
Canad. Math. Bull. Vol. 53 (3), 2010 pp. 542–549
doi:10.4153/CMB-2010-057-8
c©Canadian Mathematical Society 2010

Smooth Mappings with Higher
Dimensional Critical Sets

Cornel Pintea

Abstract. In this paper we provide lower bounds for the dimension of various critical sets, and we

point out some differential maps with high dimensional critical sets.

1 Introduction

Let Mn, Nn be differential orientable manifolds with M compact and let ω
N

be a vol-

ume form on N. We first observe that the critical set C( f ) of a differentiable map-

ping f : M → N is actually the set V ( f ∗ω
N

) of zeros of the form f ∗ω
N

. According to

Church and Timourian [1], except for a number of special cases, those differentiable

mappings from M to N which are not topological coverings have critical sets of di-

mension at least one. Obviously, the equality
∫

M
f ∗ω

N
= 0, which is equivalent to

deg( f ) = 0, implies that f is not a topological covering, since the absolute degree of

a covering map is at least one, being the number of its sheets [3, p. 258]. In this pa-

per we first show that the mappings of zero degree have actually higher dimensional

critical sets and then adjust the zero codimension case to higher codimension cases

for further developments. For the higher codimension case, the role of the form

f ∗ω
N

will be played by forms of type f ∗ω
N
∧ θ, where f : Mm → Nn, m > n and

θ ∈ Ω
m−n(M) are closed. The equality

∫
M

f ∗ω
N
∧ θ = 0 will allow us to provide

lower bounds for various combinations of the dimension of the critical set C( f ), the

dimension of the set B( f ) := f (C( f )) of critical values of f and the dimension of

the set U ( f , g) of points x ∈ M, at which the fibers of f and g through x are not

transversal (here g : Mm → Pm−n is another differentiable mapping). We are next

concerned about some classes of maps for which the equality
∫

M
f ∗ω

N
∧ θ = 0 holds

for every closed differential form θ ∈ Ω
m−n(M). The class of maps for which f ∗ω

N
is

exact obviously satisfies the equality, and one of its subclasses consists of those maps

which are homotopic with maps for which every point is critical.

2 Preliminary Results

Let M be a differential manifold and f , g be differential maps defined on M. We

define U ( f , g) to be the set of points p ∈ M which are simultaneously regular for

f and g, and the fibers f −1( f (p)), g−1(g(p)) are untransversal. If θ is a differential

form on M, we define V (θ) to be the vanishing set of θ. If the degree of θ coincide
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to the codimension of f , we also define V f (θ) as the set of regular points p of f
at which θ vanishes along the fiber of f through p. Some relations among the sets

V (θ), V f (θ), U ( f , g) and C( f ×g) are proved first. We pay some special attention to

the particular cases θ = f ∗ω
N

and θ = f ∗ω
N
∧ α, where ω

N
is a volume form on the

orientable target manifold N of f and α is some closed form on the source manifold

M of f . We then exploit these relations to get, on one hand, some lower bounds for

the dimension of the critical set of f , and, on the other, some relations involving the

dimensions of the previously mentioned sets.

Proposition 2.1 Let M, N be differential manifolds such that dim M ≥ dim N and
N is orientable. If ω

N
is a volume form on N and f : M → N is a differentiable

mapping, then ( f ∗ω
N

)p = 0 if and only if p is a critical point of f . In other words
V ( f ∗ω

N
) = C( f ).

Proof Indeed we have successively,

( f ∗ω
N

)p = 0 ⇔ ( f ∗ω
N

)p(u1, . . . , un) = 0 for all u1, . . . , un ∈ Tp(M)

⇔ (ω
N

) f (p)((d f )p(u1), . . . , (d f )p(un)) = 0

for all u1, . . . , un ∈ Tp(M)

⇔ (d f )p(u1), . . . , (d f )p(un) are linearly dependent

for all u1, . . . , un ∈ Tp(M)

⇔ dim[Im(d f )p] < dim N

⇔ rankp f < dim N

⇔ p ∈ C( f ).

Remark 2.2 If N is a compact, connected, orientable, n-dimensional manifold,

ϕ : N → R is a differentiable function, and ω
N

is a volume form on N, then
∫

N
ϕω

N
=

0 implies that either ϕ ≡ 0, or N\ϕ−1(0) is not connected, namely ϕ−1(0) =

V (ϕω
N

) separates N. Consequently, the equality
∫

N
θ = 0 implies that either θ = 0,

or V (θ) separates N, for every differential form θ ∈ Ω
n(N).

