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THE PATHWISE CONVERGENCE OF APPROXIMATION
SCHEMES FOR STOCHASTIC DIFFERENTIAL EQUATIONS

P. E. KLOEDEN and A. NEUENKIRCH

Abstract

We study approximation methods for stochastic differential
equations and point out a simple relation between their order
of convergence in the pth mean and their order of convergence
in the pathwise sense: Convergence in the pth mean of order
α for all p � 1 implies pathwise convergence of order α − ε
for arbitrary ε > 0. We apply this result to several one-step
and multi-step approximation schemes for stochastic differen-
tial equations and stochastic delay differential equations. In
addition, we give some numerical examples.

1. Introduction

Approximation schemes for Itô stochastic differential equations of the form

dX(t) = a(X(t)) dt+
m∑

j=1

bj(X(t)) dW j(t), t ∈ [0, T ], (1)

X(0) = X0 ∈ R
d,

where a, bj : R
d → R

d, j = 1, . . . ,m, and W j(t), t ∈ [0, T ], j = 1, . . . ,m, are m
independent Brownian motions on a given probability space (Ω,F ,P), have been
intensively studied in the recent years. For an overview, see, for example, [9] or
[12]. The vast majority of results, however, are concerned with error criteria that
measure the error of the approximation on average. For instance, in the case of the
so called ‘weak approximation’ the error of an approximation X to X is measured
by the quantity

|Eφ(X(T )) − Eφ(X(T ))|
for (smooth) functions φ : R

d → R, while for the ‘strong approximation’ problem
the pth mean of the difference between X and X is considered; that is,(

E sup
i=0,...,n

∣∣X(ti) −X(ti)
∣∣p)1/p

for p � 1, where | · | denotes the Euclidean norm and 0 = t0 � t1 � . . . � tn = T
are the time nodes of the discretization. In the latter case, usually the mean-square
error (that is, p = 2) is analyzed.
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pathwise convergence of approximation schemes for sdes

In general, the numerical calculation of the approximation X is actually carried
out path by path; that is, the real numbers X(t1, ω), . . . ,X(tn, ω) are calculated
for a fixed ω ∈ Ω. In spite of this fact, only a few articles deal with the pathwise
error

sup
i=0,...,n

|X(ti) −X(ti)|,

which is a random quantity but gives more information about the error of the cal-
culated approximations X(t1, ω), . . . ,X(tn, ω) of X(t1, ω), . . . , X(tn, ω) for a fixed
ω ∈ Ω.

In [16] an upper bound for the pathwise error of the Milstein method is deter-
mined using the Doss–Sussmann approach to transform the stochastic differential
equation and the Milstein scheme to a random ordinary differential equation and
a corresponding approximation scheme, respectively. The pathwise approximation
of random ordinary differential equations is considered in [4], where the Euler and
Heun methods are analyzed. Moreover, it is shown that the classical convergence
rates of these schemes can be retained by averaging the noise over the discretiza-
tion subintervals. Gyöngy [5] shows that the explicit Euler–Maruyama scheme with
equidistant step size 1/n converges pathwise with order 1/2− ε for arbitrary ε > 0.
Hence the pathwise and the mean-square rate of convergence of the Euler method
almost coincide. Using an idea in the proof of [5], we will show here that this is not
an exceptional case, but is, in fact, the rule due to the following result.

‘If a sequence of random variables converges to zero with order of convergence
α > 0 in the pth mean for all p � 1, then this sequence of random variables converges
also almost surely to zero with pathwise order of convergence α − ε for arbitrary
ε > 0.’

This principle applies directly to the strong Itô–Taylor approximation schemes
for equation (1); see, for example, [9]. For instance, the Milstein scheme has conse-
quently pathwise order of convergence of order 1 − ε for arbitrary ε > 0. The use
of the above result is by no means restricted to Itô–Taylor schemes or to stochastic
ordinary differential equations. As a further example we will consider a particular
two-step Maruyama scheme, the stochastic Adams–Moulton-2 scheme (see [2, 3]),
and will determine its pathwise rate of convergence. In addition, we will also con-
sider the Euler method for stochastic delay differential equations.

The article is structured as follows. In Section 2 we state and prove our main
result and consider the above-mentioned examples. Our results are then illustrated
by numerical test examples in Section 3.

2. Main result and examples

The following simple lemma is the link between the convergence rates in the pth
mean and the pathwise convergence rates.

