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Abstract

Mitochondria are unique organelles to perform critical functions such as energy production,
lipid oxidation, calcium homeostasis, and steroid hormone synthesis in eukaryotic cells. The
proper functioning of mitochondria is crucial for cellular survival, homeostasis, and bioener-
getics. Mitochondrial structure and function are maintained by the mitochondrial quality
control system, which consists of the processes of mitochondrial biogenesis, mitochondrial
dynamics (fusion/fission), mitophagy, and mitochondrial unfolded protein response UPRM™.
Mitochondrial dysfunction and/or damage is associated with the initiation and progression of
several human diseases, including neurodegenerative, cardiovascular, age-related diseases,
diabetes, and cancer. Environmental stress and contaminants may exacerbate the sensitivity
of mitochondria to damage which causes mitochondrial dysfunction. There is growing evidence
about the impact of nanoplastics (NPs) and microplastics (MPs) on mitochondrial health and
function. MPs/NPs were reported to trigger oxidative stress and reactive oxygen species
production, which eventually change mitochondrial membrane potential. MPs/NPs can cross
through the biological barriers in the human body and be internalized by the cells, potentially
altering mitochondrial dynamics, bioenergetics, and signaling pathways, thus impacting cel-
lular metabolism and function. This review states the effects of MPs/NPs on mitochondrial
homeostasis and function as well as on mitochondrial membrane dynamics, mitophagy, and
mitochondrial apoptosis are discussed.

Impact statement

Given the critical role of mitochondria in cellular and organismal health, MPs/NPs pose a
significant threat to mitochondrial health and function. The current evidence underscores the
urgency of addressing the pervasive problem of MP/NP pollution, not only for the protection of
the environment but also for human health. The information provided here should inspire and
guide further research in several directions. The specific molecular mechanisms by which MPs/
NPs affect mitochondrial health need to be elucidated. A deeper understanding of these processes
could inform the development of strategies to mitigate these effects or be used as biomarkers of
exposure or toxicity. In addition, this information should motivate regulators to reassess the
environmental and health risks associated with MP/NP pollution, incorporating new knowledge
on mitochondrial effects into these assessments. This could help to shape more comprehensive
and effective strategies for dealing with plastic pollution, ranging from policies to reduce plastic
waste and promote more sustainable materials, to remediation of existing pollution.

Introduction
Background on microplastics (MPs) and nanoplastics (NPs)

During the past 70 years, the use of plastics has increased more than many other products, but
the waste of plastics has spread throughout the environment as well (Kayan and Kiigiik, 2020).
This has given rise to the term ‘plastic debris’, which is defined as “human-generated solid
polymeric material waste that is intentionally or accidentally released into the environment.”
The production of plastic products reached approximately 390.7 million tons in 2021, and the
negative impacts of persistent plastic waste on aquatic and terrestrial environmental health are
of serious concern (Thompson et al., 2009; European Commission, 2019; Plastics Europe, 2022).
Polyethylene (PE), polypropylene, polystyrene (PS), polyvinyl chloride (PVC), polyethylene
terephthalate (PET), and polyurethane used in the production of plastics are attracting more
attention because they are produced in large quantities and are widespread in the environment
(Vert et al., 2012; Revel et al., 2018; European Commission, 2019; Science Advice for Policy by
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European, 2019; Pinto Da Costa et al., 2020; Plastics Europe, 2021).
Although studies to determine the potential effects of plastic debris
on human health have increased exponentially over the past dec-
ade, current knowledge is still insufficient to determine the risk. Of
all the plastic produced, ~33% is not suitable for recycling and
is thrown into the environment within 1 year of production
(Koelmans et al., 2014). During the incineration process, which
is one of the ways of dealing with plastic waste, toxic chemicals
(such as furan and dioxin) that are harmful to human health and
the environment are released. Furthermore, many countries have
yet to introduce legislation to regulate the recycling of plastic
waste, often opting instead for the cheaper and easier route of
landfilling (Crawford and Quinn, 2017).