Theorem 2.3 ([5, p. 48]) Every connected differential manifold Mn is a Cantor man-
ifold. More precisely, no subset of M of dimension ≤ n − 2 separates M, where n =

dim M. Consequently, every subset of M which separates M has dimension at least
n − 1.

Theorem 2.4 Let Mn, Nn (n ≥ 2) be compact, connected, differential manifolds with
N orientable, and let f : M → N be a differentiable mapping.

(i) If M is orientable and deg( f ) = 0, then dim[C( f )] ≥ n − 1.
(ii) If M is not orientable then dim[C( f )] ≥ n − 1.

Proof (i) If ω
N

is a volume form on N, observe that deg( f ) = 0 if and only if∫
M

f ∗ω
N

= 0, which shows that either C( f ) = V ( f ∗ω
N

) = M, or V ( f ∗ω
N

) sep-

arates M. In both cases the conclusion dim[C( f )] ≥ n − 1 follows immediately.

Next, if f ∗ω
N

= dα for some α ∈ Ω
n−1(M), then obviously deg( f ) = 0.
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(ii) Consider the orientable double cover p : M̃ → M and observe that deg( f ◦
p) = 0. Indeed, if ω

N
is a volume form on N, then f ∗ω

N
is exact since Hn(M) ∼= 0,

that is, f ∗ω
N

= dα for some α ∈ Ω
n−1(M). Thus, we have successively ( f ◦ p)∗ω

N
=

p∗( f ∗ω
N

) = p∗(dα) = d(p∗α). This shows that
∫

( f ◦ p)∗ω
N

=
∫

d(p∗α) = 0, or

equivalently deg( f ◦ p) = 0 and, according to (i), dim[C( f ◦ p)] ≥ n−1. Since p is a

local diffeomorphism, it follows that C( f ) = p(C( f ◦p)) and, according to Hodel [4],

it follows that dim[C( f )] = dim[p(C( f ◦ p))] = dim[C( f ◦ p)] ≥ n − 1.

Corollary 2.5 Let Mn, Nn (n ≥ 2) be compact, connected, orientable manifolds, let
ω

N
be a volume form on N, and let f : M → N be a differentiable mapping. If f ∗ω

N
is

exact, then dim[C( f )] ≥ n− 1. In particular, if f is homotopic to one map g : M → N
having just critical points, then dim[C( f )] ≥ n − 1.

Proof We just need to show that f ∗ω
N

is exact whenever f is homotopic to one map

g : M → N having just critical points. Indeed, in such a case, the homomorphisms

f ∗, g∗ : Hn
DR

(M) → Hn
DR

(M) are equal. Consequently

[ f ∗ω
N

] = f ∗([ω
N

]) = g∗([ω
N

]) = [g∗ω
N

] = 0,

the last equality following by using Proposition 2.1. This shows that f ∗ω
N

is, indeed,

exact.

In what follows we are going to provide an approach for the higher codimension

case (dim M =: m > n := dim N), in which the role of the form f ∗ω
N

will be played

by forms of type f ∗ω
N
∧θ, where θ ∈ Ω

m−n(M) are closed. If f : Mm → Nn, (m > n)

is a differentiable mapping and ω ∈ Ω
m−n(M), consider the set R( f ) := M\C( f ) of

regular points of f and

V f (ω) := {p ∈ R( f ) |ω
p
(u1, . . . , um−n) = 0, for all u1, . . . , um−n ∈ ker(d f )p}.

Observe that

V f (ω) = {p ∈ R( f ) : (i∗
f (p)

ω)p = 0}, where i
f (p)

: f −1( f (p))\C( f ) →֒ M\C( f )

is the inclusion map of the fiber ( f |R( f ))
−1(y) = f −1( f (p))\C( f ) of f |R( f ) passing

through p. In other words

V f (ω) =
⋃

p∈R( f )

V (i∗
f (p)

ω).

Definition 2.6 Two submanifolds N1, N2 of a given finite dimensional differential

manifold M are said to intersect transversally at p ∈ N1 ∩ N2, written N1 ⋔p N2 if

Tp(M) = Tp(N1) + Tp(N2). If N1, N2 do not intersect transversally at p ∈ N1 ∩ N2,

we use the notation N1 6⋔p N2.

