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A NOTE ON ASSOCIATIVE POLYVERBAL OPERATIONS
ON GROUPS

0. N. MACEDONSKA-NOSALSKA

Introduction. In his paper [2] O. N. Golovin introduced the notion of a
neutral polyverbal operation on groups, of which Moran’s verbal operation [6],
and Gruenberg’s and Smel’kin’s operations [3 ;7] are special cases. (Bronstein
[1] proved, more generally, that every regular operation for which MacLane’s
postulate (see [2]) holds and which is invariant under addition of trivial
factors, is a neutral polyverbal operation.)

Every neutral polyverbal operation is determined by some set of polywords
(see Section 2). We are concerned here with neutral polyverbal operations
determined by a set of binary polywords. In the present paper we show that
if such a polyverbal operation is associative then the corresponding poly-
verbal subgroup cannot be contained in the third term of the lower central
series of the base group (see Section 2). Theorem 10 of [2] and Theorem 2 of [4]
follow immediately from our result. The nonassociativity of some of the
examples of operations given by R. R. Struik in [8], can also be deduced from
our theorem. We give most of the relevant definitions and the precise statement
of our theorem in Section 2. Undefined terms can be found in [2].

I am grateful to R. G. Burns for his help in the presentation of this paper,
and to York University for its hospitality.

2. Definitions and statement of result. We first define a polyverbal
product of groups. To this end let X; (z = 1,2,...) be a free group, freely
generated by the letters x;1, %, . . ., and denote by X = II%,* X, the free
product of the X; (+ = 1,2,...). The group X will be called the base group
and its elements will be called polywords. The Cartestan subgroup of
X = II2 * X, is defined to be the normal closure of the set {[a;, adla; € Xy,
a; € X,, 1 # j}, where [ay, a;] = a7 e aa;

Let {G.la € M} be an arbitrary set of groups and G = [ [ aca*Ga
their free product. A homomorphism from X to G is said to be regular if the
image of each free factor X, is contained in some G,, o € M, and nontrivial
images of different X ; are contained in different G,.

The image of any polyword under a regular homomorphism from X to G
is called the walue of this polyword in G.

If VV is an arbitrary set of polywords from the Cartesian subgroup of X,
then the normal subgroup generated by all the values in G of all polywords
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from VYV, is called the meutral polyverbal VV-subgroup of G = Il.cy* Ga,
denoted by VV(G). (In the sequel we shall usually omit the word neutral: all
our polyverbal subgroups will be neutral.) A familiar example of a polyverbal
subgroup is the Cartesian subgroup of G, which is determined, for example,
by the single polyword [x11, X21].

Taking G = X we obtain the polyverbal subgroup VV(X) of the base
group X determined by the set of polywords V'V, for which we use the special
symbol W. It is easy to check that for any group G = Il.cy* G, the equality
VV(G) = W(G) holds, where W(G) is the polyverbal subgroup of G deter-
mined by the set W.

If W is any polyverbal subgroup of X, then the W-product (or polyverbal
W-product) of the set {G,Ja € M} of groups is defined as

[176. = ( H*Ga)/W(G).

acM aeM

We shall denote by
'U(xilly Xi12y o o oy Xagsry oo v 3 Xigly Xig2y o o o yxiksk)

an arbitrary polyword in X involving in its reduced form the letters from the k
different factors X, ..., X ;. We shall then say that this polyword is k-ary
or that its arity is k, and also that it has absolute arity m modulo v,.1(X) if m
is the smallest number of different letters involved in any polyword v satisfying
w = v mod v,11(X), where v1(X) = X, v,(X) = [y,—1(X), X]. Obviously
m = k. We shall further say that a polyword is absolutely neutral modulo
Yor1(X) if it becomes 1 mod v,41(X) when any one of the letters it involves
is put equal to 1. The weight of a polyword v € X is defined as usual to be n
if v € 'Yn(X): v € 'Yn+1(X)-
We are now able to state our result.

