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Abstract

This paper discusses two notions, developed independently and both termed "cocompactness". The
first arises in the area of topology, where J. de Groot and others' have studied spaces which are, in a
certain sense, complementary to a given space. If the given space is compact then the complemen-
tary spaces are said to be cocompact. The second concept arises in the area of logic and general
algebra. Loosely speaking a logic is compact if every inconsistent set of formulas has a finite
inconsistent subset. This notion of compactness may be generalized to any closure algebra2 and the
use of the term "cocompactness" to describe the generalization was suggested to the author by Dr.
R. A. Bull.

It is shown here that topological and algebraic cocompactness are related in the following ways.
Firstly, if a closure algebra is algebraically cocompact then its dual space is topologjcally cocompact,
and conditions may be given for the implication to be reversible.3 Furthermore any cocompact
topological space may be represented as the continuous 1-1 image of the dual space of a cocompact
closure algebra. A final result relates another class of closure algebras with those topological spaces
which are compact.

1980 Mathematics subject classifications (Amer. Math. Soc.): 03 G 24, 54 D 30.

The notation, results and references in [5], [6] and [7] are presupposed: in
particular if {X, C) is a closure algebra then A C X is said to be consistent if and
only if C(A) ¥=X, Mx is the family of maximal consistent subsets of X, S:
P(X)^>P(MX) is defined by S(A) = {A G Mx: ^ C A } ; and /? = {S(Af):
Af C X, Af finite} is the base for a topology T on the dual space {Mx, T). (A", C)
will be said to be {algebraically) cocompact if every inconsistent subset of X has a
finite inconsistent subset, and will be said to satisfy the Lindenbaum condition if
every consistent set may be extended to a maximal consistent set.

'See [1], [2], [4].
2See [3], page 13.
3Where the meaning is clear from the context I will use the term "cocompact" without qualifica-

tion.
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The following definitions are taken from [2]:
A closed base {closed subbase) for a T3-space is a collection % of closed sets

which form a neighbourhood base (subbase) for the topology. That is if x lies in
the open set U, there is a B G ® (a B = Bx n • • • n Bn G %) such that
B C U and x lies in the interior of B.

A r3-space is cocompact if and only if it has a closed base <3J and every
subfamily of "35 with the finite intersection property (f.i.p.) has a non-empty
intersection.

The following theorem of A. Lindenbaum ([8], p. 98) will be required; it is a
straightforward consequence of the definition of cocompactness and Zorn's
Lemma.

THEOREM 1. If (X, C) is a cocompact closure algebra then every consistent set
may be extended to a maximal consistent set.

THEOREM 2. If (X, C) is a cocompact closure algebra and (Mx, T) its dual space
then (Mx, r) is a regular cocompact Tx-space.

PROOF. In [5] it is shown that (Mx, T) is a r,-space, and in [6] that {S(Af):
Af G P(X)} is a basis of clopen sets. It follows that (Mx, T) is regular and that
{S(Af): Af G P{X)} is a closed base. Hence to show that (Mx, r) is cocompact it
is only necessary to show that every subfamily of the base with the finite
intersection property has a non-empty intersection. Suppose that T = {S(Aj):
f G F} has the f.i.p. and consider A = UjeF Af. If Ag is a finite subset of A
then we may choose F' a finite subset of F so that Ag C UfeF> Aj, and we then
have S(Ag) D S(\JfeF> Af) = D/ e F- S(Af) =£ 0 . Hence there is some A G Mx

with A G S(Ag), that is with Ag C A and so C(Ag) C C(A) =£ X, showing that
each finite subset of A is consistent. Since (X, C) is cocompact, A is consistent.
Furthermore we have by Theorem 1 that any consistent subset of a cocompact
closure algebra may be extended to a maximal consistent subset. Hence there is
some A G Mx with A C A and so A G S(A) =£ 0. But D T = nfeF S(Af) =

0

THEOREM 3. If (X, C) is a closure algebra which satisfies the Lindenbaum
condition and has a cocompact, T3 dual space (Mx, T) then {X, C) is cocompact.

PROOF. Suppose that every finite subset of A C X is consistent, that is if
/ G F indexes the finite subsets of A then C{Aj) =£ X for each / e F . Since
(X, C) satisfies the Lindenbaum condition we have that each Aj is contained in
a maximal consistent set and so S(Aj) =£ 0 for each / G F. It follows that the
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family {S(Af): f G F] has the f.i.p., since if F' is a finite subset of F then
r\feF> S(Af) = S(U/ e f- Af) ^ 0 because UfeF. Af is again a finite subset of A.
Hence {S(Af)\ / 6 F} is a subfamily of the base ft with the f.i.p., and from the
cocompactness of (Mx, T) we may infer that C\eF S(Af) =£0. But S(A) =
S(\JreF Af) — f\eF S(Aj), and so there is some A €E Mx with A C A, showing
that A is consistent and consequently that (X, C) is cocompact.

