〈H,T 〉 |= Γ. We write SM[Γ] to stand for the set of all stable models of Γ.

2.2 G91 semantics for epistemic theories

To represent the agent’s beliefs, we will use a set W of propositional interpretations. We

call belief set to each element I ∈ W and belief view the whole set W. The difference

between belief and knowledge is that the former may not hold in the real world. Thus,

satisfaction of formulas will be defined with respect to an interpretation I ⊆ At, possibly

I �∈ W, that accounts for the real world: the pair (W, I) is called belief interpretation

(or interpretation in modal logic KD45). Modal satisfaction is also written (W, I) |= ϕ

(ambiguity is removed by the interpretation on the left) and follows the conditions:

• (W, I) �|= ⊥,
• (W, I) |= a iff a ∈ I, for any atom a ∈ At,

• (W, I) |= ψ1 ∧ ψ2 iff (W, I) |= ψ1 and (W, I) |= ψ2,

• (W, I) |= ψ1 ∨ ψ2 iff (W, I) |= ψ1 or (W, I) |= ψ2,

• (W, I) |= ψ1 → ψ2 iff (W, I) �|= ψ1 or (W, I) |= ψ2, and

• (W, I) |= Kψ iff (W, J) |= ψ for all J ∈W.

Notice that implication here is classical, that is, ϕ → ψ is equivalent to ¬ϕ ∨ ψ in this

context. A belief interpretation (W, I) is a belief model of Γ iff (W, J) |= ϕ for all ϕ ∈ Γ

and all J ∈W ∪ {I}. We say that W is an epistemic model of Γ, and abbreviate this as

W |= Γ, iff (W, J) |= ϕ for all ϕ ∈ Γ and all J ∈ W. Belief models defined in this way

correspond to modal logic KD45 whereas epistemic models correspond to S5.

Example 1. Take the theory Γ1 = {¬K b→ a} corresponding to rule (1). An epistemic

model W |= Γ1 must satisfy: 〈W, J〉 |= K b or 〈W, J〉 |= a, for all J ∈ W. We get three

epistemic models from K b, [{b}], [{a, b}], and [{b}, {a, b}] and the rest of cases must force

a true, so we also get [{a}] and [{a}, {a, b}]. In other words, Γ1 has the same epistemic

models as K b ∨K a.

Note that rule (1) alone did not seem to provide any reason for believing b, but we

got three epistemic models above satisfying K b. Thus, we will be interested only in

some epistemic models (that as usual we will call world views) that minimize the agent’s

beliefs in some sense. To define such a minimisation we rely on the following syntactic

transformation that extend the one given by (Truszczyński 2011) by stating a explicit

signature in which it is applied. The explicit signature will be useful later on to define

the epistemic splitting property.
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Definition 1 (Subjective reduct). The subjective reduct of a theory Γ with respect to a

set of belief views W and a signature U ⊆ At, also written ΓW

U , is obtained by replacing

each maximal subjective formula of the form Kϕ with Atoms(ϕ) ⊆ U by � if W |= Kϕ;

or by ⊥ otherwise. When U = At we just write ΓW.

Finally, we impose a fixpoint condition where each belief set I ∈ W is required to be

a stable model of the reduct, obtaining thus the G91 semantics.

Definition 2 (G91 world view). A belief view W is called a G91-world view of Γ if and

only if it satisfies W = SM[ΓW].

Example 2 (Example 1 continued). Take any W such that W |= K b. Then, ΓW

1 = {⊥ →
a} with SM[ΓW

1 ] = [∅]. The empty set does not satisfy K b so W cannot be a G91-world

view of Γ1. If W �|= K b instead, we get ΓW

1 = {� → a}, whose unique stable model is

{a}. As a result, W = [{a}] is the unique G91-world view.

Example 3 (Example 2 continued). Let now Γ2 = {¬K b→ a , ¬K a→ b} correspond-
ing to rules (1)-(2). Take any W such that W |= ¬K a∧K b. Then, ΓW

1 = {⊥ → a , � → b}
and we have that SM[ΓW

1 ] = [{b}]. Since W = [{b}] satisfies ¬K a ∧K b, this is a G91-

world view of Γ2. If W |= K a ∧ ¬K b instead, we get ΓW

1 = {� → a , ⊥ → b}, whose
unique stable model is {a}. As a result, W = [{a}] is also the other G91-world view

of Γ2. To see that there is not any other world views, note that W |= ¬K a ∧ ¬K b im-

plies that ΓW

2 = {� → a , � → b} and SM[ΓW

2 ] = [{a, b}]. So this cannot a G91-world

view. Similar, it can be checked that no world view can satisfy K a ∧K b.

Example 4. Take now the theory Γ3 = {K a→ a} corresponding to rule (3). If W |= K a

we get ΓW

3 = {� → a} and SM[ΓW

3 ] = {a} so W = [{a}] is a G91-world view. If W �|= K a,

the reduct becomes ΓW

3 = {⊥ → a}, a classical tautology with unique stable model ∅. As
a result, W = [∅] is the second G91-world view of this theory.

2.3 Epistemic Specifications and Epistemic Splitting

In this section, we recall the formal definition of the Epistemic Splitting property.