Plastic waste accumulates in large quantities in terrestrial,
marine, and freshwater ecosystems. Today, plastic debris and
the pollution it causes are recognized as one of the most important
global environmental threats (Ryan et al., 2009; Villarrubia-
Gomez et al., 2018; European Commission, 2019; Science Advice
for Policy by European, 2019; Hale et al., 2020; Plastics Europe,
2021).Itis estimated that ~10% of all plastics produced to date end
up as litter in the oceans (Laglbauer et al.,, 2014). It has been
reported that 61-87% of litter >5 mm in size and 98-99% of litter
<5 mm in size is plastic (plastic film, plastic fibers, polystyrene,
plastic pellets) (Tekman et al., 2021). Recently, in addition to the
visible macro form of plastic waste, microplastic (MP) and nano-
plastic (NP) particles have also raised ecotoxicological concerns
(Mattsson et al., 2018). MPs and NPs can be found as primary and
secondary plastic particles, depending on the way they are formed.
Primary particles are produced in a fixed size for the purpose,
usually in the form of beads, while secondary particles are formed
by the degradation of larger plastic materials (McDevitt et al,,
2017). Secondary MPs/NPs are much more abundant in the
environment than primary ones (Hale et al., 2020). Anthropo-
genic impacts, environmental factors such as solar radiation
(UV photooxidation reactions), wind and waves, and abrasion
from car tires are effective in the formation of secondary MP/NP
pollution (Andrady, 2015; Wagner et al., 2018). Although the rate
and amount of nanofragmentation in nature is unknown, it is
predicted that the fragmentation of MP particles with a size
>100 nm-5 mm into NP particles with a size of 100 nm would
lead to an NP particle concentration > 10'* times higher than the
current MP particle concentration (Besseling et al., 2019). Ter
Halle et al. (2017) detected PVC, PET, PS, and PE polymers with a
size of 1-999 nm in ocean surface samples for the first time.
Although MP/NP pollution is considered a global problem, their
potential risks to human health are far from known with the
available data (Thompson et al., 2004; 2005). Field studies have
shown the presence of MP in a large proportion of living organ-
isms in the food chain (Lusher et al., 2013; 2017; Hermsen et al.,
2018). MPs have also been detected in bottled water and tap water
(Mintenig et al.,, 2017; Kosuth et al., 2018; Mason et al., 2018;
Mintenig et al., 2019). Studies have started to reveal that MPs/NPs
can trigger physical and chemical toxicity in organisms (Berg-
mann et al., 2015; Klages et al., 2015; Wagner and Lambert, 2018).
In aquatic organisms, MPs have been shown to cause oxidative
stress, genotoxicity, neurotoxicity, developmental delay, reduced
reproductive success, and death (De Sa et al., 2018). In addition,
in vivo studies have shown that primary MPs/NPs accumulate in
tissues after oral or respiratory exposure (Deng et al., 2021; Xu
et al., 2021; Fan et al,, 2022; Meng et al., 2022; Yang et al., 2022;
Jeong et al., 2022a).
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Exposure and toxicity of MPs/NPs

In humans, to determine whether exposure to plastic particles poses
a public health risk, it is first necessary to understand the exposure
to these substances and the hazards associated with exposure.
Humans are exposed to MPs/NPs primarily through oral and
dermal routes, inhalation, and during medical procedures (Prata
et al., 2020). The fact that MPs have been detected in human feces
and tissues (placenta, lung, and whole blood) in clinical studies and
are beginning to be associated with disease suggests that the poten-
tial effects of MP/NP exposure should be taken seriously (Schwabl
etal, 2019; Amato-Lourenco et al., 2021; Ragusa et al., 2021; Jenner
et al., 2022; Leslie et al., 2022; Yan et al., 2022). While the detection
of human MP exposure is still very new, the extent of NP exposure
is unfortunately not yet known due to the lack of methods to detect
particles of this size (European Commission, 2019; Science Advice
for Policy by European, 2019).

Plastic particles smaller than 150 um can enter the system by
crossing the intestinal epithelium; NPs smaller than 100 nm can
easily be taken into the cell and pose a threat to humans (EFSA,
2016; Celebi Sozener et al., 2020). in vitro studies have shown that
primary PS MPs/NPs are taken into cells, reduce cell viability,
trigger apoptosis, alter reactive oxygen species (ROS) production,
mitochondrial membrane potential (MMP), and function (Prietl
et al,, 2014; Forte et al., 2016; Wu et al,, 2019; Xu et al., 2019a; Li
et al,, 2022; Wang et al., 2022a; Sun et al., 2023b).

When considering the routes of human exposure to NPs and
MPs, the respiratory and digestive systems are the first areas of
concern. However, it clearly demonstrates that MPs/NPs, which are
small in size, can overcome biological barriers in humans and
circulate through the blood system to access other tissues (Leslie
et al,, 2022). It has also been reported that NPs can cross the air-
blood barrier in the lung and enter the bloodstream (Prata et al.,
2020), while primary exposure to PS NPs can cause lung damage
(Wu et al., 2023). In addition, primary PS NPs have been shown to
accumulate in the brain by crossing the blood—brain barrier after
intravascular injection (Yang et al., 2004). Mice exposed to primary
PS NPs had a significant increase in blood glucose, glucose intoler-
ance, and insulin resistance. PS NPs exacerbated STZ-induced type
2 diabetes (Wang et al., 2023). PS NPs induced Parkinson’s disease-
like neurodegeneration in mice, so NP exposure should be carefully
considered as a neurological health risk (Liang et al., 2022). Mito-
chondrial dysfunction, endoplasmic reticulum (ER) stress, oxida-
tive stress, and lysosomal membrane damage are observed in
diseases such as neurodegenerative diseases, inflammation, meta-
bolic stress, oxidative stress, diabetes, cardiovascular diseases,
gastrointestinal diseases, kidney and lung diseases, skin diseases,
aging, and cancer (Cali et al., 2011; Herst et al.,, 2017; Ryter et al,,
2018; Burgos-Moroén et al., 2019; Shacham et al., 2019; Xu et al,,
2019b; Rana, 2020; Lee et al., 2022). The organelles mitochondria,
endoplasmic reticulum, and lysosome, which play an important
role in the pathophysiology of these diseases, are also targets of MP/
NP toxicity (Lim et al., 2019; Wang et al., 2021; Halimu et al., 2022).
In this review, we will discuss studies revealing the effects of MPs/
NPs on mitochondria.