THEOREM. If W is a neutral polyverbal subgroup determined by a set of binary
polywords and the corresponding W-operation is associative, then W & v3(X).

Theorem 10 of [2] and Theorem 2 of [4] give sufficient conditions for non-
associativity of W-operations determined by sets of binary polywords of
weight more than 2. By our theorem all operations determined by such sets
of binary polywords are non-associative.

3. Lemma and proof of the theorem.

LEMMA. Let W be a polyverbal subgroup determined by a set V'V of binary
polywords and let the corresponding W-operation be associative. If w is a poly-
word in W which 1s absolutely neutral modulo v,+1(X) and has minimal weight n
in W, then the absolute arity modulo v,+1(X) of wis 2.

https://doi.org/10.4153/CJM-1974-139-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-139-3

1452 0. N. MACEDONSKA-NOSALSKA

Proof. Let w be, as in the lemma, an absolutely neutral polyword of W of
minimal weight # (i.e., W C v,(X), W & 7,41(X)). Suppose that the absolute
arity of w modulo v,1(X) is I > 2. It will be shown that this leads to con-
tradiction.

To begin with, we change the first indices of letters x;; involved in the
polyword w so that different letters have different first indices, and change
all the second indices to 1. The resulting polyword v say, has both arity and
absolute arity ! modulo v,+1(X) and is of weight #. Since by hypothesis our
W-operation is associative, it follows from [2, Theorem 7] that

v €W N I:Il* (Xa) = W(IO_OII* (xﬂ)).

i=

By assumption the polyverbal subgroup W is determined by the set VV
of binary polywords of weights =#. Let us denote by S the set of all values
in 112 ,* (x ;1) of polywords from VV. Note that every value s € .S is of weight
> and has absolute arity 2. The set S generates the subgroup W (II2* (x:,))
as a normal subgroup. Thus ¥ may be written as

V= §18s . . . S mod y,41(X),

where s; € S, (7 =1,2,...,k). Note that the s; ( =1, 2, ..., %) commute
modulo v,+1(X). Therefore those s; involving the same pair of letters can be
collected together to form words u; (+ = 1, 2, ..., ) of absolute arity 2, such
that distinct %, involve distinct pairs of letters. Thus

¥ = Uiy . . . Uy mod v, 1(X).

Choose any u; and set equal to 1 all x;; notinvolved in «;. Then aswvis absolutely
neutral modulo v,+1(X) we shall have that u; € v,41(X). It follows that
2 € v,41(X) contradicting the fact that v is of weight #.

Proof of the theorem. Let W be a polyverbal subgroup determined by a set
of binary polywords, and suppose that the corresponding W-operation is
associative, and that W C v,(X), W & v,4+1(X) where, contrary to the
theorem, # > 2. We shall find in the polyverbal subgroup W a polyword v of
weight # which is absolutely neutral and has absolute arity 3 modulo v,,1(X).
Since this contradicts the lemma, the theorem will follow.

By assumption W contains some polyword @ of weight #. Express @ as a
product II; ¢ modulo v,41(X) of left-normed commutators of weight # with
letters x;; as entries (see [5, Theorem 5.4]). If we collect together those factors
¢ with the same set of entries we obtain that

®= ][] d modvy,1(X),
a

where each factor d is a product of left-normed commutators of weight =
with the same set of entries, and different d have different (but possibly
intersecting) sets of entries.
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Choose any d ¢ v,+1(X) with a minimal set of entries in its left-normed
factors, and set equal to 1 all letters not involved in this d. Then we obtain
a new polyword

w=d= H C m0d7n+l(X)y

where the ¢ are the aforementioned left-normed factors of d. Thus w is of
weight #», lies in W by definition of W, and is absolutely neutral modulo
Ynt+1(X). According to the lemma, the absolute arity of w modulo v,41(X)
is 2, which means that every factor ¢ above has precisely two letters x, y say,
as entries. To stress this we shall write

w = w(x, y) = H C(xv y) mod 7n+1(X)'

c

(Obviously the absolute arity of w is 2.)
Denote by u(x, y) the product of those left-normed factors c(x, y) which
contain the entry v k times (and x n — k times). Then

n—1

w(x,y) = H uk(xry) mOd ’Yn+1(X)'