Proposition 2.7 Let M, N, P be differential manifolds such that dim(M) ≥ dim(N)+

dim(P). If N and P are orientable and ω
N
, ω

P
are volume forms on N and P respec-

tively, then the inclusion V f (g∗ω
P
) ⊆ C(g) ∪ U ( f , g) holds, for every differentiable

map f : M → N, g : M → P, where

U ( f , g) := {x ∈ R( f ) ∩ R(g) | f −1( f (x)) 6⋔x g−1(g(x))}.

https://doi.org/10.4153/CMB-2010-057-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-057-8


Smooth Mappings with Higher Dimensional Critical Sets 545

Proof Indeed, we have successively

V f (g∗ω
P
) = (R(g) ∪C(g)) ∩ V f (g∗ω

P
)

= (R(g) ∩ V f (g∗ω
P
)) ∪ (C(g) ∩ V f (g∗ω

P
))

⊆ {x ∈ R( f ) ∩ R(g) | (i∗
f (x)

(g∗ω
P
))x = 0} ∪C(g)

= {x ∈ R( f ) ∩ R(g) | ((g ◦ i
f (x)

)ω
P
)∗x = 0} ∪C(g)

= C(g) ∪
⋃
{C(g ◦ i

f (x)
) | x ∈ R( f ) ∩ R(g)}.

Next, for x ∈ R( f ) ∩ R(g), we first recall that

T
x
( f −1( f (x))) = ker(d f )

x
, T

x
(g−1(g(x))) = ker(dg)

x

and then observe that we have successively:

x ∈ C(g ◦ i
f (x)

) ⇔ rank
x
(g ◦ i

f (x)
) < dim(P)

⇔ dim[Im((dg)
x
|ker(d f )x

)] < dim(P)

⇔ dim[ker(d f )
x
] − dim[ker((dg)

x
|ker(d f )x

)] < dim(P)

⇔ dim[ker(d f )
x
] − dim[ker(d f )

x
∩ ker(dg)

x
] < dim(P)

⇔ dim[ker(d f )
x

+ ker(dg)
x
] < dim(P) + dim(ker(dg)

x
)

⇔ dim[T
x
( f −1( f (x))) + T

x
(g−1(g(x)))] < dim(M)

⇔ T
x
( f −1( f (x))) + T

x
(g−1(g(x))) 6= T

x
(M)

⇔ f −1( f (x)) 6⋔x g−1(g(x))

⇔ x ∈ U ( f , g).

Therefore we get

V f (g∗ω
P
) ⊆ C(g) ∪

⋃
{C(g ◦ i

f (x)
) | x ∈ R( f ) ∩ R(g)} ⊆ C(g) ∪U ( f , g).

Proposition 2.8 Let Mm, Nn, m ≥ n be differential manifolds and f : M → N be
a differentiable mapping. If N is oriented and θ ∈ Ω

m−n(M), then V ( f ∗ω
N
∧ θ) =

C( f ) ∪ V f (θ).

Proof Let p be a regular point of f such that ( f ∗ω
N

)p ∧ θp = 0 and u1, . . . , um be a

base of Tp(M) such that u1, . . . , un span an n-dimensional complementary subspace

of ker(d f )p and un+1, . . . , um is a base of ker(d f )p. Then we have successively

0 = ( f ∗ω
N

)p ∧ θp(u1, . . . , um)

=

∑
σ∈Sm

σ(1)<···<σ(n)
σ(n+1)<···<σ(m)

(sgn σ)( f ∗ω
N

)p(uσ(1), . . . , uσ(n)) × θp(uσ(n+1), . . . , uσ(m))

=

∑
σ∈Sm

σ(1)<···<σ(n)
σ(n+1)<···<σ(m)

(sgn σ)(ω
N

)
f (p)

((d f )p(uσ(1)), . . . , (d f )p(uσ(n))) × θp(uσ(n+1), . . . , uσ(m)).
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But, if σ is not the identity permutation, then at least one of the vectors

uσ(1), . . . , uσ(n) is among the vectors un+1, . . . , um, meaning that at least one of the

vectors (d f )p(uσ(1)), . . . , (d f )p(uσ(n)) is zero. Thus, all terms of the above sum are

zero except the one which corresponds to the identity permutation. Therefore we

have that

0 = (ω
N

) f (p)((d f )p(u1), . . . , (d f )p(un)) × θp(un+1, . . . , um)

= ( f ∗ω
N

)p(u1, . . . , un) × θp(un+1, . . . , um).