Lemma 2.1. Let α > 0 and K(p) ∈ [0,∞) for p � 1. In addition, let Zn, n ∈ N, be
a sequence of random variables such that

(E|Zn|p)1/p � K(p) · n−α
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for all p � 1 and all n ∈ N. Then for all ε > 0 there exists a random variable ηε

such that

|Zn| � ηε · n−α+ε almost surely

for all n ∈ N. Moreover, E|ηε|p <∞ for all p � 1.

Proof. Fix ε > 0 and p > 1/ε. Then for all δ > 0 from the Chebyshev–Markov
inequality and the assumptions of the lemma we obtain

P(nα−ε|Zn| > δ) � E|Zn|p
δp

n(α−ε)p � K(p)p

δp
n−pε.

Since p > 1/ε we have
∞∑

n=1

P(nα−ε|Zn| > δ) <∞

for all δ > 0. The Borel–Cantelli lemma then implies that Zn → 0 almost surely
for n→ ∞. Now set ηε = supn∈N n

α−ε|Zn|. It follows that

E|ηε|q = E sup
n∈N

n(α−ε)q|Zn|q �
∞∑

n=1

n(α−ε)qE|Zn|q � K(q)q
∞∑

n=1

n−qε <∞

for q > 1/ε. Applying Jensen’s inequality we obtain E|ηε|q < ∞ for all q � 1. The
assertion of the lemma now follows by

|Zn| �
(

sup
n∈N

nα−ε|Zn|
)
· n−α+ε = ηε · n−α+ε.

The pathwise rate of convergence of an approximation method Xn for equa-
tion (1) can thus be determined by calculating its convergence rate in the pth
mean, just by applying the above lemma with Zn = |X(T ) − Xn(T )| or Zn =
supk=0,...,n |X(tk)−Xn(tk)|. The following examples will illustrate that Lemma 2.1
is a powerful tool for Itô stochastic differential equations due to the Burkholder–
Davis–Gundy inequality; see, for example, [14]. However, for other types of stochas-
tic differential equations it may be more appropriate to determine the pathwise rate
of convergence by direct methods. See, for example, [13] for stochastic differential
equations driven by fractional Brownian motion.

For simplicity we will consider only equidistant discretizations ti = (i/n) · T ,
i = 0, . . . , n, but the following examples can be easily generalized to non-equidistant
discretizations.

2.1. Itô–Taylor schemes

The first class of approximation schemes that we consider are the Itô–Taylor
schemes. For convenience, we recall their definition here.

Let

M =
{
α = (j1, . . . , jl) ∈ {0, 1, 2, . . . ,m}l : l ∈ N

} ∪ {v}
be the set of all multi-indices. The length of a multi-index α = (j1, . . . , jl) is defined
as l(α) = l and ν is the multi-index of length 0. Moreover, let n(α) be the number
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of entries of α which are equal to 0. For α = (j1, . . . , jl) and 0 � s � t � T we
define

Iα(s, t) =
∫ t

s

· · ·
∫ τ2

s

dW j1(τ1) . . . dW jl(τl)

with the convention that dW 0(τ) = dτ . We also introduce the operators

L0 =
d∑

k=1

ak ∂

∂xk
+

1
2

d∑
k,l=1

m∑
j=1

bk,jbl,j
∂2

∂xk∂xl

and

Lj =
d∑

k=1

bk,j ∂

∂xk

for j ∈ {1, . . . ,m}. Here ak, bk,j are the kth components of a and bj , respectively.
Finally, we define for γ = 0.5, 1.0, 1.5, . . . the sets of multi-indices

Aγ =
{
α ∈ M : l(α) + n(α) � 2γ or l(α) = n(α) = γ +

1
2

}
.

Then the Itô–Taylor scheme of order γ is defined as

X
γ

n(t0) = X0,

X
γ

n(ti+1) = X
γ

n(ti) +
∑

α∈Aγ\{ν}
fα(X

γ

n(ti)) · Iα(ti, ti+1)

for i = 0, . . . , n− 1, where

fα(x) = Lj1 · · ·Ljl−1bjl(x)

for α = (j1, . . . , jl) and b0 = a.
If the coefficients of equation (1) are sufficiently regular, then it is well known

that (
E sup

i=0,...,n
|X(ti) −X

γ

n(ti)|p
)1/p

� K(p) · n−γ

for all p � 1 and appropriate K(p) ∈ [0,∞); see, for example, [9, Chapter 10]. Thus
it follows from Lemma 2.1 that the Itô–Taylor scheme of order γ has pathwise
convergence order γ − ε for arbitrary ε > 0; that is,

sup
i=0,...,n

|X(ti) −X
γ

n(ti)| � ηε,γ · n−γ+ε almost surely,

where ηε,γ is a random variable with all moments finite. Note that for γ = 0.5
we recover the result of [5], since the strong order 0.5 Itô–Taylor scheme is the
Euler–Maruyama method:

X
E

n (0) = X0,

X
E

n (ti+1) = X
E

n (ti) + a(X
E

n (ti))(ti+1 − ti) +
m∑

j=1

bj(X
E

n (ti))(W j(ti+1) −W j(ti))

for i = 0, . . . , n− 1.
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For γ = 1.0 we obtain the Milstein scheme, which is given by

X
M

n (0) = X0,

X
M

n (ti+1) = X
M

n (ti) + a(X
M

n (ti))(ti+1 − ti) +
m∑

j=1

bj(X
M

n (ti))(W j(ti+1) −W j(ti))

+
m∑

j1,j2=1

Lj1bj2(X
M

n (ti))Ij1,j2(ti, ti+1)

for i = 0, . . . , n − 1. Hence the Milstein scheme has pathwise order of convergence
1 − ε. This improves the upper bound 1/2 − ε given in [16].

Remark 2.2. Note that the random variables ηε,γ are not explicitly known in
general. In a forthcoming paper we will study the question of whether ηε,γ can be
replaced or estimated by a random variable that depends on the computed values
Xn(t0), . . . ,Xn(tn) and on the driving Wiener processes W 1, . . . ,Wm in a simple
way.

Remark 2.3. For the Euler method and the Milstein method, the asymptotic
distribution of X(T ) −Xn(T ) is known; see [8] and [17]. For instance, in the case
m = d = 1 we have for the Euler method that

√
n ·
(
X(T ) −X

E

n (T )
) L−→ U(T )

for n→ ∞. The process U(t), t ∈ [0, T ], satisfies the stochastic differential equation

Ut =
∫ t

0

a′(X(s))U(s) ds+
∫ t

0

b′(X(s))U(s) dW (s) − 1√
2

∫ t

0

b′b(X(s)) dB(s),

where B(t), t ∈ [0, T ], is a Brownian motion independent of W (t), t ∈ [0, T ]; see [8].
For the Milstein scheme one obtains in the case m = d = 1 that

n ·
(
X(T ) −X

M

n (T )
) L−→ Ũ(T )

for n → ∞, where Ũ(t), t ∈ [0, T ], is the solution of the stochastic differential
equation

Ũ(t) =
∫ t

0

a′(X(s))Ũ(s) ds+
∫ t

0

b′(X(s))Ũ(s) dW (s) − 1
2

∫ t

0

a′a(X(s)) ds

− 1
2

∫ t

0

c0(X(s)) ds− 1√
12

∫ t

0

c1(X(s)) dB1(s) − 1√
6

∫ t

0

c2(X(s)) dB2(s).

Here B1(t), B2(t), t ∈ [0, T ], are independent Brownian motions, which are inde-
pendent of W (t), t ∈ [0, T ] and c0, c1 and c2 are three functions dependent only on
a and b; see [17].

Thus, the pathwise convergence rates for the Euler and Milstein schemes, ob-
tained in [5] and this article, are sharp.

2.2. Stochastic Adams–Moulton-2 scheme

Another class of approximation methods for equation (1) are the stochastic multi-
step methods, which are a generalization of the multi-step methods for deterministic
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ordinary differential equations. See, for example, [2] and [3]. For example, the linear
two-step Maruyama schemes are given by

2∑
l=0

αlXn(ti−l)

=
T

n

2∑
l=0

βla(Xn(ti−l)) +
2∑

l=1

γl

m∑
j=1

bj(Xn(ti−l))(W j(ti−l+1) −W j(ti−l))

for i = 2, . . . , n with coefficients αl, βl, γl ∈ R. For the required second initial value
one has to use a properly chosen approximation Xn(t1) of X(t1). These schemes
are numerically mean-square stable (see [3]), if the coefficients α0, α1, α2 satisfy
Dahlquist’s root condition, which is well known in the deterministic case (see, for
example, [6]): the roots of the polynomial

ρ(ξ) = α0ξ
2 + α1ξ + α2

have to lie on or within the unit circle and the roots on the unit circle have to
be simple. Moreover, if Xn(t1) is an approximation to X(t1) of mean-square or-
der 0.5 and if the coefficients of the linear two-step Maruyama scheme satisfy the
consistency conditions

α0 + α1 + α2 = 0, 2α0 + α1 = β0 + β1 + β2, α0 = γ1, α0 + α1 = γ2, (2)

then the mean-square order of convergence of these linear two-step Maruyama
schemes is 0.5; see [3].