For the motivation of the interest of this property we refer to (Cabalar et al. 2018;

Cabalar et al. 2019b). Let start by introducing a particular class of theories that corre-

spond to the syntax of epistemic specifications or (epistemic logic) programs. Given a set

of atoms S ⊆ At, by ¬S def= { ¬a | a ∈ S } and ¬¬S def= { ¬¬a | a ∈ S } we respectively

denote the set resulting of preapend one or two occurrences of the default negation op-

erator ¬ to every atom in S. An objective literal is either an atom or a truth constant4,

that is a ∈ At ∪ {�,⊥}, or the result of preapend one or two default negation, ¬a. By
Litobj def= At ∪ ¬At ∪ ¬¬At ∪ {�,⊥,¬�,¬⊥,¬¬�,¬¬⊥} we denote the set of all objec-

tive literals. A subjective literal is any expression of the form K l, ¬K l or ¬¬K l with

l ∈ Litobj any objective literal. A literal is either an objective or subjective literal.

A rule r is an implication of the form:

a1 ∨ · · · ∨ an ← L1 ∧ · · · ∧ Lm (5)

with n ≥ 0 and m ≥ 0, where each ai ∈ At is an atom and each Lj a literal. The

left hand disjunction of (5) is called the rule head and abbreviated as Head(r). When

4 For a simpler description of program transformations, we allow truth constants with their usual
meaning.
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n = 0, it corresponds to ⊥ and r is called a constraint. The right hand side of (5)

is called the rule body and abbreviated as Body(r). As usual, we define Body+(r) and

Body−(r) as the conjunction of all positive and negative literals in Body(r), respectively,

so that Body(r) ≡ Body+(r) ∧ Body−(r). We further define Bodyobj (r) and Bodysub(r)

as the conjunction of all objective and subjective literals in Body(r), respectively, so that

Body(r) ≡ Bodyobj (r) ∧ Bodysub(r). We also define Bodyx
y(r)

def= Bodyx(r) ∩ Bodyy(r)

with x ∈ {+,−} and y ∈ {obj , sub}. By abuse of notation, we will also use sometimes

Bodyx, Bodyy and Bodyx
y as the set of literals occurring in those formulas. When m = 0,

the body corresponds to � and r is called a fact (in this case, the body and the arrow

symbol are usually omitted). A rule is called objective if all literals occurring in it are

objective. A program Π is a (possibly infinite) set of rules and an objective program is

a program where all its rules are objective. We are now ready to recall the epistemic

splitting property:

Definition 3 (Epistemic splitting set). A set of atoms U ⊆ At is said to be an epistemic

splitting set of a program Π if for any rule r in Π one of the following conditions hold

(i) Atoms(r) ⊆ U ,

(ii) (Atoms(Bodyobj (r) ∪ Head(r))) ∩ U = ∅
We define a splitting of Π as a pair 〈BU (Π), TU (Π)〉 satisfying BU (Π) ∩ TU (Π) = ∅,
BU (Π)∪TU (Π) = Π, all rules in BU (Π) satisfy (i) and all rules in TU (Π) satisfy (ii).

With respect to the original definition of splitting set, we can see that the condition for

the top program Atoms(Head(r))∩U = ∅ was replaced by the new condition (ii), which

intuitively means that the top program may only refer to atoms U in the bottom through

epistemic operators. Another observation is that the definition of BU (Π) and TU (Π) is

kept non-deterministic in the sense that some rules can be arbitrarily included in one set

or the other. These rules correspond to subjective constraints on atoms in U , since these

are the only cases that may satisfy conditions (i) and (ii) simultaneously. Then, the idea is

similar as in splitting a regular program: first we compute the world views of the bottom

program BU (Π) and for each one we compute the world views of the top program after

simplifying in it the subjective literals fixed by the bottom part. Formally, given an epis-

temic splitting set U for a program Π and belief view W, we define EU (Π,W) def= TU (Π)WU ,

that is, we make the subjective reduct of the top with respect to W and signature U .

Definition 4. Given a semantics S, a pair 〈Wb,Wt〉 is said to be a S-solution of Π with

respect to an epistemic splitting set U if Wb is a S-world view of BU (Π) and Wt is a

S-world view of EU (Π,Wb).

Notice that this definition depends on a particular semantics S in the sense that

each alternative semantics for epistemic specifications will define its own solutions for

a given U and Π. In particular, in this paper, we will consider five instantiations

of this Definition 4 with semantics S ∈ {G91, FAEEL,FEEL,EEL,AEEL}. Be-

sides the already mentioned G91, Founded Autoepistemic EEL (FAEEL) and Founded

EEL (FEEL) semantics,5 we will also consider the EEL and AEEL semantics from

(Fariñas del Cerro et al. 2015).

