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Semifield metric spaces

Martin Kleiber and W. J. Pervin

Extending the results of AntonovskiT, BoltjanskiT, and Sarymsakov

on semifield metric spaces, the authors define a regular semifield

metric to be one in which the distance in the standard Tychonoff

product representation of a point from a disjoint closed set is

nonzero. It is shown that every completely regular topological

space possesses a completely regular semifield metric and that

there is an equivalent completely regular semifield metric for

every semifield metric space. A normal semifield metric is

defined to be one in which the distance between two disjoint

closed sets is nonzero and it is shown that possessing a normal

semifield metric is equivalent to being a normal topological space.

Finally, Cauchy nets in semifield metric spaces are introduced

leading to the notion of completeness. It is shown that a

semifield metric space is complete iff every Cauchy net with the

property that its directed set has cardinality less than or equal

to the cardinality of the indexing set of the Tychonoff product

representation of the semifield converges.

1. Introduction

The theory of topological semifields was developed by AntonovskiT,

BoltjanskiT, and Saryms.akov (see [7] and [2]) who showed that every semifield

is a subsemifield of a Tychonoff product of reals under coordinatewise

addition and multiplication. Semifields which are products of reals are

called "Tychonoff" by those authors and there is no restriction in our work

to consider only that type.

In a semifield if , we say that a; is weakly less than y , written

Received 21 March 1969. Received by J. Austral. Math. Soc. 6 August
1968. Communicated by G.B. Preston.

127

https://doi.org/10.1017/S0004972700041332 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041332


128 Martin Kleiber and W.J. Pervin

x (( y , iff TT. (x) < T!j(y) for all i € I . This partial ordering is used

in the characterization of semifields. A function dT from X x X into

the non-negative members of JT (in the above ordering with zero being the

element 0 all of whose coordinates are zero) is a semifield metric on X

iff TT. o dj- is a pseudometric on X for each i & I . Explicitly, a

semifield metric has

dx(x

dT(x

dz(x

dj.(x

t h e
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for every x , y , z e X .

A semifield metric cf_ gives rise to a topology on X in the

following way. A subset G of X is open in X iff for every x £ G
there exists a positive real number e and a finite subset J C I such
that

{y G X : TT̂  o djfx , y) < z , i e. J}

is a subset of G . A topological space AT is semifield metrizable iff

there exists a semifield metric on X which induces the topology. It has

been shown (see [J]) that a topological space is semifield metrizable iff it

is a Tychonoff (completely regular Hausdorff) space.

A natural semifield metric on the semifield if is the function

dT : R1 x R1 •+ R1 such that TT. O dT(x , y) = |Tr-Cx - y)\ for every i € I

and i , j 6 i T . This semifield metric on Ri induces the product space

topology on iT . We shall now point out one fundamental difference

between semifield metrics and real metrics. If A is a nonempty subset of

a metric space (X , d) , then x e cl(A) iff d(x , A) = 0 . This is not

the case for semifield metrics. If dj is a semifield metric on X , we

let dj(x , A) = inf {dj(x , y) : y € A} where this infimum is taken with
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Semi field metric spaces 129

respect to the above mentioned order, and hence coordinatewise.

EXAMPLE. Let if1 be a semifield and let A = {x e ff1 : for some

i e I , x(i) = 1 while x(j) = 0 if j % i] . Now cl(A) = A U {0} since

that set is compact. Let dj be the natural semifield metric of IT over

itself. Then djCl „ A) = 0 even though 1 £ cl(A) .

On the other hand, we have

THEOREM A. cl(A) c {x e X : d^x , A) = 0} .

Proof. If dJx , A) 4= 0 , then there exists an i e I such that

e = inf {TT̂  O d (X , y) : y e 4} =f 0 . Hence

£/ = {j/ S AT : Tr. o drCa; ̂  u,) < e} is a neighborhood of a; which is disjoint

from A . Therefore, a; ft cl(A) .

2. Completely regular semifield metrics

A semifield metric d_ on X is said to be completely regular if for

every nonempty closed subset F of X and point x ^ F , dAx , F) 4 0 •

Clearly, every metric is completely regular.

THEOREM B. Every completely regular space possesses a completely

regular semifield metric.

Proof. Let X be a completely regular space, $ be the set of all

real valued continuous mappings on X , 9 be the evaluation function from

X to i?* such that irf o Q(x) = fix) for every x G.X and / « * . If

<i is the natural1 semifield metric on i? restricted to 6CXJ , then d is

a semifield metric on 9(%) . If we let d*(x , y) = d(Q(x) , Q(y)) for

every x , y & X , then d* is a semifield metric on X and 9 is an

isometry from X semifield metrized by d* to B(X) semifield metrized by

d . We shall show that d* is completely regular. Let F be a closed

subset of X and let x e. X - F . Then there exists an / e $ such that

f(x) = 0 and f(F) = 1 . But then ir̂ , o d*(x , F) = 1 since
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130 M a r t i n K le i be r and W.J. Perv in

TT- o d*(x , y) = IT„ o d(Q(x) , Q(y))

\ - 6(y))\

- -nf(d(y))\

= \f(*) - f(y)\
= \o- i\
= i

if ye F . This shows that d*(x , F) =f 0 and so d* is completely

regular.