One particular two-step Maruyama scheme, which we will consider in detail as
an illustrative example, is the Adams–Moulton-2 scheme

Xn(ti+1) = Xn(ti) +
(

5
12
a(Xn(ti+1)) +

8
12
a(Xn(ti)) − 1

12
a(Xn(ti−1))

)
T

n
(3)

+
m∑

j=1

bj(Xn(ti))(W j(ti+1) −W j(ti)), i = 1, . . . , n− 1;

see, for example, [2]. Here we provide the second initial value by a drift implicit
Euler step; that is,

Xn(0) = X0, (4)

Xn(t1) = X0 +
T

n
a(Xn(t1)) +

m∑
j=1

bj(X0)W j(t1).

Note that this Adams–Moulton-2 scheme is a drift implicit method, which is well
defined for n > N∗ = 2LaT , where La > 0 is the Lipschitz constant of the drift
coefficient a. Moreover, its coefficients are given by α0 = 1, α1 = −1, α2 = 0,
β0 = 5

12 , β1 = 8
12 , β2 = − 1

12 , γ0 = 1, γ2 = 0 and satisfy Dahlquist’s root condition
and the consistency condition (2).

Theorem 2.4. Let a, bj ∈ C1(Rd; Rd) with bounded derivatives for j = 1, . . . ,m
and consider the approximation scheme defined by (3) and (4). Then for all ε > 0
there exists a random variable ηε with E|ηε|p <∞ for all p � 1 such that

sup
i=0,...,n

|X(ti) −Xn(ti)| � ηε · n−1/2+ε almost surely

for all n > N∗.
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Proof. All we have to show is that

E sup
i=0,...,n

|X(ti) −Xn(ti)|p � K(p)p · n−p/2 (5)

for each p ∈ N and n > N∗ Then the assertion follows from Lemma 2.1 if we choose
Zn = 0 for n � N∗.

For convenience of notation we will drop the subscript n in what follows. In
addition, we will denote constants that depend only on m, d, T , p and a, bj and
their derivatives by C, regardless of their value.

From (3) and (4) we obtain

X(tl) = X0 +
T

n
a(X(t1)) +

T

n

l−1∑
i=1

5
12
a(X(ti+1)) +

8
12
a(X(ti)) − 1

12
a(X(ti−1))

+
l−1∑
i=0

m∑
j=1

bj(X(ti))(W j(ti+1) −W j(ti)) (6)

for l = 1, . . . , n, with the convention that
∑0

i=1(. . .) = 0. Moreover, we have

X(ti+1) = X(ti) +
(

5
12
a(X(ti+1)) +

8
12
a(X(ti)) − 1

12
a(X(ti−1))

)
T

n
(7)

+
m∑

j=1

bj(X(ti))(W j(ti+1) −W j(ti)) +R
(1)
i +R

(2)
i

with

R
(1)
i =

5
12

∫ ti+1

ti

a(X(τ)) − a(X(ti+1)) dτ +
7
12

∫ ti+1

ti

a(X(τ)) − a(X(ti)) dτ

− 1
12

(a(X(ti)) − a(X(ti−1)))
T

n

and

R
(2)
i =

m∑
j=1

∫ ti+1

ti

bj(X(τ)) − bj(X(ti)) dW j(τ)

for i = 1, . . . , n− 1. Iterating (7) yields

X(tl) = X0 +
T

n
a(X(t1)) +

T

n

l−1∑
i=1

5
12
a(X(ti+1)) +

8
12
a(X(ti)) − 1

12
a(X(ti−1))

+
l−1∑
i=0

m∑
j=1

bj(X(ti))(W j(ti+1) −W j(ti)) +
l−1∑
i=0

R
(1)
i +

l−1∑
i=0

R
(2)
i

for l = 1, . . . , n, where

R
(1)
0 =

∫ t1

0

a(X(τ)) − a(X(t1)) dτ.
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Thus we have

X(tl) −X(tl)

=
T

n
(a(X(t1)) − a(X(t1))) +

5
12
T

n

l−1∑
i=1

a(X(ti+1)) − a(X(ti+1))

+
8
12
T

n

l−1∑
i=1

a(X(ti)) − a(X(ti)) − 1
12
T

n

l−1∑
i=1

a(X(ti−1)) − a(X(ti−1))

+
l−1∑
i=0

m∑
j=1

[
bj(X(ti)) − bj(X(ti))

]
(W j(ti+1) −W j(ti))

+
l−1∑
i=0

R
(1)
i +

l−1∑
i=0

R
(2)
i .