5 To avoid possible confusions between FAEEL, FEEL, AEEL and EEL, we will sometimes write them
as Founded Autoepistemic EEL, Founded EEL, Autoepistemic EEL and EEL respectively, when they
occur in the same sentence.

https://doi.org/10.1017/S1471068419000127 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000127


Founded (Auto)Epistemic Equilibrium Logic Satisfies Epistemic Splitting 677

Example 5 (Example 3 continued). Back to our example, let now Π4 be the program con-

sisting of rules (1)-(2) and (4). Then, we can see that U = {a, b} is an epistemic splitting

set of Π4 and that it satisfies BU (Π4) = {(1)− (2)} and TU (Π4) = {(4)}. Furthermore,

we have already seen that BU (Π4) corresponds to the theory Γ2 which has the following

two G91-world views: [{a}] and [{b}]. Then, we can see that EU (Π4, [{a}]) = {c← �}
has a unique G91-world view [{c}] and that EU (Π4, [{b}]) = {c← ⊥} has the unique

G91-world view [∅]. As a result, we have two G91-solutions of Π4 with respect to {a, b}:
〈[{a}], [{c}]〉 and 〈[{b}], [∅]〉. It is also easy to check that BU (Π4) has two G91-world

views, [{a, c}] and [{b}] that can be obtained by composing the two above solutions.

In the general case, the world views for the global program are reconstructed by the

following operation:

Wb �Wt = { Ib ∪ It | Ib ∈Wb and It ∈Wt }
(remember that both the bottom and the top may produce multiple world views, de-

pending on the program and the semantics we choose). For any set of atoms U ⊆ At and

belief view W, we also define the restriction of W to U as W|U
def= { I ∩ U | I ∈ W }.

Furthermore, we also define the complement of a set of atoms as U def= At \ U .

Property 1 (Epistemic splitting). A semantics S satisfies epistemic splitting if for any

epistemic splitting set U of any program Π: W is a S-world view of Π iff there is a

S-solution 〈Wb,Wt〉 of Π with respect to U such that W = Wb �Wt.

Theorem 1. Semantics G91 satisfies epistemic splitting. Furthermore, if W is a G91-

world view of some program Π with respect to some splitting set U , then 〈W|U ,W|U 〉 is a

G91-solution of Π and it satisfies that W = W|U �W|U .

Theorem 1 was proved in (Cabalar et al. 2019b, Main Theorem). Note that there, it

is only stated that G91 satisfies epistemic splitting, however it is easy to see that the

second part of the statement was proved as an auxiliary result inside the proof of that

theorem. We decided to explicitly state this result as it will be useful for proving that

FAEEL satisfies epistemic splitting.

2.4 Founded Autoepistemic Equilibrium Logic

We recall now the semantics of Founded Autoepistemic Equilibrium Logic (FAEEL)

from (Cabalar et al. 2019a). The basic idea is an elaboration of the belief (or KD45)

interpretation (W, I) already seen but replacing belief sets by HT pairs. Thus, the

idea of belief view W is extended to a non-empty set of HT-interpretations W =

{〈H1, T1〉, . . . , 〈Hn, Tn〉} and say that W is total when Hi = Ti for all of them, coinciding

with the form of belief views W = {T1, . . . , Tn} we had so far. Similarly, a belief inter-

pretation is now redefined as (W, 〈H,T 〉), or simply (W, H, T ), where W is a belief view

and 〈H,T 〉 stands for the real world, possibly not in W. A belief interpretation (W, H, T )

is called total iff both 〈H,T 〉 and W are total. Next, the satisfaction relation is defined

as a combination of modal logic KD45 and HT. A belief interpretation I = (W, H, T )

satisfies a formula ϕ, written I |= ϕ, iff:

• I �|= ⊥,
• I |= a iff a ∈ H, for any atom a ∈ At,
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• I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2,

• I |= ψ1 ∨ ψ2 iff I |= ψ1 or I |= ψ2,

• I |= ψ1 → ψ2 iff both: (i) I �|= ψ1 or I |= ψ2; and (ii) (Wt, T ) �|= ψ1 or (W
t, T ) |= ψ2,

where6 W
t = {Ti | 〈Hi, Ti〉 ∈W}.

• I |= Kψ iff (W, Hi, Ti) |= ψ for all 〈Hi, Ti〉 ∈W.

A belief interpretation (W, H, T ) is called a belief model of a theory Γ iff (W, Hi, Ti) |= ϕ

for all HT-interpretation 〈Hi, Ti〉 ∈W∪{〈H,T 〉} and all ϕ ∈ Γ. Given theories Γ and Γ′,
we write Γ |= Γ′ when (W, H, T ) |= Γ implies (W, H, T ) |= Γ′ for all belief interpretations.
We write Γ ≡ Γ′ iff Γ |= Γ′ and Γ′ |= Γ. Furthermore, when Γ or Γ′ are singletons we

may omit the brackets around their unique formula.

Recall that the negation of a formula ¬ϕ is defined as an abbreviation for the im-

plication ϕ → ⊥. The following result is immediate from the above definition plus the

persistence property proved in (Cabalar et al. 2019a) (Proposition 1) and explicitly states

the evaluation of negation:

Proposition 1. Given a belief interpretation I = (W, H, T ) and a formula ϕ, it follows

that I |= ¬ϕ iff (Wt, T ) �|= ϕ.

