L^p-APPROXIMATION OF HOLOMORPHIC FUNCTIONS ON A CLASS OF CONVEX DOMAINS

LY KIM HA

(Received 24 November 2017; accepted 16 January 2018; first published online 23 April 2018)

Abstract

Let Ω be a member of a certain class of convex ellipsoids of finite/infinite type in \mathbb{C}^2 . In this paper, we prove that every holomorphic function in $L^p(\Omega)$ can be approximated by holomorphic functions on $\bar{\Omega}$ in $L^p(\Omega)$ -norm, for $1 \le p < \infty$. For the case $p = \infty$, the continuity up to the boundary is additionally required. The proof is based on L^p bounds in the additive Cousin problem.

2010 Mathematics subject classification: primary 32E30; secondary 32T25, 32W05, 41A63, 41A65.

Keywords and phrases: L^p approximation, holomorphic functions, Henkin solutions, the additive Cousin problem, finite/infinite type.

1. Introduction and main theorem

Let $\Omega \subset \mathbb{C}^2$ be a bounded domain, with smooth boundary $b\Omega$. The smoothness means that Ω admits a smooth, global defining function ρ on a neighbourhood of $\bar{\Omega}$ in the sense that $\Omega = \{z \in \mathbb{C}^2 : \rho(z) < 0\}$ and $\nabla \rho \neq 0$ on $b\Omega = \{z \in \mathbb{C}^2 : \rho(z) = 0\}$, and $\nabla \rho \perp b\Omega$.

The main purpose of this paper is to study the L^p global approximation question: Can every holomorphic function in $L^p(\Omega)$ be approximated by holomorphic functions on $\bar{\Omega}$ in $L^p(\Omega)$ -norm, for $1 \le p \le \infty$?

This problem is simple and classical when Ω is a domain in the complex plane (see, for example, [13] or [5]). In higher dimensions, it is a difficult problem because the boundary behaviour of domains in \mathbb{C}^n for $n \geq 2$ is more complicated than in \mathbb{C} . Lieb [11] and Kerzman [9] independently obtained the first significant results by applying the L^p -estimates for the Henkin solution of the $\bar{\partial}$ equation to give a positive answer to the problem on strongly pseudoconvex domains. Their method provides a connection between the approximation problem and the additive Cousin problem in several complex variables (see [6]). Via this argument, Cole and Range [3] extended the results on A-measure in Henkin [7] to relatively compact, strongly pseudoconvex subdomains of complex manifolds.

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 101.02-2017.06.

^{© 2018} Australian Mathematical Publishing Association Inc.

We would like to extend the result of Kerzman and Lieb to more general domains in \mathbb{C}^2 . Unfortunately, the Henkin solutions are not available on weakly pseudoconvex domains (even of finite type) as shown in [10]. Therefore, we consider a more restricted class of convex domains on which we can establish the Henkin solutions.

Let Ω be a smooth, bounded domain in \mathbb{C}^2 , with defining function ρ such that for any $p \in b\Omega$, there exist a neighbourhood $U_p = B(p, \delta)$ of p, a function F_p and coordinates $z_p = (z_{p,1}, z_{p,2})$ with the origin at p and such that

$$\Omega \cap U_p = \{ z_p = (z_{p,1}, z_{p,2}) \in \mathbb{C}^2 : \rho(z_p) = F_p(|z_{p,1}|^2) + r_p(z_p) < 0 \}$$
 (1.1)

or

$$\Omega \cap U_p = \{ z_p = (z_{p,1}, z_{p,2}) \in \mathbb{C}^2 : \rho(z_p) = F(x_{p,1}^2) + r_p(z_p) < 0 \}, \tag{1.2}$$

where $z_{p,j}=x_{p,j}+iy_{p,j}$, with $x_{p,j},y_{p,j}\in\mathbb{R},\ j=1,2,$ and $i=\sqrt{-1}.$ We also assume that the functions $F_p:\mathbb{R}\to\mathbb{R}$ and $r_p:\mathbb{C}^2\to\mathbb{R}$ satisfy:

- (i) $F_p(0) = 0$;
- (ii) $F'_p(t), F''_p(t), F'''_p(t)$ and $(F_p(t)/t)'$ are nonnegative on $(0, \delta)$;
- (iii) $r_p(0) = 0$ and $\partial r_p/\partial z_{p,2} \neq 0$;
- (iv) r_p is convex.