If (X , d) is a pseudometric space then d is completely regular in

the above sense. Although not every semifield metric on a space X is

completely regular, we can strengthen the last theorem as follows:

THEOREM C. If (X , dj) is a sempfield metric space, then there

exists an equivalent completely regular semifield metric di for X .

Proof. Suppose 3 is a one-to-one mapping from the finite subsets of

J onto J . Then we define d*(x , y) in the following way. For each

i e. J there exists a finite subset J of I such that $(J) = i and we

let ir. o dt(x j y) = sup {TT . o dT(x , y) : j G. J} . How di is a% l j i j.

semifield metric on X to FT since IT. o d_ is a pseudometric for every

i & I . Now a c£_-basic neighborhood of a point x of the form

{y £ X : TT. o dT(x , y) < e for j GJ) with e > 0 and J a finite

subset of J clearly contains the di-basic neighborhood

{y e X : TT . O d*(x , y) < e} where gfJJ = i . Thus dT induces a weaker

topology than d% . Conversely, TT. O d% is a d -continuous pseudometric

on X for every i & I which shows that di induces a weaker topology

than dT , hence the two are equivalent. Finally, let F be a closed

subset of X and let x 0- F . There exists a finite subset J C I atfd

positive real number e such that the neighborhood

{y e X : TT. o dJx , y) < e , j € </} is disjoint from F . Let &(J) = i

https://doi.org/10.1017/S0004972700041332 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041332
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and we have the smaller neighborhood {y € X : IT. 0 di(x , y) < e} which

shows that d*(x , F) + 0 .

For each subset J C I we will denote by dj\ . the semifield metric

defined by setting 7K O dj\j(x , y) = TK O dJx , y) if iG J and zero

otherwise. It is easy to show that if dT\ T is completely regular for some

JCI , then djtj is equivalent to d, .

3. Normal semifield metrics

For closed subsets F and G of ("̂  , d,J we set

dj(F , G) = inf {dj(x 3 y) : x <£ F , y e. G) . Even if F and G are

disjoint it may happen that dj(F , G) = 0 . A semifield metric d_ on X

is said to be normal if dAF , G) =f 0 for every pair of nonempty disjoint

closed subsets F and G of X . It is evident that a normal semifield

is completely regular. However, a completely regular semifield metric need

not be normal since metrics need not be normal.

THEOREM D. A semifield metrizable spaee is normal iff it possesses a

normal semifield metric.

Proof. Let X be a normal semifield metrizable space. We shall show

that the semifield metric di given in Theorem B is normal. Let F and

G be disjoint nonempty closed subsets of X . Since X is normal there

exists an f e $ such that f(F) = 0 and f(G) = 1 . As in Theorem B we

have irf o d*(F , G) = 1 which shows that d*(F , G) + 0 , so d* is

normal. Next suppose that dj. is a normal semifield metric on X . Then

if F and G are disjoint nonempty closed subsets of X , we wish to find

a continuous function / : X •*• [0 , 1 ] such that f(F) = 0 and f(G) = 1 .

Since dj is normal, inf {dj.(x , Fj ; i 6 ff} | 0 , so there exists an

i £ I such that

6 = ir^Cinf {d^x , F) : x £ G}) = inf {TT. O d^x , F) : x € G} > 0 .

Since dj-(x , F) is a continuous function of x ,
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fix) = inf {1 , v^ o dj(x , F) / 6} is the desired function.

If (X j dj) i s a compact semifield metric space, then so is the

weaker space (X , d-) = (X , TT. o dr) . The converse is not t r ue , however,

as we saw in our ea r l i e r example. There the space (A , dj\A) i s not

compact for A i s not a closed subset of FT , even though, for every

i € I the space (A , TT- o dT\A) i s compact. We notice that if (X 3 dT)

i s compact, then (X , dT\ J i s also compact for every subset J G. I . I t
1 \<J

is easy to show that if d-.\ T separates the points of X , then it is

I
equivalent to d_ .

THEOREM E. If (X , dj) is a compact semifield metric space then

there exists an equivalent normal semifield metric dt .

Proof. Without loss of generality we can assume that dj is completely

regular. Let 3 be a one-to-one mapping of the finite subsets of J onto

I . For each i 6 J we have i = $(J) for some subset JC I and we let

d*. = sup {d • : 3 e J} . Defining d% to be the product of the d*. over
2- J 1 T*

i €• J , we obtain an equivalent normal semifield metric for X .

4. Complete spaces

We shall denote by N a general directed set so that nets will be

written {s : n £ N} , usually without explicit mention of the ordering.

The following characterizes the convergence of nets in semifield metric

spaces.

