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A NOTE ON ASSOCIATIVE POLYVERBAL OPERATIONS 
ON GROUPS 

O. N. MACEDONSKA-NOSALSKA 

In t roduc t ion . In his paper [2] O. N. Golovin introduced the notion of a 
neutral polyverbal operation on groups, of which Moran's verbal operation [6], 
and Gruenberg's and Smel'kin's operations [3 ; 7] are special cases. (Bronstein 
[1] proved, more generally, that every regular operation for which MacLane's 
postulate (see [2]) holds and which is invariant under addition of trivial 
factors, is a neutral polyverbal operation.) 

Every neutral polyverbal operation is determined by some set of polywords 
(see Section 2). We are concerned here with neutral polyverbal operations 
determined by a set of binary polywords. In the present paper we show that 
if such a polyverbal operation is associative then the corresponding poly­
verbal subgroup cannot be contained in the third term of the lower central 
series of the base group (see Section 2). Theorem 10 of [2] and Theorem 2 of [4] 
follow immediately from our result. The nonassociativity of some of the 
examples of operations given by R. R. Struik in [8], can also be deduced from 
our theorem. We give most of the relevant definitions and the precise statement 
of our theorem in Section 2. Undefined terms can be found in [2]. 

I am grateful to R. G. Burns for his help in the presentation of this paper, 
and to York University for its hospitality. 

2. Definitions and s t a t e m e n t of resu l t . We first define a polyverbal 
product of groups. To this end let Xt (i = 1 ,2 , . . . ) be a free group, freely 
generated by the letters Xa,Xn, . . . , and denote by X = 117=1* Xt the free 
product of the Xt (i = 1 , 2 , . . . ) . The group X will be called the base group 
and its elements will be called polywords. The Cartesian subgroup of 
X = 117= i* Xi is defined to be the normal closure of the set {[au aj\\ai G Xu 

a3- G Xj, i 7e- j}, where [au a J = a^a^ataj. 
Let {Ga\a G M} be an arbitrary set of groups and G = Ila6M*Ga 

their free product. A homomorphism from X to G is said to be regular if the 
image of each free factor Xt is contained in some Ga, a G M, and nontrivial 
images of different Xt are contained in different Ga-

The image of any polyword under a regular homomorphism from X to G 
is called the value of this polyword in G. 

If F F is an arbitrary set of polywords from the Cartesian subgroup of X, 
then the normal subgroup generated by all the values in G of all polywords 
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from VV, is called the neutral polyverbal VV-subgroup of G = HaçM* Gai 

denoted by VV(G). (In the sequel we shall usually omit the word neutral: all 
our polyverbal subgroups will be neutral.) A familiar example of a polyverbal 
subgroup is the Cartesian subgroup of G, which is determined, for example, 
by the single poly word [xu, x2{\. 

Taking G = X we obtain the polyverbal subgroup VV(X) of the base 
group X determined by the set of polywords VV, for which we use the special 
symbol W. It is easy to check that for any group G = TLa€M* Ga the equality 
VV(G) = W(G) holds, where W(G) is the polyverbal subgroup of G deter­
mined by the set W. 

If W is any polyverbal subgroup of X, then the W-product (or polyverbal 
^-product) of the set {Ga\a £ M) of groups is defined as 

nwGa = (u*Ga)/w(G). 

We shall denote by 

^ V ^ u l j ^ û 2 ) • • • i %iisii • • • i %ikli %ik%j • • • » %iksk) 

an arbitrary polyword in X involving in its reduced form the letters from the k 
different factors Xily . . . , Xik. We shall then say that this polyword is k-ary 
or that its arity is k, and also that it has absolute arity m modulo yw+i(X) if m 
is the smallest number of different letters involved in any polyword v satisfying 
w = y mod yn+1(X), where YiPO = X, yn{X) = [ 7 „ - i P 0 , X ] . Obviously 
m ^ k. We shall further say that a polyword is absolutely neutral modulo 
yw+i(X) if it becomes 1 mod yn+1(X) when any one of the letters it involves 
is put equal to 1. The weight of a polyword v Ç X is defined as usual to be n 
if W e 7n(X),V (Z Yn+lPQ. 