The class of such domains includes the following two well-known examples.

Example 1.1. If $F_P(t^2) = t^{2m}$ at the point $P \in b\Omega$, then $\Omega \cap U_P$ is convex of finite type 2m at P. In particular, when m = 1, Ω is strictly convex or, equivalently, strongly pseudoconvex at P.

EXAMPLE 1.2. If $F_P(t^2) = 2 \exp(-1/t^{\alpha})$ for $0 < \alpha < 1$ or $F_P(t^2) = 2 \exp(-1/t|\ln t|^{\alpha})$ for $\alpha > 2$ at the point $P \in b\Omega$, then $\Omega \cap U_P$ is of infinite type at P.

Let $H^{\infty}(\Omega)$ be the weak-star closure of the algebra of functions that are continuous on $\bar{\Omega}$ and holomorphic in Ω . The following is our main result.

THEOREM 1.3 (Global L^p approximation theorem). Assume either of the following conditions hold:

(i) Ω is defined by (1.1) and there is a $\delta > 0$ such that

$$\int_0^\delta |\ln F_P(t^2)| \, dt < \infty \quad \text{for all } P \in b\Omega;$$

(ii) Ω is defined by (1.2) and there is a $\delta > 0$ such that

$$\int_0^\delta |\ln(t) \ln F_P(t^2)| \, dt < \infty \quad \text{for all } P \in b\Omega.$$

Then, each holomorphic function $f \in L^p(\Omega)$ can be approximated in $L^p(\Omega)$ -norm by holomorphic functions $\{f^{\tau}\}_{\tau \in (0,\tau_0)}$ on $\bar{\Omega}$ (as $\tau \to 0^+$), for some small τ_0 , and for $1 \le p < \infty$.

Moreover, if the holomorphic function f only belongs to $H^{\infty}(\Omega) \cap C(\bar{\Omega})$, we also obtain a family of holomorphic functions $\{f^{\tau}\}_{\tau \in (0,\tau_0)}$ on $\bar{\Omega}$ so that:

- (a) $||f^{\tau}||_{H^{\infty}(\Omega)} \lesssim ||f||_{H^{\infty}(\Omega)}$ for all $\tau \in (0, \tau_0)$;
- (b) $f^{\tau} \to f$ in $L^p(\Omega)$ -norm as $\tau \to 0^+$, for all $1 \le p < \infty$;
- (c) $f^{\tau} \to f$ uniformly on $\bar{\Omega}$ as $\tau \to 0^+$.

Here and in what follows, the notations \lesssim and \gtrsim denote inequalities up to a positive constant and \approx means the combination of \lesssim and \gtrsim .

In [4], the authors provide an example to show that the approximation theorem does not hold in general on smoothly bounded pseudoconvex domains. In 1978, Bedford and Fornaess [1] established the theorem on weakly pseudoconvex domains with real analytic boundary in \mathbb{C}^2 . More generally, Beatrous and Range [2] obtained the result on weakly pseudoconvex domains in \mathbb{C}^n under the additional condition that the closure of the domain is holomorphically convex.

The paper is organised as follows. In Section 2, we solve the additive Cousin problem on Ω . Section 3 is devoted to proving the global L^p approximation theorem.

2. The solution of the additive Cousin problem

THEOREM 2.1. Assume the conditions on Ω in Theorem 1.3 hold. Let $V_j = U_j \cap \Omega$, where $\{U_j\}_{j=0,1,\dots,N}$ is an open covering of $\bar{\Omega}$. Then we can find a finite positive constant C such that the following property holds.

If the holomorphic functions g_{ij} *on* $V_i \cap V_j$ *satisfy*

$$g_{ij} = -g_{ji}, g_{ij} + g_{jk} + g_{ki} = 0,$$
 (2.1)

for all i, j, k = 0, 1, ..., N, then there are holomorphic functions g_j on V_j , for j = 0, 1, ..., N, such that

$$\begin{split} g_j - g_i &= g_{ij} \quad on \ V_i \cap V_j, \\ \|g_j\|_{L^p(V_i)} &\lesssim M_p(\{g_{ij}\}) \quad for \ 1 \leq p \leq \infty, \end{split}$$

where $M_p(\{g_{ij}\}) = \max\{||g_{ij}||_{L^p(V_i \cap V_j)} : i, j = 0, 1, \dots, N\}.$

PROOF. The proof comprises two steps. The first is to construct functions $v_j \in C^{\infty}(V_j)$, j = 0, 1, ..., N, which satisfy $v_j - v_i = g_{ij}$ on $V_i \cap V_j$, for all i, j = 0, 1, ... The second is to change these nonholomorphic functions into holomorphic functions by using the following theorem.