But since p is a regular point, it follows that θp(un+1, . . . , um) = 0, and the proof

of the inclusion V ( f ∗ω
N
∧ θ) ⊆ C( f ) ∪ V f (θ) is complete. The other inclusion is

obvious.

Corollary 2.9 Let M, N, P be differential manifolds such that dim(M) ≥ dim(N) +

dim(P) and N, P are orientable. If f : M → N, g : M → P are differentiable maps and
ω

N
, ω

P
are volume forms on N and P respectively, then the following relations hold:

(i) If θ ∈ Ω
m−n(M), then dim V ( f ∗ω

N
∧ θ) ≤ dim C( f ) + dim V f (θ);

(ii) C( f ) ∪ V f (g∗ω
P
) = C(g) ∪ Vg( f ∗ω

N
) = V ( f ∗ω

N
∧ g∗ω

P
) ⊆ C( f ) ∪ C(g) ∪

U ( f , g);

(iii) dim[V ( f ∗ω
N
∧ g∗ω

P
)] ≤ dim[C( f )] + dim[C(g)] + dim[U ( f , g)];

(iv) V ( f ∗ω
N
∧g∗ω

P
) = C( f ×g), where f ×g : M → N×P, ( f ×g)(x) = ( f (x), g(x)).

Proof (i) Indeed, taking into account that C( f ) is a closed set, it follows, by means

of (ii) and [5, Corollary 1, p. 32], that the following relations hold:

dim[V ( f ∗ω
N
∧ θ)] = dim[C( f ) ∪ V f (θ)]

≤ max{dim[C( f )], dim[V f (θ)]}

≤ dim[C( f )] + dim[V f (θ)].

(ii) The relations follow immediately from Propositions 2.7 and 2.8.

(iii) Taking into account that C( f ) and C(g) are closed sets, it follows, by means

of statement (ii) and [5, Corollary 1, p. 32] that the following relations hold:

dim[V ( f ∗ω
N
∧ g∗ω

P
)] = dim[C( f ) ∪C(g) ∪U ( f , g)]

≤ max{dim[C( f ) ∪C(g)], dim U ( f , g)}

≤ dim[C( f ) ∪C(g)] + dim[U ( f , g)]

≤ dim[C( f )] + dim[C(g)] + dim[U ( f , g)].

(iv) In order to show the equality V ( f ∗ω
N
∧ g∗ω

P
) = C( f × g) we first recall that

π∗
N
ω

N
∧π∗

P
ω

P
, where π

N
: N×P → N, π

P
: N×P → P are the projections, is a volume

form on N × P, and the following equalities hold:

( f × g)∗(π∗
N
ω

N
∧ π∗

P
ω

P
) = ( f × g)∗(π∗

N
ω

N
) ∧ ( f × g)∗(π∗

P
ω

P
)

= (π
N
◦ ( f × g))∗ω

N
∧ (π

P
◦ ( f × g))∗ω

P

= f ∗ω
N
∧ g∗ω

P
.
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Thus, by using Proposition 2.1, we deduce that

C( f × g) = V [( f × g)∗(π∗
N
ω

N
∧ π∗

P
ω

P
)] = V ( f ∗ω

N
∧ g∗ω

P
).

3 Lower Bounds for the Dimension of Certain Critical Sets

In this section we give lower bounds for various combinations of the dimension of the

critical set C( f ), the dimension of B( f ) = f (C( f )), the dimension of the critical set

C( f ×g) and the dimension of U ( f , g), where g : M → Pm−n is another differentiable

map.

Theorem 3.1 Let Mm, Nn, Pm−n be compact orientable manifolds and let ω
N

be a
volume form on N. If f : M → N is a differentiable map such that f ∗ω

N
is an exact

form, then the following inequalities hold:

(i) dim[C( f )] + dim[V f (θ)] ≥ m − 1, for all θ ∈ Zm−n(M). Consequently, the
inequality dim C( f ) ≥ m − γ

f
− 1 holds, where γ

f
:= min{dim V f (θ) | θ ∈

Zm−n(M)}.
(ii) dim[C( f )] + dim[C(g)] + dim[U ( f , g)] ≥ dim C( f × g) ≥ m − 1 for every

diffentiable map g : M → P.