Mitochondrial toxicity of MPs/NPs
Impact of MPs/NPs on mitochondrial structure and function

Due to their size and surface properties, MPs/NPs can physically
interact with cellular structures, including mitochondria. Often
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referred to as the ’powerhouses of the cell’, mitochondria are key
organelles responsible for ATP production through oxidative phos-
phorylation. In addition to energy production, they regulate several
cellular processes, including calcium homeostasis, apoptosis, and
the generation of reactive oxygen species (ROS). Exposure to these
pollutants can induce mitochondrial damage and dysfunction,
disrupting normal cellular operations and potentially leading to
cell death. There is evidence that these particles can penetrate cell
membranes and accumulate inside cells, possibly targeting mito-
chondria (Lee et al., 2022). This penetration appears to be facilitated
by NP small size, allowing them to cross biological barriers more
easily than larger particles (Yang et al., 2021). Once inside the cell,
MPs/NPs can disrupt mitochondrial structure. Studies in mice have
shown that exposure to PS MPs can cause significant morpho-
logical changes in mitochondria, such as swelling and loss of cristae
(Lin et al., 2022a). Building on the structural disruption mentioned
above, these physical interactions may also induce functional
abnormalities in mitochondria, further contributing to their tox-
icity. As the powerhouse of the cell, mitochondria play a critical role
in maintaining cellular energy homeostasis (Lee et al., 2015). Recent
evidence suggests that PS NPs can impair mitochondrial energy
production capacity by disrupting the electron transport chain,
leading to reduced ATP synthesis (Trevisan et al., 2019; Lin et al,,
2022b; 2023a). The impairments observed in mitochondrial func-
tion are not limited to energy production but also extend to other
vital processes such as signaling, mitochondrial dynamics, mito-
phagy, calcium homeostasis, and apoptosis. In in vitro (Table 1)
and in vivo (Table 2) studies, decreased mitochondrial membrane
potential (A¥m) was observed after PS, PVC and PET MPs/NPs
(Wuetal., 2019; Wang et al., 2020; Chen et al., 2022; Florance et al.,
2022; Halimu et al,, 2022; Li et al., 2022; Liu et al., 2022; Salimi et al.,
2022; Zhang et al., 2022a; Chen et al., 2023; Koner et al., 2023;
Zhang et al., 2023). In a study by Sun et al., exposure to PS NPs (size
20 nm) resulted in collapse of A¥m, an event associated with the
activation of cellular apoptosis, at TM3 mouse Leydig cells (Sun
et al., 2023b). This finding was reinforced by studies showing
increased expression of apoptosis-related proteins in cells exposed
to MPs/NPs, providing further evidence that these particles may
interfere with the role of mitochondria in the regulation of apop-
tosis (Liet al., 2021; Wang et al., 2022b; Li et al., 2023b). In addition,
the interaction of MPs/NPs with mitochondria could also affect
cellular calcium homeostasis, as calcium is critical for several
mitochondrial functions, including ATP production, this disrup-
tion could have significant consequences for cellular health.
Research has shown that PS nanoparticles with a size of 20 nm
can increase intracellular calcium levels, possibly by disrupting
mitochondrial calcium handling at SHSY-5Y human neuroblast-
oma cells and protozoan Tetrahymena thermophila which has a
strong ability to ingest particles (Meindl et al.,, 2015; Wu et al,,
2021). The impact of MPs/NPs on mitochondrial structure and
function potentially links to various pathologies, highlighting the
importance of elucidating the mechanistic pathways of these inter-
actions for understanding systemic and long-term health effects.

Induction of mitochondrial ROS by MPs/NPs

One of the critical consequences of the interaction of MPs/NPs with
mitochondria is the induction of ROS. ROS are chemically reactive
molecules that can be a by-product of normal metabolic processes,
but when produced in excess they can lead to oxidative stress,
causing damage to DNA, proteins, and lipids in cells (Thannickal
and Fanburg, 2000). MPs/NPs have been reported to trigger the
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overproduction of ROS in mitochondria. A study by Li et al. showed
that exposure to PS NPs with a diameter of 21.5 nm increased
mitochondrial ROS levels in human hepatocellular carcinoma cells
in a dose-dependent manner (Li et al., 2023a). Similar findings were
observed in fish gills exposed to 1-5 pm sized MPs, where elevated
levels of mitochondrial ROS were associated with a significant
increase in lipid peroxidation, a marker of oxidative damage (Santos
et al., 2022). Furthermore, this ROS-induced oxidative stress may
exacerbate mitochondrial dysfunction by damaging mitochondrial
proteins and disrupting A¥m, thereby amplifying the detrimental
effects of MPs/NPs on mitochondrial function (Wang et al., 2021; Li
etal., 2023a). Adding to this complexity, shape also appears to play a
role in the interaction of these pollutants with cellular systems.
Spherical and fiber/fragment-shaped PS MPs and NPs reduced
intracellular H,O, levels attributable to mitochondrial stress
responses such as increased mitochondrial DNA content, footprint,
and morphology in Caco-2 cells (Saenen et al., 2023).