Theorem 2.2 [8, Theorem 1.2]. If there exists $\delta > 0$ and either of the conditions (i) or (ii) in Theorem 1.3 hold, then for any $\bar{\partial}$ -closed (0,1)-form ϕ in $L^p(\Omega)$ with $1 \le p \le \infty$, the Henkin kernel solution u on Ω satisfies $\bar{\partial}u = \phi$ and

$$||u||_{L^p(\Omega)} \lesssim ||\phi||_{L^p(\Omega)}.$$

Step 1. On $\bar{\Omega}$, we choose a partition of unity $\{\chi_j\}_{j=0,1,\dots,N}$, where the χ_j are smooth functions with compact support in U_j for $j=0,1,\dots,N$ and $\sum_{j=0}^N \chi_j = 1$ on $\bar{\Omega}$. Set

$$v_j = \sum_{\nu=0}^N \chi_{\nu} g_{\nu j}.$$

From the local finiteness of $\{V_j\}$, the functions v_j , j = 0, 1, ..., N, are smooth on V_j and, by the Minkowski inequality,

$$||v_j||_{L^p(V_i)} \le M_p(\{g_{ij}\}). \tag{2.2}$$

Moreover,

$$v_j - v_i = \sum_{\nu=0}^N \chi_{\nu} g_{\nu j} - \sum_{\nu=0}^N \chi_{\nu} g_{\nu i} = \sum_{\nu=0}^N \chi_{\nu} (g_{\nu j} - g_{\nu i}) = \sum_{\nu=0}^N \chi_{\nu} g_{ij} = g_{ij},$$

where we have used (2.1) to replace $g_{vj} - g_{vi}$ by g_{ij} . Note that the functions v_j , j = 0, 1, ..., N, are not holomorphic. However, since $\bar{\partial}g_{ij} = 0$ on $V_i \cap V_j$, then

$$\bar{\partial}v_i = \bar{\partial}v_j$$
 on $V_i \cap V_j$ for all $i, j = 0, 1, \dots, N$. (2.3)

Step 2. The above identity (2.3) implies that there is a smooth, globally well-defined (0, 1)-form ϕ on Ω , which is locally equal to $\bar{\partial}v_j$ on V_j , for j = 0, 1, ..., N.

Since $\bar{\partial}v_i = \sum_{\nu=0}^{N} (\bar{\partial}\chi_{\nu})g_{\nu i}$, it follows that

$$\|\phi\|_{L^p_{0,1}(\Omega)} \le \sum_{j=0}^N \|\bar{\partial}v_j\|_{L^p(V_j)} \lesssim M_p(\{g_{ij}\}).$$

Since $\bar{\partial}\phi = 0$, by Theorem 2.2, there is a function u satisfying $\bar{\partial}u = \phi$ on Ω and

$$||u||_{L^{p}(\Omega)} \lesssim ||\phi||_{L^{p}(\Omega)} \lesssim M_{p}(\{g_{ij}\}),$$
 (2.4)

for $1 \le p \le \infty$. Now, on each V_j , for j = 0, 1, ..., N, we define

$$g_i = v_i - u$$

so $\bar{\partial}g_j = \bar{\partial}v_j - \bar{\partial}u = \bar{\partial}v_j - \phi = 0$ on V_j . Thus, each function g_j is holomorphic in V_j , for j = 0, 1, ..., N. Moreover,

$$g_j - g_i = (v_j - u) - (v_i - u) = v_j - v_i = g_{ij}$$
 on $V_i \cap V_j$.

Finally, (2.2) and (2.4) imply

$$||g_j||_{L^p(V_j)} \lesssim M_p(\{g_{ij}\})$$
 for $1 \leq p \leq \infty$.

This completes the proof.

3. Proof of the global L^p approximation theorem

For convenience, we recall a preparation lemma which was proved in [3, 9] and [12] on arbitrary smooth domains.

Let $\{U_j, j = 1, ..., N\}$ be an open covering of $b\Omega$ by neighbourhoods U_j of boundary points $P_j \in b\Omega$ such that there is a constant $\tau_0 > 0$ for which

$$z + \tau \mu_i \in \Omega$$
 for all $z \in \bar{\Omega} \cap U_i$ and $0 < \tau < \tau_0$.