As recalled in Section 2.1, stable models correspond to a class of HT-models called

equilibrium models, that is, total minimal models. Similarly, we define now equilibrium

belief models as total minimal belief models with respect to the following order relation:

Definition 5. We define the partial order I ′ � I for belief interpretations I ′ =

(W′, H ′, T ′) and I = (W, H, T ) when the following three conditions hold:

(i) T ′ = T and H ′ ⊆ H, and

(ii) for every 〈Hi, Ti〉 ∈W, there is some 〈H ′
i, Ti〉 ∈W

′, with H ′
i ⊆ Hi.

(iii) for every 〈H ′
i, Ti〉 ∈W

′, there is some 〈Hi, Ti〉 ∈W, with H ′
i ⊆ Hi.

As usual, I ′ ≺ I means I ′ � I and I ′ �= I.
Definition 6. A total belief interpretation I = (W, T ) is said to be an equilibrium belief

model of some theory Γ iff I is a belief model of Γ and there is no other belief model I ′
of Γ such that I ′ ≺ I.
By EQB[Γ] we denote the set of equilibrium belief models of Γ. As a final step, we

impose a fixpoint condition to minimise the agent’s knowledge as follows.

Definition 7. A total belief view W is called an autoepistemic equilibrium model or

FAEEL-world view of Γ iff:

W = { T | (W, T ) ∈ EQB[Γ] }
Theorem 2 (Main Theorem in (Cabalar et al. 2019a)). For any theory Γ, its FAEEL-

world views are exactly its founded7 G91-world views of Γ.

6 Note that W
t is a belief view as defined in Section 2.2.

7 For space reasons we omit here the definition of founded world view and refer the reader to
(Cabalar et al. 2019a). Intuitively, a world view is founded if all atoms that are true in all its be-
lief set can be derived without cyclic references. If we omit there founded, we obtain that every
FAEEL-world view is also a G91-world view, but not necessarily vice-versa.
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3 Founded Epistemic Equilibrium Logic

Founded EEL is similar to Founded Autoepistemic EEL, but without the minimisation

of knowledge. Technically, this makes Founded EEL simpler in two distinct ways: (i) it

directly uses belief views instead of belief interpretations and, as a result, (ii) it lacks the

autoepistemic fixpoint condition (Definition 7). Note that, as mentioned in the introduc-

tion Founded EEL can be seen as the combination of the stable model semantics with

the modal logic S5, while Founded Autoepistemic EEL would be the combination of the

stable model semantics with Moore’s Autoepistemic Logic. In this sense, (i) is a direct

consequence of the fact that Moore’s Autoepistemic Logic is defined in terms of modal

logic KD45 instead of S5. In its turn, (ii) is a consequence of the fact that S5 is a mono-

tonic logic, and thus Founded EEL do not need the autoepistemic fixpoint condition

(Definition 7) that Founded Autoepistemic EEL inherits from Moore’s Autoepistemic

Logic.

Formally, a belief view W is called an epistemic model of a theory Γ, in symbols W |= Γ

iff (W, Hi, Ti) |= ϕ for all HT-interpretation 〈Hi, Ti〉 ∈ W and all ϕ ∈ Γ. Given theories

Γ and Γ′, we write Γ |=FEEL Γ′ when (W, H, T ) |= Γ implies (W, H, T ) |= Γ′ for all belief
interpretations. We write Γ ≡FEEL Γ′ iff Γ |=FEEL Γ′ and Γ′ |=FEEL Γ. As above, when Γ

or Γ′ are singletons we may omit the brackets around their unique formula.

Proposition 2 (Persistence). W |= ϕ implies W
t |= ϕ.

Proof. Follows directly from Proposition 1 in (Cabalar et al. 2019a).

The following order relation adapts Definition 5 to the case of belief views.

Definition 8. Given belief views W1 and W2, we write W1 � W2 iff the following two

condition hold:

(i) for every 〈H2, T 〉 ∈W2, there is some 〈H1, T 〉 ∈W1, with H1 ⊆ H2.

(ii) for every 〈H1, T 〉 ∈W1, there is some 〈H2, T 〉 ∈W2, with H1 ⊆ H2.

As usual, we write W1 ≺W2 iff W1 �W2 and W1 �= W2.

Then, equilibrium epistemic models are defined as usual:

Definition 9. A total epistemic model W of a theory Γ is said to be an epistemic

equilibrium model or FEEL-world view iff there is no other epistemic model W′ of Γ
such that W′ ≺W.

The following observation establishes a relation between (equilibrium) belief models

and (equilibrium) epistemic models similar to the existent between the standard modal

logics KD45 and S5. Recall that belief models correspond to the logical product of HT

and KD45 while epistemic models come from the logical product of HT and S5.

Observation 1. For any theory Γ and belief interpretation I = 〈W, H, T 〉, the following

statements hold:

(i) If I is a belief model of Γ, then W is a epistemic model of Γ, and

(ii) If I is an equilibrium belief model of Γ, then W is a equilibrium epistemic model

of Γ.
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From this observation the following relation between autoepistemic equilibrium models

and epistemic equilibrium models can be established:

Theorem 3. Every FAEEL-world view of any theory Γ is also an FEEL-world view

of Γ.