Effects of MPs/NPs on mitochondrial dynamics

MPs/NPs can also affect mitochondrial dynamics, a process that is
critical for maintaining mitochondrial function and overall cellular
health. Mitochondrial dynamics involves the balanced processes of
mitochondrial fission and fusion, which are necessary for cell
survival, adaptation to metabolic changes, and removal of damaged
mitochondria (Youle and van der Bliek, 2012). In general, Fis1, Mff,
MiD49, MiD51, and dynamin-associated protein 1 (Drpl) are
involved in mitochondrial fission (Bleazard et al., 1999; Mozdy
et al., 2000; Tieu and Nunnari, 2000). In mammals, Drp1 is usually
distributed in the cytosol and some of it is found in the form of a dot
on the outer membrane of mitochondria (Smirnova et al., 2001).
During fission, dynamin homologs are transported to the Drpl
outer membrane knuckle region by intermediary proteins (Fisl,
Mff, MiD49, and MiD51), where they form large homomultimetric
structures that spirally envelop the mitochondria (Atkins et al.,
2016). Mitochondrial fission also plays an active role in the even
distribution of mitochondria to daughter cells during cell division,
as well as in the transport of the organelle to energy-demanding
sites in the cell, such as neuronal axons and lamellipods. Recent
studies revealed that MPs/NPs may disrupt this balance and cause
abnormal mitochondrial dynamics. A study in human liver cells
showed that exposure to PS NPs led to increased mitochondrial
fission, as evidenced by a significant increase in the expression of
the fission protein Drpl and p-Drpl (Li et al,, 2023a). Excessive
fission is often associated with mitochondrial fragmentation and
cell death, suggesting a potential pathway for NP-induced toxicity.
Conversely, NPs may also interfere with mitochondrial fusion, a
process necessary for the sharing of mitochondrial DNA and other
essential components. Mitochondrial fusion is a complex process in
which two neighboring organelles are connected to each other and
two independent membranes (inner and outer membranes of
mitochondria) are fused in harmony without any significant loss
of mitochondrial proteins (e.g. cytochrome c) that could lead to cell
death. In mammals, Mfn1 and Mfn2 proteins called mitofusins are
involved in outer membrane fusion, while OPAL1 protein is involved
in inner membrane fusion. Fu et al. found that exposure to amino-
functionalized PS NPs increased the mRNA expression level of
MFN2 (mitochondrial fusion-related gene) in Human Umbilical
Vein Endothelial Cells (HUVECs) (Fu et al., 2022). Another study
conducted on human bone marrow-derived mesenchymal stem
cells (hBM-MSCs) also revealed that surfactant-free amine-func-
tionalized PS NPs and PS NPs with decreased cross-linking density
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Table 1. Summary of in vitro studies assessing the effects of MP/NP exposure on mitochondrial function

Author (year)

Cell type

MP/NP type (size)

Concentrations (exposure
time)

Outcomes

Im et al. (2022)

hBM-MSCs human
bone marrow
mesenchymal stem
cells

PS NP and amine-
functionalized PS NP
(400 nm)

0.6, 1.2, and 2.4 mg/mL
(24 h)

Decreased cytotoxicity and ROS scavenging effects and
promoted mitochondrial fusion and inhibited
mitochondrial fission after PS NP and amine—
functionalized PS NP exposure in hBM-MSCs.

Fu et al. (2022)

HUVEC human
umbilical vein
endothelial cell line

PS NP and NH2—PS NP (50 nm)

10 and 20 pg/mL
(24 or 48 h)

Enhanced ROS generation; decreased A¥m triggered
by NH2-PS NP

Saenen et al. Caco-2 human PS MP/NP 10 and 100 pg/mL Decreased intracellular H,0, levels linked to
(2023) epithelial colorectal ~Spherical (200 nm and 2 um) (24 h) mitochondrial stress responses; increased
adenocarcinoma and fiber—/fragment— mitochondrial DNA content, footprint, and
cells shaped (8.9-10.1 um by morphology observed; the most profound effects at
1.14-0.97 um) 200 nm PS NP
Halimu et al. A549 human alveolar  unmodified PS NP (20 and 10, 20, and 40 pg/mL for Increased intracellular ROS production and NADPH
(2022) type Il epithelial cell 50 nm), amino 20 nm; 40, 80, and oxidase 4 (NOX4); bidirectional effect on Aym

line

functionalized PS NP
(20 nm)

160 pg/mL for 50 nm
(24 h)

(increased Aym at low concentration indicating
transient mitochondrial hyperpolarization;
decreased Aym at intermediate and high
concentrations); elevated OCRs at low
concentration, enhancing spare respiratory
capacity, promoting proton leak, and increasing
ATP production; decreased spare respiratory
capacities and ATP levels at intermediate and high
concentrations of PS NPs.