Define Ul = supi=0,...,l |X(ti)−X(ti)| for l = 0, . . . , n. Since a is Lipschitz continuous
due to our assumptions, we obtain that

Ul � C
1
n

l∑
i=1

Ui + C sup
v=1,...,l

∣∣∣∣∣∣
v−1∑
i=0

m∑
j=1

[
bj(X(ti)) − bj(X(ti))

]
(W j(ti+1) −W j(ti))

∣∣∣∣∣∣
+ C sup

v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(1)
i

∣∣∣∣∣+ C sup
v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(2)
i

∣∣∣∣∣
for l = 1, . . . , n. Now (

1
n

l∑
i=1

Ui

)p

� 1
n

l∑
i=1

Up
i

by Jensen’s inequality, so we have

EUp
l � C

1
n

l∑
i=1

EUp
i

+ C E sup
v=1,...,l

∣∣∣∣∣∣
v−1∑
i=0

m∑
j=1

[
bj(X(ti)) − bj(X(ti))

]
(W j(ti+1) −W j(ti))

∣∣∣∣∣∣
p

+ C E sup
v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(1)
i

∣∣∣∣∣
p

+ C E sup
v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(2)
i

∣∣∣∣∣
p

(8)

for l = 1, . . . , n.

Recall that bk,j denotes the kth component of bj and set

Mk(t) =
m∑

j=1

∫ t

0

n−1∑
i=0

[
bk,j(X(ti)) − bk,j(X(ti))

]
1[ti,ti+1)(τ) dW

j(τ), t ∈ [0, T ],

for k = 1, . . . , d.
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Hence we have

sup
v=1,...,l

∣∣∣∣∣∣
v−1∑
i=0

m∑
j=1

[
bj(X(ti)) − bj(X(ti))

]
(W j(ti+1) −W j(ti))

∣∣∣∣∣∣
2

=
d∑

k=1

sup
v=1,...,l

|Mk(tv)|2,

and, in addition,

E sup
v=1,...,l

∣∣∣∣∣∣
v−1∑
i=0

m∑
j=1

(bj(X(ti)) − bj(X(ti))(W j(ti+1) −W j(ti))

∣∣∣∣∣∣
p

� C

d∑
k=1

E sup
v=1,...,l

|Mk(tv)|p.

Note that the quadratic variation of Mk is given by

〈Mk〉(t) =
m∑

j=1

∫ t

0

n−1∑
i=0

|bk,j(X(ti)) − bk,j(X(ti))|21[ti,ti+1)(τ) dτ, t ∈ [0, T ].

By the Burkholder–Davis–Gundy inequality we have

E sup
v=1,...,l

|Mk(tv)|p � C E|〈Mk〉(tl)|p/2,

and, again, an application of Jensen’s inequality and the assumptions on bj yield

E sup
v=1,...,l

|Mk(tv)|p � C

m∑
j=1

∫ tl

0

n−1∑
i=0

E
∣∣bk,j(X(ti)) − bk,j(X(ti))

∣∣p 1[ti,ti+1)(τ) dτ

� C

m∑
j=1

∫ tl

0

n−1∑
i=0

E
∣∣X(ti) −X(ti))

∣∣p 1[ti,ti+1)(τ) dτ

� C
1
n

l−1∑
i=1

EUp
i .

Hence it follows that

E sup
v=1,...,l

∣∣∣∣∣∣
v−1∑
i=0

m∑
j=1

(bj(X(ti)) − bj(X(ti))(W j(ti+1) −W j(ti))

∣∣∣∣∣∣
p

� C
1
n

l−1∑
i=1

EUp
i

and inserting this in (8) yields

EUp
l � C

(
1
n

l∑
i=1

EUp
i + E sup

v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(1)
i

∣∣∣∣∣
p

+ E sup
v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(2)
i

∣∣∣∣∣
p)

(9)

for l = 1, . . . , n.
For the first remainder term we obtain by Jensen’s inequality