Proof (i) Since f ∗ω
N

is exact, it follows that f ∗ω
N

= dα for some α ∈ Ω
n−1(M).

This means that∫
M

f ∗ω
N
∧ θ =

∫
M

dα ∧ θ =

∫
M

d(α ∧ θ) + (−1)n

∫
M

α ∧ dθ = 0,

for each θ ∈ Zm−n(M). Therefore dim V ( f ∗ω
N
∧ θ) ≥ m − 1 for all θ ∈ Zm−n(M)

namely dim C( f )+dim V f (θ) ≥ dim V ( f ∗ω
N
∧θ) ≥ m−1 for any closed differential

form θ ∈ Zm−n(M). By considering the minimum with respect to the closed forms

θ ∈ Zm−n(M), one gets dim C( f ) ≥ m − γ
f
− 1.

(ii) The inequality dim[C( f )]+dim[C(g)]+dim[U ( f , g)] ≥ dim C( f ×g) follows

from Corollary 2.9(iii)(iv). Taking θ = g∗ω
P

for some volume form ω
P

on P, one

can see, as above, that the equality
∫

M
f ∗ω

N
∧ g∗ω

P
= 0 holds. This shows that

dim[C( f × g)] = dim[V ( f ∗ω
N
∧ g∗ω

P
)] ≥ m − 1.

Corollary 3.2 If Mm is a compact, differential, orientable manifold such that
Hn

dR(M) ∼= 0 for some n < m, then dim[C( f )] ≥ m − 1 for every differentiable
mapping f : M → N × P, where Nn, Pm−n are orientable differential manifolds.

Proof Indeed, f = (π
N
◦ f ) × (π

P
◦ f ), and we only need to apply Theorem 3.1(ii),

since the differential form (π
N
◦ f )∗ω

N
∈ Zn

dR
(M) = Bn

dR
(M) is obviously exact.

Example 3.3 If m, n ≥ 2, then for every differentiable map f : Sm+n → Sm × Sn,

the inequality dim[C( f )] ≥ m + n − 1 holds.

Corollary 3.4 Let Mm, Nn, m ≥ n be compact, differential, orientable manifolds
and f : M → N be a differentiable mapping such that f ∗ω

N
is exact for some volume

form ω
N

on N. If the fibers of f |M\C( f ) are orientable and there exists a closed form
θ ∈ Zm−n(M) such that the restriction of θ to each fiber of f |M\C( f ) is a volume form of
that fiber, then the inequality dim C( f ) ≥ m − 1 holds.
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Proof Indeed, in this case γ
f
= 0 because V f (θ) = ∅.

Let us observe that the requirements of Corollary 3.4 are quite strong and that

they are not satisfied by certain mappings as follows from the following example.

Example 3.5 Consider the mapping f : Sn+k → Tn, f = exp ◦p, where

p : Sn+k → R
n ≺ R

n+k+1, p(x
1
, . . . , x

n+k+1
) = (x

1
, . . . , x

n
)

and exp : R
n → Tn is the exponential mapping. Then γ

f
≥ k. Indeed C( f ) =

Sn+k ∩ R
n

= Sn−1, namely dim C( f ) = dim C(p) = n − 1. Consequently, for

any closed differential form θ ∈ Zk(Sn+k), one gets, by using Theorem 3.1(i), the

following relations

n + k − 1 ≤ dim C( f ) + dim V f (θ)

= n − 1 + dim V f (θ)

= n + dim V f (θ) − 1,

or equivalently dim V f (θ) ≥ k, for all θ ∈ Zk(Sn+k). Therefore, no closed form

θ ∈ Zk(Sn+k) has the property that its restrictions to the fibers of the mapping f
are volume forms, although those fibers are orientable, being k-dimensional spheres.

Note that f is homotopic to a constant map, which obviously has only critical points.

An extreme situation is represented by fibrations.

Corollary 3.6 Let Mm, Nn, m > n ≥ 2 be compact, differential, orientable manifolds,
and let ω

N
be a volume form on N. If f : M → N is a differentiable fibration such that

f ∗ω
N

is an exact form, then dim V f (θ) ≥ m − 1 for all θ ∈ Zm−n(M), or equivalently
γ

f
≥ m − 1. In particular, the inequality dim[C(g)] + dim[U ( f , g)] ≥ m − 1 holds

for every differentiable map g : M → P, where Pm−n is an orientable manifold.