THEOREM 4. If Y is a cocompact Ty space then Y is the continuous, one-to-one
image of the dual space of a cocompact closure algebra.

PROOF. Since Y is cocompact there is a closed subbase X for the topology on
Y. Define C: P(X) -> P(X) by C(A) = {« G X: r\eA v C «}. It is easily
verified that (X, C) is a closure algebra, and it is shown4 in [7] that if
Ty = {u e X: y G u), for each y G Y, then Mx = {r,: y G y}, and that if 9:
Y^>MX is defined by 9{y) = r,, then 0 is a 1-1 and onto function which
preserves open sets. It follows that 0 "': Mx -> y is a continuous bijection, and it
only remains to be shown that (X, C) is cocompact.

Suppose that A C X has every finite subset consistent, that is if Aj C A then
C(Af) = {«£jf : f\sA v Qu} ¥^X. Then we must have C\v£A u ^ 0 for each
j4y C A, so that y4 is a subset of the subbase for Y with the f.i.p. Since Y is
cocompact (\&A v ¥= 0 and we may choose 7 G f\e/( v. Since y is T,,
y \ {y} is an open set and so there is some u* EL X with y £ u*. Now
u * £ l \ { u 6 J f : r \ e ^ o C M} = A' \ C(A), showing that C(A) ¥=X. Conse-
quently A is consistent and (X, C) is cocompact.

THEOREM 5. If (X, C) is a closure algebra then the dual space (Mx, r) is
compact if and only if any subset of X which intersects every member of Mx has a
finite subset which intersects every member of Mx.

PROOF. Suppose that (Mx, T) is compact and that A C X is such that A n A
=£ 0 for each A G Mx. Then for each A e Mx we may choose A±, a finite
subset of A n A. Since each A G S{A^), and each v4A is finite, we have that
{S{A^): A G Mx} is an open over of (Mx, T) and so there is some finite
subcover {S(A&): 1 < / < «}. Now U , _ ! ^ A *S a finite subset of A, and
furthermore for each i G M ^ there is some 1, 1 < / < n, with A G 5(̂ 4 A), that is
with A^ c A. This shows that U,"_i ^A is a finite subset of A which intersects
each maximal consistent set.

4It is shown in [7] (Theorem 2) that these results hold for an open subbase X. However the proofs
are also valid in the case where A" is a closed subbase. In particular the proof that 0 preserves open
sets can be carried over almost verbatim.
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On the other hand, suppose that (Mx, T) is not compact. Then we may find an
open cover 0 with no finite subcover, and we may refine 9 to a cover {S(Aj)\
f G F) of members of the base that also has no finite subcover. Consider the
family 5" = {Af: f G F}, which has the property that for each finite subfamily
there is some A G Mx such that every member of the subfamily is not a subset
of A, (note that if F' C F indexed a finite subfamily that did not possess this
property then {S(Aj)\ f e F'} would be a finite subcover of {S(Af): f G /"}).
Call this property P and let F be the class of all families that have the property P
and that contain <§. Since f GT, T ¥= 0; and if {%: k G K) is a chain of
families in F then it is clear that UkeK ^ also has the property P. This shows
that each chain in F has an upper bound and so we may appeal to the axiom of
choice in the form of Zorn's lemma to establish the existence of a maximal
family &*. Suppose that for xx, x2 G X, {x,} £ $*, {x2} £ «F*. then by the
maximality of F̂* there are two finite families <5X, % G '$* and we have for
each A G Mx, that A has as a subset some member of {{.*,}} u % and also
some member of {{x2}} U %. Hence each A has as a subset some member of
{{xu x2}} U ^ U %• This shows that {xv x2} £ <S*. By using a simple induc-
tion and contraposition we may infer that if Af G '§* then there is some x G Af

with {x} G f *. Put W = {x: x G Af G Sr*, {x) G <$*}. Since f * D <5 and
{S(v4y): j4y G ^} is a cover of Afx, we have that for each A G Mx there is some
Af G ¥* with Aj C A, so that there is some x G W with x G A and now W
intersects every maximal consistent set. On the other hand if V is a finite subset
of W then {{x}: x G V) is a finite subfamily of ^* and so there is some
A G Mx that contains no {x} for x G K. That is no finite subset of W intersects
every maximal consistent set.

The author expresses his thanks to the referee for helpful advice on presenta-
tion.
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