E sup
v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(1)
i

∣∣∣∣∣
p

� np−1
n−1∑
i=0

E|R(1)
i |p.
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Since

|R(1)
i |2 � C

d∑
k=1

∣∣∣∣∫ ti+1

ti

ak(X(τ)) − ak(X(ti+1)) dτ
∣∣∣∣2

+ C

d∑
k=1

∣∣∣∣∫ ti+1

ti

ak(X(τ)) − ak(X(ti)) dτ
∣∣∣∣2

+ C

d∑
k=1

∣∣ak(X(ti)) − ak(X(ti−1))
∣∣2 1
n2

for i = 1, . . . , n− 1 and

|R(1)
0 |2 �

d∑
k=1

∣∣∣∣∫ t1

0

ak(X(τ)) − ak(X(t1)) dτ
∣∣∣∣2 ,

we obtain again by Jensen’s inequality and

E|X(t) −X(s)|p � C · |t− s|p/2, s, t ∈ [0, T ], (10)

that
E|R(1)

i |p � Cn−3p/2

for i = 0, . . . , n− 1. Thus we have

E sup
v=1,...,n

∣∣∣∣∣
v−1∑
i=0

R
(1)
i

∣∣∣∣∣
p

� Cn−p/2. (11)

For the second remainder term, set

Nk(t) =
m∑

j=1

∫ t

0

n−1∑
i=0

[
bk,j(X(τ)) − bk,j(X(ti))

]
1[ti,ti+1)(τ) dW

j(τ), t ∈ [0, T ],

for k = 1, . . . , d. We obtain

E sup
v=1,...,l

∣∣∣∣∣∣
v−1∑
i=0

m∑
j=1

∫ ti+1

ti

bj(X(τ)) − bj(X(ti)) dW j(τ)

∣∣∣∣∣∣
p

� C

d∑
k=1

E sup
v=1,...,l

|Nk(tv)|p.

Since

E sup
v=1,...,l

|Nk
v |p � C E

∣∣∣∣∣∣
m∑

j=1

∫ tl

0

n−1∑
i=0

|bk,j(X(τ)) − bk,j(X(ti))|21[ti,ti+1)(τ) dτ

∣∣∣∣∣∣
p/2

� C

m∑
j=1

∫ tl

0

n−1∑
i=0

E|X(τ) −X(ti)|p1[ti,ti+1)(τ) dτ

� Cn−p/2

by the Burkholder–Davis–Gundy inequality, Jensen’s inequality and (10), it follows
that

E sup
v=1,...,n

∣∣∣∣∣
v−1∑
i=0

R
(2)
i

∣∣∣∣∣
p

� Cn−p/2. (12)
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By inserting (11) and (12) in (9) we obtain

EUp
l � C

1
n

l∑
i=1

EUp
i + Cn−p/2.

Hence (5) follows by a discrete version of Gronwall’s lemma; see, for example, [12,
Lemma 1.3].

Thus for this approximation scheme too, the mean-square order of convergence
and the pathwise order of convergence coincide up to an arbitrarily small ε > 0.

Alternatively, the above theorem can be shown by a reformulation of the Adams–
Moulton-2 scheme as a perturbated one-step scheme and a combination of [15,
Theorem 2.1] and Lemma 2.1. If α2 = 0, other two-step Maruyama schemes can be
treated in a similar way. However, the above proofs do not apply if α2 �= 0. Here a
different method is required to control the error; see, for example, [3].

2.3. Euler–Maruyama method for stochastic delay equations

Now we will consider a different type of stochastic differential equations, namely
Itô stochastic delay differential equations of the form

dX(t) = a(X(t), X(t− δ)) dt+
m∑

j=1

bj(X(t), X(t− δ)) dW j(t), t ∈ [0, T ],

X(t) = ψ(t), t ∈ [−δ, 0], (13)

with a constant delay δ > 0, initial path ψ : [−δ, 0] → R
d and a, bj : R

d ×R
d → R

d

for j = 1, . . . ,m.
One of the simplest approximation schemes for equation (13) is the Euler method;

see, for example, [1]. We will again consider only an equidistant discretization ti =
(i/n) ·T for i = 0, . . . , n and, moreover, assume that the step size T/n is an integral
divisor of the delay δ > 0; that is, δ = mδ · (T/n) with mδ ∈ N.

Then the Euler–Maruyama approximation of the delay equation (13) is:

Xn(ti+1) = Xn(ti) + a(Xn(ti), Xn(ti − δ))
T

n
(14)

+
m∑

j=1

bj(Xn(ti), Xn(ti − δ))(W j(ti+1) −W j(ti))

for i = 0, . . . , n− 1 with

Xn(0) = ψ(0), Xn(ti − δ) = ψ(ti − δ), ti < δ. (15)

Determining the error of this approximation scheme in the pth mean and apply-
ing Lemma 2.1 yields the following result.