Lin et al. (2022b)

L02 human hepatic cell

Nonfluorescent

0.006, 0.0125, 0.03125,

Mitochondrial damage evidenced by overproduction

line BEAS-2B fluorescent PS NP 0.0625, 0.125, and of mitochondrial ROS and alterations in A¥m;
human lung (80 nm) 0.25 mg/mL decreased ATP production and suppression of
epithelial cell line (48 h) mitochondrial respiration
Wang et al. HK—2 human kidney PS MP 0.025, 0.05, 0.1, 0.2, 0.4, Higher mitochondrial ROS levels at 0.2, 0.4, or 0,8 mg/
(2021) proximal tubular (2 um) and 0.8 pg/mL mL PS MP; increased the expression of Bad after
epithelial cell line (6 h) 0.8 mg/mL PS MP exposure for 5-60 min; decreased
expression of Bcl2 after PS MP exposure for 20—
60 min
Chen et al. HEK293 human PS MP 300 ng/mL Increased ROS and oxidative stress; decreased A¥Ym
(2022) embryonic kidney (3.39 £ 0.30 um) (24 h)
cells
Li et al. (2022) Murine splenic unmodified PS NP (20 and 40 pg/mL for 20 nm, Increased ROS after PS SO3H-NP (20 nm), PS NP (20
lymphocytes 50 nm), PS NP-FITC (20 and 200 pg/mL for 50 nm and 50 nm); decreased A¥m after PS NH2-NPs
50 nm), surface—charged PS (6 h) (20 nm) after 6 h of exposure; decreased A¥Ym after
SO3H-NPs (20 nm) and PS PS SO3H-NP (20 nm), PS NP (20 and 50 nm)
NH2-NPs (20 nm) exposure with ROS accumulation; affected the basic
respiratory capacity and ATP production capacity of
splenocytes accompanying with the damage of
mitochondrial membrane by all four PS NPs
Xu et al. (2023)  Caco-2 human unmodified and fluorescent— 30, 60, and 120 pg/mL Increased mitochondrial ROS; fractured, fuzzy cristae,
intestine epithelial labeled PS NP, PS NP— (24 h) ruptured membrane, blocked mitophagic flux, and
cell line COOH, and PS NP-NH2 vacuols in mitochondria; accumulation of PS NPs in
(~100 nm) the mitochondria and the subsequent induction of
mitochondrial stress, which led to PINK1/Parkin—
mediated mitophagy.
Zhang et al. A549 human lung PET NP 4.92 ug/mL and 49.20 ug/  Increased ROS, decrease tendency of A¥m induced by
(2022a) carcinoma cells (122-221 nm) mL PET NP exposure
(24 h)
Sun et al. TM3 mouse Leydig PS—-NPs 50, 100, and 150 pg/mL Increased ROS generation and initiated cellular
(2023b) cells (20 nm) (24 h) oxidative stress and apoptosis; affected the
mitochondrial DNA copy number and collapsed
A¥m after PS NPs exposure accompanied by a
disrupted energy metabolism
Chen et al. RAW264.7 macrophage Green fluorescence—labeled 10, 20, 50, and 100 pg/mL  Increased intracellular ROS, depolarized A¥m after PS
(2023) cells and unlabeled PS NP, PS (24 h) NP exposure; the most pronounced mitochondrial

NP—COOH, and PS NP-NH2

(100 nm)

damage effect exhibited by PS NP-NH2
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Table 1. (Continued)

Concentrations (exposure

Author (year) Cell type MP/NP type (size)

time)

Outcomes

HaCaT human
keratinocytes,
A549 human lung

Florance et al.
(2022)

Yellow—green fluorescently
labeled PS NP and sulfate
modified PS NP

50 and 100 pg/mL
(24 h)

Increased mitochondrial ROS and decreased A¥m in
RAW 264.7 and THP-1 cells

cancer cell line, (0.20 um)
RAW 264.7 murine
macrophages
THP-1 human
monocytes
Chang Liver cells
Liu et al. (2022) GC-2 mouse PS MP 50, 100, 200, 400, and Increased ROS and MDA, decreased ATP content,
spermatocyte line (5 um) 800 pg/mL reduced A¥m; damaged the integrity of the
(24 h) mitochondrial genome; imbalance of homoeostasis
between mitochondrial division and fusion
Koner et al. THP-1 macrophage PS NP 50, 100, 150, 200, and Increased ROS at 50 ug/mL after 24 h exposure.
(2023) cells (<450 nm) 500 pg/mL Mitochondrial membrane damage after PS NP
(4/ 24/48/72 h) exposure for 4 and 24 h
Lietal. (2023a) HepG2 human PS NP 6.25,12.5,25,and 50 pg/mL Induced morphological changes of mitochondria;
hepatocellular (21.5+2.7 nm) (24 h) decreased ATP production and the loss of A¥m,;
carcinoma cell line increased ROS and mitochondrial fission by
increased DRP1 and decreased OPA1 protein levels
Wu et al. (2019)  Caco-2 human colon  PS NP/MP 1,10, 40, 80, and 200 pg/mL Low toxicity on cell viability, oxidative stress, and

adenocarcinoma (0.1 and 5 pm)

(12/24 h)

membrane integrity and fluidity; disrupted A¥m by
both sizes of PS NP/MP; higher effects induced by
5 um PS MP than 0.1 um PS NPs

