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An integral domain E is said to be Euclidean if there exists a non-negative, 
integer-valued function g denned on the non-zero elements of E such that 
for every non-zero x and y in E, 

(1) g(xy) > g(x)\ 
(2) (division algorithm) if x does not divide y then there exists an element 

q in E, depending on x and y, with 
g{y - qx) < g(x). 

The function g will be called a Euclidean function. 
The elementary properties of Euclidean domains may be found in Van der 

Waerden (4, p. 56). 
The problem of determining all quadratic number fields K(\/m) in which 

the norm is a Euclidean function (on the sub-domain of algebraic integers in 
K(\/m)) has been solved. See (2, ch. xiv) for a partial discussion and biblio­
graphy. The following is unsolved: are there any Euclidean quadratic fields 
for which the norm is not a Euclidean function? That is, can the norm be 
generalized so as to enlarge the class of fields possessing division algorithms? 
The following theorem asserts that for imaginary quadratic fields the answer 
is no; the proof, based on the scarcity of units in these fields, fails for the real 
fields. This theorem answers a question of Hasse (3) concerning whether the 
field K ( V — 19), known by Dedekind (1, suppl. xi, p. 451) to be a principal 
ideal domain in which the norm is not a Euclidean function, is Euclidean in 
the general sense defined above, and appears to be the first proof that a principal 
ideal domain need not be Euclidean. 

THEOREM. An imaginary quadratic field K(\/m) is Euclidean if and only if 
the norm N is a Euclidean function. 

Proof. The norm N is a Euclidean function for imaginary K(\/m) only 
when m = — 1, — 2, — 3, — 7, — 1 1 ; see (2) for a proof. Let m < 0 be 
different from these and suppose that K(y/m) is Euclidean with Euclidean 
function g. There exists an integer / in K{y/m) distinct from zero and units, 
such that g{t) is a minimum of the set of all g(x) for which x is neither zero 
nor a unit. Then for every integer b there is an integer q with b — qt either 
zero or a unit; this means that every integer in K(\/m) is congruent to zero 
or to a unit (mod t). But the only units are db 1. It follows that 

N{t) = N{{f)) < 3. 
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But for the m chosen above, this inequality implies that t is zero or a unit, 
contrary to the choice of t. The contradiction establishes the theorem. 
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