In general the converse does not necessary holds as illustrated by the following example:

Example 6. Consider the program Π1 consisting of the single rule a ∨ b. This program

has two stable models, {a} and {b} and accordingly a unique FAEEL-world view [{a}, {b}]
which agrees with its unique G91-world view. On the other hand, this program has two

extra FEEL-world views that are not FAEEL-world views: [{a}] and [{b}]. These two extra

models are clearly not well-justified in an epistemic sense as they respectively satisfy K a

and K b with no evidence for that conclusion. Finally, to see the difference between FEEL

and modal logic S5, note that [{a, b}] is also an S5 model which is neither a FEEL nor

a FAEEL-world view.

This example also illustrates that the difference between FAEEL and FEEL can be

formalised in terms of the supra-ASP property introduced in (Cabalar et al. 2019b) and

recalled below: FAEEL satisfies supra-ASP (Cabalar et al. 2019a, Proposition 3) while

FEEL does not.

Property 2 (Supra-ASP). A semantics S satisfies supra-ASP if for any objective pro-

gram Π either Π has a unique S-world view W = SM[Π] �= ∅ or both SM[Π] = ∅ and Π

has no S-world view at all.

On the other hand, the following result shows that we can obtain FAEEL-world views

as the intersection of FEEL and G91-world views:

Theorem 4. For any theory Γ, a belief view W is a FAEEL-world view iff (i) W is a

FEEL-world view and (ii) W is a G91-world view.

Example 7 (Example 4 continued). Back to Γ3 = {K a→ a}, recall that this theory has

two G91-world views: [∅] and [{a}]. It is easy to see that [∅] is a FEEL-world view and,

from Theorem 4, this implies that this is also a FAEEL-world view. Note that there is no

smaller belief view than [∅], so being a model is enough to show that is a FEEL-world view.

Note that, by using Theorem 4, is much easier to see that [∅] is a FAEEL-world view than

directly using its definition since we would also need to check no other T �∈ [∅] satisfies
([∅], T ) ∈ EQB[Γ3]. In this case, the only possibility is ([∅], {a}) which fails because there

is a smaller belief model ([∅], ∅, {a}) satisfying K a→ a. On the other hand, we can

see that [{a}] is not a FEEL-world view and, thus neither FAEEL-world view, because

[〈∅, {a}〉] also satisfies Γ3. In this case, it is also easier to use Theorem 4 than using the

FAEEL definition: [{a}] is not a FAEEL-world view because I ′ = ([{a}], {a}) �∈ EQB[Γ3]

and this is the case because the smaller interpretation I ′′ = ([〈∅, {a}〉], {a}, {a}) also

satisfies Γ3. In particular, note that I ′′ �|= K a and, thus, clearly satisfies K a→ a.

Example 7 illustrates how Theorem 4 can be used to find FAEEL-world views using

FEEL. In general, this is much easier than directly applying their definition because belief

views are simpler than belief interpretations and because the autoepistemic fixpoint can

be checked independently using the G91-semantics.
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4 Epistemic Splitting in Founded (Auto)Epistemic Equilibrium Logic

Let us now study the epistemic splitting property in FEEL and FAEEL. Let us start by

stating a result analogous to Theorem 1, but this time for FEEL.

Theorem 5 (Epistemic splitting in FEEL). FEEL satisfies the epistemic splitting

property. Furthermore, if W is a FEEL-world view of some program Π with respect

to some splitting set U then 〈W|U ,W|U 〉 is a FEEL-solution of Π and it satisfies that

W = W|U �W|U .

The proof of Theorem 5 is based in the following auxiliary results whose proof can be

found in the supplementary material.

Proposition 3. Let U ⊆ At be some set of atoms and Π = Π1 ∪ Π2 be a program such

that Atoms(Π1) ⊆ U and Atoms(Π2) ⊆ U . Then, any belief view W is an FEEL-world

view of Π iff W|U is an FEEL-world view of Π1 and W|U is an FEEL-world view of Π2.

Intuitively, Proposition 3 says that, if we can split a program in a way that its two

halves do not share atoms in common, then we can compute the world views of the

whole program by combining the world views of each half. Furthermore, the following

result shows that we can check whether a belief view is an FEEL-world view by checking

instead that that belief view is a FEEL-world view of a program obtained by simplifying

the subjective literals in the rules of the top part accordingly to the belief view.

Proposition 4. Let Π be a program with epistemic splitting set U ⊆ At. Then, any

belief view W is an FEEL-world view of Π iff W is an FEEL-world view of BU (Π) ∪
EU (Π,W).

We can now join Propositions 3 and 4 to show the following rewriting of epistemic

splitting.

Proposition 5. Given any program Π and epistemic splitting set U of Π, a belief view

W is an FEEL-world view of Π iff W|U is an FEEL-world view of BU (Π) and W|U is an

FEEL-world view of W|U of EU (Π,W|U ).

Proof. First note that, from Proposition 4, it follows that W is an FEEL-world view of Π

iff W is an FEEL-world view of BU (Π) ∪EU (Π,W). Furthermore, we have EU (Π,W) =

EU (Π,W|U ). Therefore, we immediately can see that W is an FEEL-world view of Π iff

W is an FEEL-world view of BU (Π)∪EU (Π,W|U ). Furthermore, by construction we have

Atoms(BU (Π)) ⊆ U and Atoms(EU (Π,W|U )) ⊆ U and, from Proposition 3, this implies

that the latter holds iff W|U is an FEEL-world view of BU (Π) and W|U is an FEEL-world

view of EU (Π,W|U ).