(DPS-NPs) led to upregulation of MFN2 expression and down-
regulation of FIS1 (mitochondrial fission related gene) expression
(Im et al,, 2022). Interestingly there were opposite results regarding
OPAL1 levels in mouse and chicken experiments when exposed to PS
MP’s. It was found that after GC-2 mouse cells were exposed to PS
MP’s for 24 h, both mRNA and protein expression levels of OPA1
were increased along with Drpl (Liu et al., 2022). However, in
another study conducted on chickens, it was shown that after
42 days of exposure to PS MP’s, mRNA and protein expression
levels of OPA1 were decreased along with Mfn1 and Mfn2 suggest-
ing a decrease at mitochondrial fusion. Conversely, Drpl mRNA
and protein expression levels were increased suggesting an increase
in mitochondrial fission (Zhang et al., 2022b). These conflicting
findings underscore the complexity of MP interactions within
biological systems and highlight the species-specific responses to
PS MP exposure, which may affect mitochondrial dynamics in
diverse ways.

Induction of mitochondrial unfolded protein response (UPR™)

by MPs/NPs

MPs/NPs may also exert their toxic effects by disrupting the mito-
chondrial unfolded protein response (UPR™), a protective cellular
mechanism that is activated in response to the accumulation of
misfolded proteins in mitochondria (Xu et al., 2022). The UPR™
plays a critical role in maintaining mitochondrial proteostasis,
thereby contributing to overall mitochondrial health and function-
ality. Due to their ability to induce oxidative stress and disrupt
mitochondrial function, MPs/NPs may lead to protein misfolding
within mitochondria. A study by Liu and Wang showed that
exposure to PS NP particles with a size of 100 nm significantly
increased the expression of HSP6, a marker of the UPR™, in
Caenorhabditis elegans (Liu and Wang, 2021). This suggests that
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NPs may lead to protein misfolding and subsequent activation of
the UPR™. However, chronic activation of the UPR™, as may occur
with continuous or repeated exposure to NPs, may become mal-
adaptive. Prolonged activation of the UPR™ has been associated
with mitochondrial dysfunction (Lin et al., 2016). Therefore, MPs/
NP-induced activation of the UPR™ may represent another mech-
anism of their cellular toxicity. In addition, disruption of the UPR™
may have further implications for mitochondrial dynamics, as
protein homeostasis is crucial for maintaining balanced fission
and fusion processes. Thus, the interaction of MPs/NPs with the
UPR™ could add another layer of complexity to their impact on
mitochondrial health.

Effects of MPs/NPs on mitophagy

Another important aspect to consider in the interaction between
MPs/NPs and mitochondria is the process of mitophagy, the select-
ive degradation of damaged mitochondria by autophagy. This
mechanism plays an important role in maintaining cellular homeo-
stasis by removing dysfunctional mitochondria and recycling their
components (Onishi et al., 2021). In the context of MP/NP-induced
mitochondrial damage, the PINK1/Parkin pathway plays a pivotal
role. Upon mitochondrial depolarization or damage, PINK1, a
kinase, stabilizes on the outer mitochondrial membrane. This sta-
bilization signals the recruitment of Parkin, an E3 ubiquitin ligase
and once Parkin is recruited, it ubiquitinates various mitochondrial
proteins (Mfnl, Mfn2, Drpl, and TOM20) marking the damaged
mitochondria for degradation (Gegg and Schapira, 2011; Wang
et al,, 2011; Yoshii et al.,, 2011). This selective autophagy process,
crucial for cellular health, ensures the removal of dysfunctional
mitochondria, thereby preventing potential cellular damage
induced by MPs/NPs. A study by Xu et al. found that PS NPs with
the size of 100 nm accumulated in mitochondria and induced
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Author (year) Organism

MP/NP type (size)

Concentrations (exposure
time)

Outcomes

Wu et al. (2021)  Tetrahymena thermophila ~ PS NP 0.3,1,3,10,and 30 mg/L  Ca accumulation in mitochondria, which increased
(20 nm) (24 h) mitochondrial permeability and the generation of
ROS
Jeong et al. Daphnia magna PS MP/6 um 0, 2.5, 5, 10, 20, and 30 mg/ Increased oxidative stress; inhibiting the adverse effects
(2022b) (Nonfunctionalized) L of chromium by increasing mitochondrial biogenesis
(24 /48 h)
Zhang et al. Danio rerio Freen fluorescent PS NP 1 mg/L Increased ROS; damaged the mitochondrial membrane
(2023) (100 nm) (30 days) and mtDNA in brain tissue
Trevisan et al. D. rerio wild-type PS NP 0.1, 1, or 10 ppm Decreased the mitochondrial coupling efficiency and
(2019) zebrafish, transgenic (44 nm) (24 or 96 h) increased NADH production, suggesting and
lines Tg (Flk1:EGFP) and impairment on ATP production
Tg(MLS—EGFP)
Zhang et al. One-day-old chicks PS MP 1, 10, and 100 mg/L Increased ROS; induced mitochondrial damage (TFAM,
(2022b) (5 um) (42 days) OPA1, MFN1 and MFN2 down—expression, DRP1 and

Fis1 overexpression) and energy metabolism
disorders (HK2, PKM2, PDHX and LDH up-regulation)
by inhibiting AMPK-PGC—1a pathway in
cardiomyocytes.