Theorem 2.5. Let a, bj ∈ C1(Rd × R
d; Rd) with bounded derivatives for all j =

1, . . . ,m, ψ ∈ C1/2([−δ, 0]; Rd) and consider the approximation scheme defined by
(14) and (15). Then for all ε > 0 there exists a random variable ηε with E|ηε|p <∞
for all p � 1 such that

sup
i=0,...,n

|X(ti) −Xn(ti)| � ηε · n−1/2+ε almost surely

for all n ∈ N.
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Proof. Under the above assumptions it is well known (see, for example, [10]) that
the unique strong solution of the initial value problem (13) satisfies

E sup
−δ�t�T

|X(t)|p <∞ (16)

and

E |X(t) −X(s)|p � K̃(p) · |t− s|p/2 (17)

with appropriate constants K̃(p) > 0 for all p � 1.

Again we have to show that

E sup
i=0,...,n

|X(ti) −Xn(ti)|p � K(p)p · n−p/2 (18)

for all p ∈ N. Then the assertion follows from an application of Lemma 2.1. For the
proof of (18) in the case p = 2, see [11].

For convenience of notation we will again drop the subscript n and we will
denote constants that depend only on m, d, T , p, ψ and a, bj and their derivatives
by C, regardless of their value. Furthermore, we will use the notation ∆iW

j =
W j(ti+1) −W j(ti) for i = 0, . . . , n− 1, j = 1, . . . ,m.

Iterating (14) yields

X(tl) = X0 +
T

n

l−1∑
i=0

a(X(ti), X(ti − δ))

+
l−1∑
i=0

m∑
j=1

bj(X(ti), X(ti − δ))∆iW
j (19)

for l = 1, . . . , n. For the exact solution we have

X(ti+1) = X(ti) + a(X(ti), X(ti − δ))
T

n

+
m∑

j=1

bj(X(ti), X(ti − δ))∆iW
j +R

(1)
i +R

(2)
i (20)

with

R
(1)
i =

∫ ti+1

ti

a(X(τ), X(τ − δ)) − a(X(ti), X(ti − δ)) dτ

and

R
(2)
i =

m∑
j=1

∫ ti+1

ti

bj(X(τ), X(τ − δ)) − bj(X(ti), X(ti − δ)) dW j(τ)

for i = 0, . . . , n− 1.
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From (20) we obtain

X(tl) = X0 +
T

n

l−1∑
i=0

a(X(ti), X(ti − δ))

+
l−1∑
i=0

m∑
j=1

bj(X(ti), X(ti − δ))∆iW
j

+
l−1∑
i=0

R
(1)
i +

l−1∑
i=0

R
(2)
i . (21)

Then combining (19) and (21) yields

X(tl) −X(tl) =
T

n

l−1∑
i=0

a(X(ti), X(ti − δ) − a(X(ti), X(ti − δ))

+
l−1∑
i=0

m∑
j=1

[
bj(X(ti), X(ti − δ)) − bj(X(ti), X(ti − δ))

]
∆iW

j

+
l−1∑
i=0

R
(1)
i +

l−1∑
i=0

R
(2)
i

for l = 1, . . . , n. Thus, with Ul = supi=0,...,l |X(ti) −X(ti)|, it follows that

EUp
l � C

1
n

l−1∑
i=0

EUp
i

+ C E sup
v=1,...,l

∣∣∣∣∣∣
v−1∑
i=0

m∑
j=1

[
bj(X(ti), X(ti − δ)) − bj(X(ti), X(ti − δ))

]
∆iW

j

∣∣∣∣∣∣
p

+ C E sup
v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(1)
i

∣∣∣∣∣
p

+ C E sup
v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(2)
i

∣∣∣∣∣
p

. (22)

Now define

Mk(t) =
m∑

j=1

∫ t

0

n−1∑
i=0

[
bk,j(X(ti), X(ti − δ)) − bk,j(X(ti), X(ti − δ))

]
1[ti,ti+1)(τ) dW

j(τ)

for t ∈ [0, T ] and k = 1, . . . , d. Clearly, we have

E sup
v=1,...,l

∣∣∣∣∣∣
v−1∑
i=0

m∑
j=1

[
bj(X(ti), X(ti − δ)) − bj(X(ti), X(ti − δ))

]
∆iW

j

∣∣∣∣∣∣
p

� C

d∑
k=1

E sup
v=1,...,l

|Mk(tv)|p.
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Since

〈Mk〉(t) =
m∑

j=1

∫ t

0

n−1∑
i=0

|bk,j(X(ti), X(ti − δ))− bk,j(X(ti), X(ti − δ))|2 1[ti,ti+1)(τ) dτ

for t ∈ [0, T ], we obtain from the Burkholder–Davis–Gundy inequality, Jensen’s
inequality and the assumptions on bj that

E sup
v=1,...,l

|Mk(tv)|p

� C E|〈Mk〉(tl)|p/2

� C

m∑
j=1

∫ tl

0

n−1∑
i=0

E|bk,j(X(ti), X(ti − δ)) − bk,j(X(ti), X(ti − δ))|p1[ti,ti+1)(τ) dτ

� C

m∑
j=1

∫ tl

0

n−1∑
i=0

[
E|X(ti) −X(ti)|p + E|X(ti − δ) −X(ti − δ)|p] 1[ti,ti+1)(τ) dτ

� C
1
n

l−1∑
i=0

EUp
i .