Proof of Theorem 5. Assume first that W is an equilibrium epistemic model of Π.

Then, from Proposition 5, it follows that W|U is an FEEL-world view of BU (Π) and W|U
is an FEEL-world view of W|U of EU (Π,W|U ) and it is easy to check that W = W|U �W|U .
The other way around, assume there are FEEL-world views Wb of BU (Π) and Wt of

EU (Π,Wb) and let W = Wb �Wt. Note that Atoms(BU (Π)) ⊆ U implies that every

interpretation T ∈ Wb satisfies T ⊆ U and that Atoms(EU (Π,Wb)) ⊆ U implies that
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every T ∈ Wt satisfies T ⊆ U . Hence, it follows that Wb = W|U and Wt = W|U and the

result follows directly from Proposition 5.

We can now use Theorem 5 in combination with Theorems 1 and 4 to show that

FAEEL also satisfies epistemic splitting.

Main Theorem (Epistemic splitting in FAEEL). FAEEL satisfies the epistemic splitting

property. Furthermore, if W is a FAEEL-world view of some program Π with respect

to some splitting set U then 〈W|U ,W|U 〉 is a FAEEL-solution of Π and it satisfies that

W = W|U �W|U .

Proof. Assume first that there is FAEEL-solution 〈Wb,Wt〉 of some program Π with

respect to some splitting set U and let W = Wb �Wt. By definition, this implies that

Wb is a FAEEL-world view of BU (Π) which, from Theorem 4, implies that Wb is both

a FEEL and a G91-world view of BU (Π). Similarly, we can see that Wt is both a FEEL

and a G91-world view of EU (Π,Wb) and, thus, that 〈Wb,Wt〉 is both a FEEL and a

G91-solution of Π with respect U . From Theorems 1 and 5, these two facts respectively

imply that W is both a FEEL and a G91-world view of Π which, from Theorem 4 again,

implies that W is a FAEEL-world view of Π.

The other way around is analogous. Assume now that W is a FAEEL-world view

of some program Π with splitting set U . Then, from Theorem 4, it follows that W is

both a FEEL and a G91-world view. From Theorems 1 and 5, these two facts respec-

tively imply that 〈W|U ,W|U 〉 is a FEEL and a G91-solution of Π with respect to U and

W = W|U �W|U . Finally, from Theorem 4 again, this implies that 〈W|U ,W|U 〉 is also a

FAEEL-solution.

It is interesting to note that for any semantics that satisfies epistemic splitting, thus

FAEEL and G91, constraints indented to remove world views are well-behaved:

Property 3 (Subjective constraint monotonicity). A semantics satisfies subjective con-

straint monotonicity if, for any epistemic program Π and any subjective constraint r, W

is a world view of Π ∪ {r} iff both W is a world view of Π and W |= r.

Theorem 6 (Theorem 2 in Cabalar et al. 2019b). Epistemic splitting implies subjective

constraint monotonicity.

Furthermore, this property also guarantees that, for epistemically stratified programs,

these semantics have at most a unique world view (see Theorem 1 in Cabalar et al.

2019b). Another interesting property, not included in (Cabalar et al. 2019b), is that

any semantics that satisfies epistemic splitting and the supra-ASP property, necessary

coincides with the G91-semantics for the class of epistemic stratified programs. Before

tackling the notion of epistemic stratification, let us recall the epistemic dependence

relation among atoms in a program Π so that dep(a, b) is true iff there is a rule r ∈ Π

such that a ∈ Atoms(Head(r) ∪ Bodyobj (r)) and b ∈ Atoms(Bodysub(r)).

Definition 10. We say that an epistemic program Π is epistemically stratified if we can

assign an integer mapping λ : At → N to each atom such that λ(a) > λ(b) for any pair

of atoms a, b satisfying dep(a, b).
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Theorem 7. Given any two semantics S and S ′ that satisfy the epistemic splitting and

supra-ASP properties and an epistemically stratified program Π, one of following two

condition hold:

(i) Π has neither S-world view nor S ′-world view, or

(ii) Π has exactly one S and one S ′-world view W which is the same in both semantics.

Proof. The proof follows by induction in the number of layers induced by the stratifica-

tions. Note that, if a program has a unique layer, then it must be objective and, thus,

the result follows directly from the supra-ASP property. Otherwise, let a ∈ At such that

there is no b ∈ At with λ(a) < λ(b) and let U = { c ∈ At | λ(c) < λ(a) }. Then, U is an

splitting set of Π and the epistemic splitting property tell us a belief view W is a S-world
view of Π iff there are S-world views Wb of BU (Π) and Wt of EU (Π,Wb). Furthermore,

BU (Π) and EU (Π,Wb) have less layers than Π so, by induction hypothesis, this holds iff

iff there are S ′-world views Wb of BU (Π) and Wt of EU (Π,Wb) iff W is a S ′-world view

of Π.

Corollary 1. For epistemically stratified programs, FAEEL and G91-world views coin-

cide.