Xu et al. (2023)  Male-specific pathogen—

unmodified and

1 mg/day, gavage

Increased PINK1 and Parkin expression and mitophagy

free BALB/c mice fluorescent-labeled PS (28 days) in ileum tissues
(6 weeks old) NP, PS NP-COOH, and
PS NP-NH2
(~100 nm)
Lin et al. (2022a) Male C57BL/6 mice (8 PS NP 5 pg/g body weight, Increased ROS, MDA; decreased T-SOD, GSH and CAT;

weeks old)

(94.09 + 8.07 nm)

intraperitoneally
(once every other day for 2
weeks)

observed swollen and vacuolized mitochondria in
myocardial cells

PINK1/Parkin-mediated mitophagy in mice, likely as an effort to
eliminate mitochondria damaged by oxidative stress and mitochon-
drial dysfunction (Xu et al.,, 2023). This observation is consistent
with the known role of mitophagy as a response to stressful condi-
tions, such as ROS overproduction (Onishi et al., 2021). However,
continuous or high-level activation of mitophagy could be detri-
mental. Prolonged stimulation of mitophagy, especially in the
absence of effective biogenesis to replace degraded mitochondria,
could lead to overall loss of mitochondrial mass and function,
contributing to further cellular stress and even cell death (Kubli
and Gustafsson, 2012). Furthermore, the involvement of mitophagy
highlights the interconnectedness of the different mitochondrial
responses to MP/NP exposure. These findings also emphasize the
complex and potentially detrimental effects of MP/NP pollution on
mitochondrial health and cellular function, including disruptions in
energy production, increased oxidative stress, and induction of
apoptotic pathways. The urgent need for targeted research to fully
understand the extent of MP/NP toxicity, the implementation of
stricter pollution controls to reduce exposure, and the development
of innovative solutions to remove existing pollutants from the
environment is underscored by these negative outcomes. This will
help protect public health and biodiversity. Mitochondrial biogen-
esis, the formation of new mitochondria within the cell, is another
critical cellular process that could be disrupted by exposure to MPs/
NPs. Mitochondrial biogenesis is essential for replacing damaged
mitochondria and adjusting the mitochondrial population within a
cell to meet changing metabolic demands (Kubli and Gustafsson,
2012). Disruption of this process can have a significant impact on
cellular health, potentially leading to energy depletion, increased
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oxidative stress, and increased susceptibility to cell death. Exposure
to environmental stressors, such as MPs/NPs, could potentially
trigger such disruptions. However, a latest study by Jeong et al.
revealed that mitochondrial biogenesis was increased at PS MPs and
chromium exposed freshwater flea, Daphnia magna, compared to
chromium only treated group suggesting that MPs expel chromium
from cells (Jeong et al., 2022b). The group exposed to chromium-
only showed a decrease in PGC-1a gene expression and an increase
in Drpl gene expression, indicating that chromium may cause
mitochondrial dysfunction. However, exposure to both MPs and
chromium resulted in increased PGC-1a expression and decreased
Drpl expression, suggesting a potential mitigating effect on mito-
chondrial dysfunction compared to chromium exposure alone.
While the available study provides initial insights into the potential
impacts of MPs/NPs on mitochondrial biogenesis in freshwater
fleas, including their intriguing role in mitigating the effects of heavy
metals, it should be emphasized that this research does not extend to
human data. Consequently, a comprehensive understanding and
broader conclusions regarding such effects in humans necessitate
further in-depth studies.

Conclusion

The toxicity of MPs/NPs is a serious environmental and public
health problem that is not yet fully understood. The unique phy-
sicochemical properties of these particles, including their small size
and large surface area, enable them to penetrate biological mem-
branes and accumulate in various organs where they can induce a
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range of adverse effects. This review has highlighted one particular
area of concern - the effects of exposure to MPs/NPs on mitochon-
dria, a critical cellular organelle responsible for energy production
and several other vital functions.

Evidence suggests that MPs/NPs can induce mitochondrial
dysfunction, primarily through the generation of oxidative stress,
which damages mitochondrial components and impairs mitochon-
drial function. This can result in reduced ATP production, which
can disrupt cellular processes and lead to cell death. MPs/NPs have
also been found to physically interact with mitochondria, causing
structural damage and contributing to functional impairment.
These effects can in turn trigger a cascade of cellular responses,
from inflammation to apoptosis, contributing to the overall toxicity
of MPs/NPs. In addition, exposure to MPs/NPs may disrupt the
dynamic processes that maintain mitochondrial health, including
mitochondrial dynamics and the UPR™. Also, emerging research
suggests that MPs/NPs could disrupt mitochondrial biogenesis,
potentially leading to a decrease in mitochondrial mass and further
impairing cellular health and function. Such a chain of detrimental
effects highlights the importance of understanding the impact of
MP/NP exposure on mitochondria, not only in terms of cellular
health but also considering potential systemic effects and long-term
effects on organismic health.