Here μ_j is the unit inner normal to $b\Omega$ at P_j . We choose $\chi_j \in C_0^{\infty}(U_j), \chi_0 \in C_0^{\infty}(\Omega)$, so that $\sum_{j=0}^N \chi_j = 1$ on a neighbourhood $\widetilde{\Omega}$ of $\overline{\Omega}$. For $0 < \tau < \tau_0$, we choose $\eta(\tau) > 0$ (in fact, $\lim_{\tau \to 0^+} \eta(\tau) = 0$) such that

$$\Omega_{\eta(\tau)} := \{ z \in \mathbb{C}^2 : \rho(z) < \eta(\tau) \} \subset \widetilde{\Omega} \cap \Big(\bigcup_{i=0}^N U_j^{\tau} \Big),$$

where $U_0^{\tau} = \Omega$ and $U_j^{\tau} = \{w - \tau \mu_j : w \in U_j \cap \Omega\} \cap U_j$, for $j = 1, \dots, N$. Moreover, when τ_0 is sufficiently small, $\{U_j^{\tau} : j = 0, 1, \dots, N\}$ is a covering of $\bar{\Omega}$, the L^p estimates for the Henkin solutions to the $\bar{\partial}$ equations on $\Omega_{\eta(\tau)}$ are independent of τ , and

$$\operatorname{supp} \chi_j \cap \bar{\Omega}_{\eta(\tau)} \subset U_j^\tau \quad \text{for all } 0 < \tau < \tau_0 \quad \text{ and } \quad j = 0, 1, \dots, N.$$

Lemma 3.1. Suppose that $1 \le p \le \infty$ and $f \in L^p(\Omega)$ is holomorphic on Ω . For $0 < \tau < \tau_0$, define $f_0^{\tau} = f$ and

$$f_i^{\tau}(z) = f(z + \tau \mu_i)$$
 for $j = 1, \dots, N$.

Then the following statements hold:

- (a) f_j^{τ} is holomorphic on U_j^{τ} and $L^p(U_j^{\tau})$ -integrable for j = 0, 1, ..., N;
- (b) $\lim_{\tau \to 0^+} f_j^{\tau} = f \text{ pointwise on } \Omega \cap U_j;$
- (c) $\lim_{\tau \to 0^+} \|f_j^{\tau} f\|_{L^p(U_j \cap \Omega)} = 0$ if either $1 \le p < \infty$, or $p = \infty$ and $f \in C(\bar{\Omega})$.
- (d) Define $g_{ij}^{\tau} = f_j^{\tau} f_i^{\tau}$ on $U_i^{\tau} \cap U_j^{\tau}$ and

$$M_p^{\tau}(\{g_{ij}^{\tau}\}) = \max\{\|g_{ij}^{\tau}\|_{L^p(U_i^{\tau} \cap U_i^{\tau})} : i, j = 0, 1, \dots, N\}.$$

Then

$$\lim_{\tau \to 0^+} M_p^{\tau}(\{g_{ij}^{\tau}\}) = 0 \quad \text{if } 1 \le p < \infty, \text{ or if } p = \infty \text{ and } f \in C(\bar{\Omega}),$$

and

$$M^\tau_\infty(\{g_{ij}^\tau\}) \lesssim \|f\|_{L^\infty(\Omega)} \quad \text{if } f \in L^\infty(\Omega).$$

Proof of Theorem 1.3. The main idea is to apply the construction of the additive Cousin problem. Set

$$V_j^\tau = U_j^\tau \cap \Omega_{\eta(\tau)} \quad \text{for } 0 < \tau < \tau_0.$$

Applying Theorem 2.2 to the holomorphic functions g_{ij}^{τ} on $V_i^{\tau} \cap V_j^{\tau}$, we obtain holomorphic functions g_i^{τ} on V_i^{τ} for j = 0, 1, ..., N, which satisfy

$$g_i^{\tau} - g_i^{\tau} = g_{ij}^{\tau} \quad \text{on } V_i^{\tau} \cap V_i^{\tau} \tag{3.1}$$

and

$$||g_{j}^{\tau}||_{L^{p}(V_{i}^{\tau})} \lesssim M_{p}^{\tau}(\{g_{ij}^{\tau}\}).$$
 (3.2)

The constant C implied in (3.2) is independent of τ since the L^p estimates of the Henkin solution and the partition of unity $\{\chi_j\}$ are independent of τ . By the definition of the f_j in Lemma 3.1 and (3.1),

$$f_j^{\tau} - g_j^{\tau} = f_i^{\tau} - g_i^{\tau}$$
 on $V_i^{\tau} \cap V_j^{\tau}$.