Example 3.7 If f
n

: S2n−1 → Sn, where n = 2, 4 or 8, is the Hopf fibration, then for

every θ ∈ Zn−1(S2n−1), we have dim[V fn
(θ)] ≥ 2n− 2, or equivalently γ

fn
≥ 2n− 2.

Consequently, the inequality dim[C(g)] + dim[U ( f
n
, g)] ≥ 2n − 2 holds for every

differentiable map g : S2n−1 → Sn−1. In particular dim[U ( f
2
, g)] ≥ 2 for every

Morse function g : S3 → S1.

Remark 3.8 If M, N and f are as in Theorem 3.1, then γ
f

= 0 if and only if

dim V f (θ) = 0 for some θ ∈ Zm−n(M). A candidate for such a θ is ∗ f ∗ω
N

, since

V f (∗ f ∗ω
N

) = ∅ whenever N is oriented and ω
N

is a volume form on N. Unfortu-

nately, the n-form ∗ f ∗ω
N

is usually not closed but just co-closed. Another candidate

for such a θ can be constructed for a mapping f : M → N whose proper restriction

M\ f −1(B( f )) → N\B( f ) has orientable fibers. Note that the mentioned restric-

tion is, according to Ehresmann’s fibration theorem, a locally trivial fibration, (see

[2, p. 15]). In this respect consider an open covering {U
i
}

i∈I
of N\B( f ) such that

f −1(U
i
) is diffeomorphic with U

i
× f −1(y

i
) for some y

i
∈ U

i
, via a diffeomorphism

ϕ
i
: f −1(U

i
) → U

i
× f −1(y

i
) satisfying p

i
◦ ϕ

i
= f ,
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where p
i
: U

i
× f −1(y

i
) → U

i
is the projection. We also consider a volume form ω

i

on f −1(y
i
) as well as the mapping q

i
◦ ϕ

i
, where q

i
: U

i
× f −1(y

i
) → f −1(y

i
) is the

projection and observe that (q
i
◦ϕ

i
)∗ω

i
is a closed form on f −1(U

i
). We next consider

a partition of unity { f
i
}

i∈I
subordinate to the covering { f −1(U

i
)}

i∈I
of M\ f −1(B( f ))

and define the differential form ω =
∑

i∈I f
i
ω

i
∈ Ω

m−n(M\ f −1(B( f ))). Finally, we

denote by θ
f

a differential form obtained from ω by either extending it, if possible, to

the whole manifold M, or by multiplying it with a real differentiable and nonnegative

function ψ having the property ψ−1(0) = M\ f −1(B( f )), and observe that V f (θ
f
) =

∅. We also observe that θ
f

is not unique and it may not be closed. Also the forms

i∗
q
θ

f
may have zeros for some q ∈ B( f ), where i

q
: f −1(q)\C( f ) →֒ M\C( f ) is the

inclusion mapping.

Corollary 3.9 Let Mm, Nn, m ≥ n be compact, differential, oriented manifolds and
f : M → N be a differentiable map such that f ∗ω

N
is exact for some volume form ω

N

on N. If θ
f

is closed, then 2 dim C( f ) + dim B( f ) ≥ n − 1.

Proof Indeed, by applying Morita’s theorem [6, pp. 129,130] to the restriction

R( f ) ∩ f −1(B( f )) → f (R( f ) ∩ f −1(B( f ))) =: Y ⊆ B( f ), x 7→ f (x),

we first observe that dim[R( f ) ∩ f −1(B( f ))] ≤ dim[C( f )] + dim[B( f )] + m − n.

We next observe that V f (θ
f
) = V f (θ

f
|R( f )∩ f −1(B( f ))), since V f (θ

f
|M\ f −1(B( f ))) = ∅.

Consequently, we have successively:

γ
f
≤ dim(V f (θ

f
)) = dim(V f (θ

f
|R( f )∩ f −1(B( f ))))

≤ dim[R( f ) ∩ f −1(B( f ))]

≤ dim[C( f )] + dim[B( f )] + m − n.

The required inequality follows now by using Theorem 3.1.
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