Knowledge gaps and future perspectives

Mitochondrial damage and dysfunction are related to numerous
health conditions, suggesting that exposure to MPs/NPs could have
far-reaching effects on human health. Therefore, it is crucial to
investigate the potential impact of MPs and NPs on human cells
to raise awareness of this issue and take necessary precautions. The
analytical methods used are inadequate to measure the concentra-
tion of NPs in the environment and organisms and therefore little is
known about the importance of NPs for human health (Science
Advice for Policy by European, 2019). Therefore, it is important to
first develop analytical methods that can analyze not only MPs but
also NPs, which will enable a full understanding of human exposure.

The type of PS NPs that have been shown to cause adverse effects
in human and animal cells in in vitro and in vivo studies are
primary ones. Primary MPs/NPs have a smooth surface and uni-
form shape (uniform; nanobeads). Secondary MPs/NPs, on the
other hand, are formed in a wide variety of shapes compared to
those of primary origin (Koelmans et al., 2015; Lei et al., 2018). At
the same time, when primary PS NPs are released into the envir-
onment, their structures deteriorate and their properties change
after a certain period of time like secondary particles (Im et al.,
2022). The shapes of secondary MP/NP particles are amorphous
and it has been shown that the negative effects of particles without
smooth surfaces on the cell are more than those with smooth
surfaces (Qin et al., 2022; Volkl et al., 2022). Therefore, the effects
of secondary MPs/NPs, which are more abundant in the environ-
ment, need to be investigated and studies need to be designed to
realistically assess human exposure.

In addition, the studies in the literature were conducted with
commercially available PS-type MPs/NPs. However, MPs/NPs in
the environment also consist of other types of plastic polymers
other than PS. Therefore, the effects of MPs/NPs composed of these
types of plastic polymers on the mitochondria should be investi-
gated as well.

Furthermore, given the wide range of plastic types, sizes, shapes,
and chemical compositions present in the environment, research
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should also focus on investigating whether and how these different
factors modulate the effects of MPs/NPs on mitochondria and
other cellular components.

The field of MPs/NPs research, particularly in relation to their
effects on mitochondria, is still evolving. Existing studies have
primarily used in vitro models, and more in vivo and human
epidemiological research is needed to validate these findings and
gain a more nuanced understanding of these interactions and their
implications for organismal health. Such studies will provide a
more realistic understanding of exposure levels, uptake mechan-
isms, and physiological consequences of MP and NP exposure.
Moreover, further work is needed to clarify the molecular mech-
anisms underlying the effects of MPs/NPs on mitochondria and to
determine the extent to which these effects contribute to the overall
toxicity of these pollutants. Research in this area could help to
inform risk assessments and guide the development of strategies
to mitigate the effects of NP and MP pollution.

In the production of plastics, some additives (UV stabilizers,
antioxidants, plasticizers (such as phthalate diester), colorants,
fillers, etc.) are added to the products along with the polymer
(Murphy, 2001; Ventrice et al., 2013; ECHA, 2018). There are many
studies revealing the effects of these chemicals added to plastics on
animals and humans (Gray Jr et al., 2000; Frederiksen et al., 2007;
Lyche et al., 2009; Svensson et al., 2011; Ding et al., 2021). NP/MP
act as vectors for toxic chemical contaminants and pathogenic
microbes by sorbing to their surfaces and cavities (Rai et al,
2022). MPs/NPs have certain properties that facilitate their ability
to adsorb various environmental pollutants. In this way, they
increase exposure to these chemicals along with themselves (Sun
et al., 2023a). The combined effects of these chemicals need to be
taken into account when elucidating the effects of MPs/NPs on
mitochondria and other cell components.

This extensive body of information emphasizes the importance
of increasing awareness among individuals, communities, indus-
tries, and policymakers about the potential health risks associated
with MP and NP pollution. These risks include respiratory prob-
lems, endocrine disruption, and other long-term health effects.
There is an urgent need for comprehensive research to better
understand the impacts of plastic pollution. Effective waste man-
agement practices should be implemented to reduce pollution at
the source. Policies aimed at minimizing the production and use
of plastic products are necessary to protect human health and the
environment. This awareness should be channeled into individual
action and policy development aimed at reducing plastic waste
and promoting sustainable alternatives. In addition, further
research is crucial to fill gaps in our understanding of the impacts
of MPs/NPs on human health, particularly the long-term effects.
More comprehensive studies are needed to better characterize
human MPs/NPs exposure to elucidate their mechanisms of
action in our bodies, and to identify potential strategies to mitigate
their impacts. The public should also be aware that these findings
are based on experimental models and while they indicate poten-
tial risks, the actual human health outcomes from real-world
exposure scenarios might differ, which further underscores the
need for ongoing research in this field. These potential risks
underscore the urgency to better understand the precise mechan-
isms of MP and NP toxicity and to develop effective strategies to
mitigate their presence in our environment. The collective effort
towards these goals will necessitate cross-disciplinary collabor-
ation encompassing environmental science, toxicology, public
health, policymaking, and more.
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