Thus we have

E sup
v=1,...,l

∣∣∣∣∣∣
v−1∑
i=0

m∑
j=1

[
bj(X(ti), X(ti − δ)) − bj(X(ti), X(ti − δ))

]
∆iW

j

∣∣∣∣∣∣
� 1
n

l−1∑
i=0

EUp
i

and inserting this in (22) yields

EUp
l � C

(
1
n

l−1∑
i=0

EUp
i + E sup

v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(1)
i

∣∣∣∣∣
p

+ E sup
v=1,...,l

∣∣∣∣∣
v−1∑
i=0

R
(2)
i

∣∣∣∣∣
p)

(23)

for l = 1, . . . , n.
In view of (17) we have

E sup
v=1,...,n

∣∣∣∣∣
v−1∑
i=0

R
(1)
i

∣∣∣∣∣
p

+ E sup
v=1,...,n

∣∣∣∣∣
v−1∑
i=0

R
(2)
i

∣∣∣∣∣
p

� Cn−p/2, (24)

which can be shown to be completely analogous to (11) and (12) in the proof
of Theorem 2.4. Hence (18) follows from (23), (24) and the discrete version of
Gronwall’s lemma; see, for example, [12, Lemma 1.3].

In [7] the Milstein method for stochastic delay differential equations is intro-
duced, which has mean-square order of convergence 1.0. A similar consideration
yields that this Milstein scheme also has pathwise order of convergence 1 − ε for
arbitrary ε > 0.
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Figure 1: Example (25): pathwise maximum error vs. step size for four sample paths.

3. Numerical examples

In this section we illustrate our results with three numerical examples. The first
example that we consider is the one-dimensional linear stochastic differential equa-
tion

dX(t) = 0.5X(t) dt+X(t) dW (t), X(0) = 1 (25)

with exact solution

X(t) = exp(W (t)).

Figure 1 shows the maximum error in the discretization points (that is,
supi=0,...,n |X(ti, ω) −Xn(ti, ω)|), which for brevity we call in the following ‘path-
wise maximum error’, for the Euler–Maruyama (−), the Milstein (− · −) and the
Adams–Moulton-2 (− −) scheme versus the step size for four different sample paths
ω ∈ Ω.
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Figure 2: Example (26): pathwise maximum error vs. step size for four sample paths.

Since we use log-log-coordinates, the dotted lines correspond to the convergence
orders 0.5 and 1, respectively. The errors of the Euler–Maruyama and Adams–
Moulton-2 schemes differ only for large step sizes. This is quite natural, since both
schemes coincide for equations without drift, and equation (25) is mainly deter-
mined by its diffusion part. Moreover, the pathwise convergence rates of all three
approximation schemes are in good accordance with the theoretically predicted
rates.

As second example we consider the linear equation

dX(t) = −5X(t) dt+X(t) dW (t), X(0) = 2, (26)

with exact solution
X(t) = 2 exp(−5.5t+W (t));

see Figure 2. Since the behaviour of equation (26) is dominated by its drift part,
the Adams–Moulton-2 scheme turns out to be superior for moderate step sizes.
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Figure 3: Example (27): pathwise maximum error vs. step size for four sample paths.

Compare, for example, [3]. The convergence rate of the Milstein scheme is in
very good accordance with its predicted rate.

The third example is the linear one-dimensional stochastic delay equation

dX(t) = X(t− 0.5)dW (t), X(t) = 1, t ∈ [−0.5, 0]. (27)

Here the exact solution is given by

X(t) = 1+W (t), t ∈ [0, 0.5], X(t) = 1+W (t)+
∫ t

0.5

W (τ−0.5) dW (τ), t ∈ (0.5, 1],

which we discretize with very small step size in order to estimate the maximum
error in the discretization points of the Euler–Maruyama scheme (−) for this delay
equation.

Figure 3 shows the pathwise maximum error for four different sample paths. The
dotted line corresponds to the convergence order 0.5. Again the pathwise conver-
gence rate is in good accordance with the theoretically predicted rate.
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