Note that Corollary 1 does not apply to FEEL because this semantics does not sat-

isfy supra-ASP as illustrated by Example 6. Recall also that, from Proposition 2 in

(Cabalar et al. 2019a), we already knew that, for programs where all occurrences of K

are in the scope of negation, FAEEL and G91-world views coincide. Corollary 1 enlarges

the class programs in which FAEEL and G91 coincide by including all those that are

epistemically stratified. This immediately arises the question whether FAEEL and G91

also coincide for programs without positive cycles involving epistemic literals. The fol-

lowing result shows that this is indeed the case. Formally, we define the positive epistemic

dependence relation among atoms in a program Π so that dep+(a, b) is true iff there is a

rule r ∈ Π such that a ∈ Atoms(Head(r) ∪ Bodyobj (r)) and b ∈ Atoms(Body+
sub(r)).

Definition 11. We say that an epistemic program Π is epistemically tight if we can

assign an integer mapping λ : At → N to each atom such that λ(a) > λ(b) for any pair

of atoms a, b satisfying dep+(a, b).

Definition 12. Given an epistemic theory Γ and a belief view W, its negatively subjec-

tive reduct, in symbols ΓW, is obtained by replacing each maximal subjective formula of

the form ¬Kϕ by � if W �|= Kϕ; or by ⊥ otherwise.

Proposition 6. Given a theory Γ and, a total belief view W is FAEEL-world view of Γ

iff W is a FAEEL-world view of ΓW.

Theorem 8. For epistemically tight programs, FAEEL and G91-world views

coincide.

Proof. For any belief view W and espistemically tight program Π it follows that W is

FAEEL-world view of Π iffW is a FAEEL-world view of ΠW (Proposition 6). Furthermore,

it is easy to see that, since Π is espistemically tight, ΠW is also espistemically tight.

Moreover, for every r ∈ ΠW and every L ∈ Bodysub(r), we can check that L ∈ Body+(r).

That is, there are no subjective literals in the scope of negation and, thus, ΠW being
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espistemically tight implies that ΠW is espistemically stratified. Then, the result follows

directly from Corollary 1.

It is also worth to mention that, as observed in (Cabalar et al. 2019a), it is possible to

obtain Moore’s Autoepistemic Logic from FAEEL simply by adding the exclude middle

axiom p ∨ ¬p for every atom in the signature. Note that, if the original program was

stratified, augmenting it with these formulas does not change this property. As a result

we obtain the following corollary:

Corollary 2. Any epistemically stratified program Π has at most one Moore’s autoepis-

temic extension.

A similar result was originally proved in (Gelfond 1987, Theorem 4). Note that the class

of programs considered stratified by us is slightly broader than the one used in (Gelfond

1987): constraints are allowed in every strata and no distinction is made between positive

and negative objective literals. The price to pay is that Corollary 2 does not ensure the

existence of an extension.

5 Related work

As mentioned in the introduction, the search for a “satisfactory” semantics for

epistemic logic programs has leave us with a variety of semantics (Gelfond 1991;

Wang and Zhang 2005; Truszczyński 2011; Gelfond 2011; Fariñas del Cerro et al. 2015;

Kahl et al. 2015; Shen and Eiter 2017; Cabalar et al. 2019a). Among this Epistemic

Equilibrium Logic (EEL; Fariñas del Cerro et al. 2015) is very similar to Founded EEL

in the sense that it is also defined as a combination of Equilibrium Logic and the modal

logic S5. There are some slight differences though, and as the name suggest Founded EEL

satisfies the founded property defined (Cabalar et al. 2019a) while EEL does not. In fact,

EEL can be characterised by a particular class of belief views that we call here simple:

Definition 13. We say that a belief view W is simple iff for any 〈H,T 〉 ∈ W and

〈H ′, T 〉 ∈ W, we have H = H ′. A a total belief view W is called an EEL-world view

of a theory Γ iff W is a belief model of Γ and there is no simple belief model W′ of Γ
satisfying W = (W′)t and H ⊂ T for some 〈H,T 〉 ∈W

′.

It is easy to see that Definition 13 is just a rephrasing of epistemic equilibrium models

as defined in (Fariñas del Cerro et al. 2015) by using the notation of this paper.

Proposition 7. A a total belief view W is an EEL-model of a theory Γ iff W is a belief

model of Γ and there is no simple belief model W′ of Γ such that W′ ≺W.

Theorem 9. Every FAEEL and FEEL-world view of any theory Γ is also an

EEL-world view.

Proof. Note that that every total belief view is simple, though there are non-total be-

lief views that are not simple. Then, the result follows directly from Proposition 7 and

Theorem 3.

As illustrated by the following example, in general, the converse of Theorem 9 does

not hold.
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Example 8. Take the epistemic logic program:

a ∨ b a← K b b← K a (Π2)

whose unique epistemic equilibrium model is W = [{a}, {b}]. Note that W′ = [{a, b}] is not
an epistemic equilibrium model because W

′′ ≺W
′ with W

′′ = [〈{a}, {a, b}〉, 〈{b}, {a, b}〉].
However, W

′ is an EEL-model. Note that W
′′ is not a simple belief view and, thus,

cannot be used as a witness to show that W′ is not an EEL-model. On the other hand,

the simple belief views [〈{a}, {a, b}〉], [〈{b}, {a, b}〉], and [〈∅, {a, b}〉] are not models of

this program.