We are now able to state our result. 

THEOREM. If W is a neutral polyverbal subgroup determined by a set of binary 
polywords and the corresponding W-operation is associative, then W $£ 73 (X). 

Theorem 10 of [2] and Theorem 2 of [4] give sufficient conditions for non-
associativity of T^-operations determined by sets of binary polywords of 
weight more than 2. By our theorem all operations determined by such sets 
of binary polywords are non-associative. 

3. Lemma and proof of the theorem. 

LEMMA. Let W be a polyverbal subgroup determined by a set VV of binary 
polywords and let the corresponding W-operation be associative. If w is a poly­
word in W which is absolutely neutral modulo yn+i (X) and has minimal weight n 
in W, then the absolute arity modulo yw+i(X) of w is 2. 

https://doi.org/10.4153/CJM-1974-139-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-139-3


1452 0. N. MACEDONSKA-NOSALSKA 

Proof. Let w be, as in the lemma, an absolutely neutral polyword of W of 
minimal weight n (i.e., W C yn(X), W Çt yn+1(X)). Suppose that the absolute 
arity of w modulo Y W + I (X) is / > 2. It will be shown that this leads to con­
tradiction. 

To begin with, we change the first indices of letters xtj involved in the 
polyword w so that different letters have different first indices, and change 
all the second indices to 1. The resulting polyword v say, has both arity and 
absolute arity / modulo yn+i (X) and is of weight n. Since by hypothesis our 
^-operation is associative, it follows from [2, Theorem 7] that 

oo / oo \ 

v € WD n*(*i i> = W\U*(xtl)\. 
i=l \ 1=1 / 

By assumption the poly verbal subgroup W is determined by the set VV 
of binary polywords of weights ^ n. Let us denote by S the set of all values 
in 11°?= i* (xji) of polywords from VV. Note that every value 5 Ç S is of weight 
^n and has absolute arity 2. The set 5 generates the subgroup l/F(IT*Li* (xti)) 
as a normal subgroup. Thus v may be written as 

v = Sxs2 . . . sk mod 7n + i(X), 

where s3- £ S, (j = 1, 2, . . . , &). Note that the Sj (j = 1, 2, . . . , k) commute 
modulo 7w+i(X). Therefore those Sj involving the same pair of letters can be 
collected together to form words ut (i = 1, 2, . . . , r) of absolute arity 2, such 
that distinct ut involve distinct pairs of letters. Thus 

v = uxU2 . . . up mod 7w+i(X). 

Choose any Uj and set equal to 1 all x a not involved in Uj. Then aszns absolutely 
neutral modulo yn+i{X) we shall have that Uj G yn+\(X). I t follows that 
v Ç 7n +i(X) contradicting the fact that v is of weight n. 

Proof of the theorem. Let W be a polyverbal subgroup determined by a set 
of binary polywords, and suppose that the corresponding W-operation is 
associative, and that W Q yn(X), W Çt yn+i(X) where, contrary to the 
theorem, n > 2. We shall find in the polyverbal subgroup W a polyword v of 
weight n which is absolutely neutral and has absolute arity 3 modulo yn+\(X). 
Since this contradicts the lemma, the theorem will follow. 

By assumption W contains some polyword w of weight n. Express w as a 
product rig c modulo yn+i(X) of left-normed commutators of weight n with 
letters xtj as entries (see [5, Theorem 5.4]). If we collect together those factors 
c with the same set of entries we obtain that 

w = f i d modyn+iÇK), 
d 

where each factor d is a product of left-normed commutators of weight n 
with the same set of entries, and different d have different (but possibly 
intersecting) sets of entries. 
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Choose any d g 7n+i(X) with a minimal set of entries in its left-normed 
factors, and set equal to 1 all letters not involved in this d. Then we obtain 
a new polyword 

w = d = EI c m o d Yrc+iPQ, 
c 

where the c are the aforementioned left-normed factors of d. Thus w is of 
weight n, lies in W by definition of W, and is absolutely neutral modulo 
7w+i(X). According to the lemma, the absolute arity of w modulo yn+i(X) 
is 2, which means that every factor c above has precisely two letters x, y say, 
as entries. To stress this we shall write 

w = w(x,y) = IT c(x,y) mod7w+i(X). 
c 

(Obviously the absolute arity of w is 2.) 
Denote by uk(x, y) the product of those left-normed factors c(x, y) which 

contain the entry y k times (and x n — k times). Then 

w(x,y)= ]j[ uh(x,y) mod7/*+iPQ. 