Since w(x, ¥) € v,+1(X), there exists kg (1 < k¢ < n — 1) such that

”ko(xv y) € 7n+l(X)'

We can suppose that ky > 1 (by interchanging the roles of x and v if necessary)-
If w(x, yz) denotes the new polyword obtained from w(x, y) by replacing y
by yz where x, v, z are letters from different factors X ;, then

w(x, yz) = U c(x,y2) mod yn1(X).

Since by assumption our W-operation is associative it follows from [2, Theorem
7] that w(x, yz) lies in W.

If the left-normed commutator ¢(x, ) contains the entry y k times, then
¢(x, vz) can be expressed modulo v,,1(X) as a product of 2% left-normed com-
mutators, two of which are binary and the rest ternary (by using distribu-
tivity modulo v,+1(X) of multiplication through formation of commutators
of weight n). If we denote the product of these ternary factors by 7(x, y, z),
then c¢(x, vz) = c(x, y)c(x, 2)r(x, ¥, z) mod v,41(X). Note that r(x,y,y) =
(c(x, ¥))¥2

By multiplying the above equalities for every ¢ from u;, we obtain

we(x, y2) = ux(x, ¥)up(x, 2)s:(x, y,2) mod y,41(X),
where s;(x, ¥, 2) = Ll 7(x, 9, 2). Note as before that s (x, v, y) = (ux(x, y))*2.

Now
n—1 n—1 n—1 n—1
w(x, yz) = Ij[1 u (x, y2) = ;Hl u (%, y) H u (%, 2) IH s mod v,1(X),

i-e~y 'LU(ZX?, yz) = 'w(x, y) : w(x, Z) v, where v = ( ;:L-:-i sk) frf € 7n+1(X)'
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It is enough now to show that IT'Zis; ¢ v,41(X), since then v will be an
absolutely neutral polyword of weight #» in W of absolute arity 3 modulo
vn+1(X). Hence we shall obtain the desired contradiction with the lemma.

Let Z denote the ring of integers. Denote (as in [5, pp. 299, 300]) by 4, the
free associative Z-algebra freely generated by xi, x, x3, and by A, the free
Lie Z-algebra in 4, freely generated by x1, x2, x3, under bracket multiplication
given by [a, 8] = a8 — Ba. Let F be a free group freely generated by x, y, 2

Denote by 8" (x1, xs, x3) any Lie monomial of degree » with entries x1, x2, X3
(possibly repeated) in Ag (see [5, p. 301]), and by 8*(x, ¥, 2) the corresponding
commutator of weight #» in F. Then by [5, Theorem 5.12], the mapping § from
Yo (F)/¥ni1(F) to the abelian group (under addition) of all homogeneous Lie
elements of degree n, defined by

8: B (x, v, 2) > B"(x1, X2, X3),
is an isomorphism.

We can now easily prove that the element II=1 s, of F is not in v,.1(F).
Recall that s; is a product of left-normed commutators ¢, with letters x, y, z as
entries, involving the entry x precisely » — &k times. Thus if s; € v,.1(F)
then the element 5,6 of Ay is a homogeneous polynomial of degree #, homo-
geneous of degree n — k in x. Hence for &, 5 ks, s;,6 and 5,6 have no common
terms.

It is enough now to show that s;, ¢ v,+1(X) for &y chosen as above.

Denote by ¢ the endomorphism of X which maps z into ¥y and maps the
remaining letters identically. Then if s;,(x, y, z) were in v,41(X), we should
have

sk (%, 9, 2)e = 10" € vppa(X)

which is impossible since u;, ¢ v,+1(X) and v,(X)/v,.1(X) is torsion-free
(see [5, Theorem 5.12]).
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