Interestingly, it can be shown that EEL also satisfies epistemic splitting.

Theorem 10 (Epistemic splitting in EEL). EEL satisfies the epistemic splitting prop-

erty. Furthermore, if W is a EEL-world view of some program Π with respect to

some splitting set U then 〈W|U ,W|U 〉 is a EEL-solution of Π and it satisfies that

W = W|U �W|U .

The proof of Theorem 10 is analogous to the proof of Theorem 5 just taking into

account that now we have to restrict ourselves to simple interpretations. Note that, in

general, EEL does not satisfy supra-ASP. Example 6 can be used to illustrate this state-

ment and, in fact, the program in this example has exactly the same EEL-world views as

FEEL-world views. For this reason (Fariñas del Cerro et al. 2015) also included a selection

of EEL-world views called AEEL-world views in a similar spirit as how FAEEL-world

views are a selection of FEEL-world views. However, it has been shown in (Cabalar et al.

2018; Cabalar et al. 2019b) that AEEL does not satisfy epistemic splitting. Theorem 10

sheds more light into this issue by showing that it is not the EEL logic, but the selection of

AEEL-world views, what breaks the splitting property. In this sense, it would be possible

to define AEEL-world views in an alternative way as the intersection of EEL-world views

and G91-world views and obtain yet another semantics that satisfy epistemic splitting.

Note though that this alternative semantics (EEL+G91) would not satisfy the found-

edness property introduced in (Cabalar et al. 2019a). In fact, a variation of Example 8,

obtained by adding the constraint ⊥ ← ¬K a to program Π2, was used (Cabalar et al.

2019a) to show that, among others, AEEL does not satisfy the foundedness property.

This same example can also be used to show that EEL and EEL+G91 do not satisfy it.

To summarise the state of the art, let us recall the remaining property introduced

in (Cabalar et al. 2018; Cabalar et al. 2019b):

Property 4 (Supra-S5). A semantics satisfies supra-S5 when for every world view W

of an epistemic program Π and for every I ∈W , 〈W, I〉 |= Π.

Table 1 summarises the known results for different semantics with respect to Proper-

ties 1-4 plus foundness. Recall that, intuitively, foundness means that a semantics is free

of self-supported world view. For space reasons, we refer to (Cabalar et al. 2019a) for a

formal definition. Recall also that (Wang and Zhang 2005; Truszczyński 2011) extended

the semantics of G91 to arbitrary theories in different ways, but for the class of logic

programs both of them agree with G91. For this reason, we will refer to both of them just

as G91 in the table. Counterexamples for the non satified properties can be founed in

(Kahl and Leclerc 2018; Cabalar et al. 2018; Cabalar et al. 2019b; Cabalar et al. 2019a)

and in this paper for the case of EEL and FEEL not satisfying Supra-ASP. Proofs
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G91 G11 EEL AEL EEL+G91 K15 S17 FEEL FAEEL

Supra-S5 � � � � � � � � �

Supra-ASP � � � � � � �

Subjective con-
straint monotonic-
ity

� � � � � �

Splitting � � � � �

Foundness � �

Table 1. Summary of properties in different semantics.

for the satisfied properties can be found in (Cabalar et al. 2018; Cabalar et al. 2019b;

Cabalar et al. 2019a) and in this paper. To complete the table, the following result

shows that, despite not satisfying epistemic splitting, the semantics propsed by Gelfond

(2011) does satisfy subjective constraing monotonicity.

Proposition 8. The semantics defined by Gelfond (2011) satisfies subjective constraint

monotonicity.

6 Conclusions

We have shown that Founded Autoepistemic EEL satisfies the epistemic splitting, a

desirable property for epistemic logic programs that, among previous semantics, was

known to be satisfied only by G91. On the other hand, it is well-known that the G91

semantics suffers from self-supported world views, something that was proved to be not

the case for Founded Autoepistemic EEL in (Cabalar et al. 2019a). In this sense, Founded

Autoepistemic EEL is the first semantics whose world views are not self-supported and

that satisfies epistemic splitting. Furthermore, we have shown that, for epistemic tight

programs (those not containing cycles involving positive epistemic literals), both G91

and Founded Autoepistemic EEL coincide. This means that Founded Autoepistemic EEL

corrects the problem with self-supported world views present in G91 without introducing

further variations that are unrelated to this problem.

In addition, we have introduced Founded EEL, a logic which can be considered as a

combination of the stable models semantics and the modal logic S5, and an alternative

characterisation of Founded Autoepistemic EEL-world views in terms of Founded EEL

and G91. This alternative characterisation may help us to further study properties of

Founded Autoepistemic EEL and, in fact, it already has been used to prove the epistemic

splitting property, strengthen the relation between Founded Autoepistemic EEL and

G91, and also to study the relation with the Epistemic Equilibrium Logic introduced

by Fariñas del Cerro et al. (2015).

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/

S1471068419000127.
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