Since w(x, y) (? 7^+1 (X), there exists k0 (1 ^ k0 S n — 1) such that 

uk0(x,y) £ yn+\{X). 

We can suppose that k0 > 1 (by interchanging the roles of x and y if necessary) • 
If w(x, yz) denotes the new polyword obtained from w(x, y) by replacing y 

by yz where x, y, z are letters from different factors Xu then 

w(cctyz)= EI c(xtyz) mod 7^+1 (X). 
c 

Since by assumption our PF-operation is associative it follows from [2, Theorem 
7] that w(x, yz) lies in W. 

If the left-normed commutator c(x, y) contains the entry y k times, then 
c(x, yz) can be expressed modulo yn+1(X) as a product of 2k left-normed com­
mutators, two of which are binary and the rest ternary (by using distribu-
tivity modulo 7^+1 (X) of multiplication through formation of commutators 
of weight n). If we denote the product of these ternary factors by r(x, y, z), 
then c(x, yz) = c(x, y)c(x, z)r(x, y} z) mod yn+1(X). Note that r(x,y,y) = 

By multiplying the above equalities for every c from uk, we obtain 

uk(x, yz) ES uk(x, y)uk(x, z)sk(x, y, z) mod yn+1(X), 

where ^(x, y, z) = I I r(x, y, z). Note as before that sk(x, y, y) = (uk(x,y))2k~2. 
Now 

n— 1 n—1 n—1 n—1 

w(x,yz) = n uk(x,yz) = I I uk(x,y) Yl uk(x,z) Yl sk mod7 n + i (^ ) , 

i.e., w(x, yz) = w(x, y) • w(x, z) • v, where v = (If£z\sk) •/, / € 7n+ iW. 
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It is enough now to show that U t i s* (2 Yn+i(X), since then v will be an 
absolutely neutral polyword of weight n in W of absolute arity 3 modulo 
yn+i(X). Hence we shall obtain the desired contradiction with the lemma. 

Let Z denote the ring of integers. Denote (as in [5, pp. 299, 300]) by A0 the 
free associative Z-algebra freely generated by X \ , X2j X%, and by A0 the free 
Lie Z-algebra in A0 freely generated by Xi, %2, x3, under bracket multiplication 
given by [a, 13] = aft — fia. Let F be a free group freely generated by x, y, z. 

Denote by 0n(xi, %i, x3) any Lie monomial of degree n with entries Xi, x2, X3 
(possibly repeated) in A0 (see [5, p. 301]), and by Pn(x, y, z) the corresponding 
commutator of weight n in F. Then by [5, Theorem 5.12], the mapping 8 from 
yn(F)/yn+i(F) to the abelian group (under addition) of all homogeneous Lie 
elements of degree n, defined by 

b : pn(x, y, z) —> Pn(xu x2, x3), 

is an isomorphism. 
We can now easily prove that the element Tl^Zi sk of F is not in yn+i(F). 

Recall that sk is a product of left-normed commutators c, with letters x, y, z as 
entries, involving the entry x precisely n — k times. Thus if sk g yn+i(F) 
then the element skd of A0 is a homogeneous polynomial of degree n, homo­
geneous of degree n — k in x. Hence for kx ^ k2, skiô and sk2d have no common 
terms. 

It is enough now to show that ^ 0 g yn+x{X) for ko chosen as above. 
Denote by cp the endomorphism of X which maps z into y and maps the 

remaining letters identically. Then if skQ(x,y,z) were in y n + i (X), we should 
have 

Sko(x,y,z)<P = * 4 0 ° ~ 2 G 7n+l(X) 

which is impossible since ukQ € Y^+i(X) and yn(X)/yn+i(X) is torsion-free 
(see [5, Theorem 5.12]). 
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