Therefore, we can find a globally well-defined function f^{τ} which is holomorphic on $\Omega_{\eta(\tau)}$ such that

$$f^{\tau} = f_i^{\tau} - g_i^{\tau} \quad \text{on } V_i^{\tau} \tag{3.3}$$

and

$$||f - f^{\tau}||_{L^{p}(\Omega)} \leq \sum_{j=1}^{N} ||f - f_{j}^{\tau}||_{L^{p}(U_{j} \cap \Omega)} + (N+1)CM_{p}^{\tau}(\{g_{ij}^{\tau}\}).$$

Combining this estimate with Lemma 3.1,

$$\lim_{\tau \to 0^+} ||f - f^{\tau}||_{L^p(\Omega)} = 0$$

if either $1 \le p < \infty$, or $p = \infty$ and f extends continuously to Ω .

Finally, if $f \in H^{\infty}(\Omega) \cap C(\overline{\Omega})$, then (3.3), (3.2) and Lemma 3.1 also imply

$$||f^{\tau}||_{L^{\infty}(\Omega)} \lesssim ||f||_{L^{\infty}(\Omega)}$$
 uniformly in $\tau \in (0, \tau_0)$.

Since H^{∞} is a subset of $L^p(\Omega)$ -functions which are holomorphic on Ω for $1 \le p < \infty$, the limit

$$\lim_{\tau \to 0^+} ||f - f^{\tau}||_{L^p(\Omega)} = 0$$

also holds for any $1 \le p < \infty$. This completes the proof.

References

- [1] E. Bedford and J. E. Fornaess, 'A construction of peak functions on weakly pseudoconvex domains', *Ann. of Math.* (2) **107** (1978), 555–568.
- [2] F. Beatrous and R. M. Range, 'On holomorphic approximation in weakly pseudoconvex domains', Pacific J. Math. 89(2) (1980), 249–255.
- [3] B. Cole and R. M. Range, 'A-measures on complex manifolds and some applications', *J. Funct. Anal.* **11** (1972), 394–400.
- [4] K. Diederich and J. E. Fornaess, 'Pseudoconvex domains: an example with nontrivial Nebenhülle', Math. Ann. 225 (1977), 275–292.
- [5] A. M. Davie, T. W. Gamelin and J. Garnett, 'Distance estimates and pointwise bounded density', Trans. Amer. Math. Soc. 175 (1973), 37–68.

- [6] H. Grauert and I. Lieb, 'Das Ramirezsche Integral und die Lösung der Gleichung $\bar{\delta}f = \alpha$ im Bereich der beschränkten Formen', in: *Proc. Conf. Complex Analysis, Rice University, 1969*, Rice University Studies, 56 (1970), 29–50.
- [7] G. M. Henkin, 'Integral representations of functions holomorphic in strictly-pseudoconvex domains and some applications', *Math. USSR Sbornik*. 7(4) (1969), 597–616.
- [8] L. K. Ha, T. V. Khanh and A. Raich, 'L^p-estimates for the ∂̄-equation on a class of infinite type domains', Int. J. Math. 25 (2014), Article ID 1450106, 15 pages.
- [9] N. Kerzman, 'Hölder and L^p estimates for solutions of $\bar{\partial}u = f$ in strongly pseudoconvex domains', *Comm. Pure Appl. Math.* **24** (1971), 301–379.
- [10] J. J. Kohn and L. Nirenberg, 'A pseudo-convex domain not admitting a holomorphic support function', *Math. Ann.* 201 (1973), 265–268.
- [11] I. Lieb, 'Ein approximationssatz auf streng pseudokonvexen Gebieten', Math. Ann. 184 (1969), 56–60.
- [12] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables (Springer, Berlin–New York, 1986).
- [13] W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1966).

LY KIM HA, Faculty of Mathematics and Computer Science, University of Science, Vietnam National University, HoChiMinh City (VNU-HCM), 227 Nguyen Van Cu street, District 5, Ho Chi Minh City, Vietnam e-mail: lkha@hcmus.edu.vn