THEOREM F. If {s : n €. N} is a net in the semifield metric space

(X j dj) j then s ->• s e X with respect to d, iff s •*• s with respect

to each d. .
v

Proof. One implication is obvious since the topology induced by d-

is weaker then that induced by dT . On the other hand, suppose that

s ->• s with respect to each d- . Let e be a positive real number and
it Is
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let J be a finite subset of J . For each j e. J there exists an

element n. € N such that d .("s , s ) < z whenever n > n • . Since N is
3 3 ft 3

directed, there exists some n* € N such that n . < n* for all j €. J .
3

Then we have d .(s 3 s ) < £ for all n > n* and j € J which shows that
3 ft

s •*• s with respect to dj- .

A net {sn : n G.N} in a semifield metric space (X 3 dj.) is said to

be Cauchy iff for every positive real number e and finite subset J of

J , there exists an n* & N such that d.(s , s ) < e for each j G J

whenever n* < m } n € N .

THEOREM G. A net {s : n e N} in (X , dj is Cauohy with respect

to dT iff it is Cauchy with respect to each d- .

Proof. Essentially the same argument as in the previous theorem will

work here.

Just as with metrics , it is easy to show that a net {s : n €. N} is

Cauchy in (X , dj) iff td^Cs , s ) : (m „ n)eNxN}-*0SRr.

A semifield metric space (X , dT) is said to be complete iff every

Cauchy net in X converges with respect to dj . It would seem that

(X j dT) would be complete iff each pseudometric space (X , d.) were

complete, but neither of these implications holds. For example, if

(X j d,, 0,) is the unit square in the plane with the point (1,1) deleted

using the restricted natural semifield metric for the plane, then both

(X , d\) and (X , d^) are complete and yet X is not complete. For a

counter-example to the converse, we need only consider the subset

{(x j y) : xy = 1} of the plane.

THEOREM H. A semifield metric space (X , dj) is complete iff every

Cauchy net {s : n e. N} , where cardfW < cardfjj ^ converges.

Proof. Let us suppose that (X , dj) satisfies the obviously

necessary condition of the theorem and let {s : n &il?} be a Cauchy net.

https://doi.org/10.1017/S0004972700041332 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041332


134 Martin Kleiber and W.J. Pervin

Consider the natural number 1 . For any set {i} with t e l , there

exists an n}.-. e N such that d.(s . s ) < 1 whenever n}.-, < m . n e. N ,

Suppose that whenever A and B are nonempty subsets of J with fewer

than k elements, where k is a natural number, we have already picked
n\ 3 nh €. N such that (l) if A is a proper subset of B , then n\ < n\ ,

and (2) if m , n > max[ni , n'] , then d-(s , s ) < 1 for all

i & A U B . Next suppose that C is any subset of I with k elements.

For each such C we choose an nj, £ N such that (l) if A is a nonempty

proper subset of C , then n\ < n\ , and (2) if m 3 n > n
l
n , then

d- (a_ . s) < 1 for every i & C . Suppose that t is a natural number
u Til Yl

such that if p and q are natural numbers such that p < q < t , and if

C is a nonempty proper subset of the finite subset D of I , then we

have chosen rfn<n\<mn<ni,&^ with the properties that
0 o D L)

rPn < m j n B N i m p l i e s d.(s > s ) < 1/p f o r i £ C y
O % Ml ft

n% < m , n <=• N implies d. (sm , s) < 1/q for i e C ,

yp < m , n e N implies d • (s , s ) < 1/p for i € D ,
L) 1* Til Yl

n^ < m , n e. N implies d • (s , s ) < 1/q for i £ D .
U If Ttl Yl

Then for every nonempty finite subset I of J it is possible to choose

an n_ G N such that

n,, < m . n e. N implies d • (s , e) < 1/t for i e E .
h 7* in Ti

This ?!„ can be chosen large enough so that n_ > «£ for every nonempty

subset C of E and natural number p < t . Let N* be the set of all

such fljp chosen, so that ca.rd(N*) < cardd) . We note that N* is

clearly directed since "?yp is larger than any elements rp^ , n^ 6 N* •

Thus {s : n G N*} is a net; in fact, it is a Cauchy net which converges

to some point s by hypothesis. Now let £ be a finite subset of I and
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let e be a positive real number. Let t be a natural number such that

2/t < E . By convergence, there exists an n* e N* such that n* < n €. N*

implies d.(s^ , s) < 1/t for t £ J . Also, «„ < m . n G. N implies

d-(s j s) < 1/t for i & E . Now choose m* such that n* s n^ < m* e. N*
is (ft ft £,

and fix n e. N* with n > m* . We have

d^s 3 sm) < d^s t sn) + di(sn , sm) < 1/t + 1/t = 2/t < z

for all i e E and all m* < m €. N . This shows that {s : n e N}
n

converges to s and the space is complete.

We note that the previous theorem could be rephrased to require that

cardfiW = ^ o ' car<^^-' an<^ ^^en 'the usual theorem that sequences are

adequate to describe completeness in metric spaces would be a corollary.

With the framework of complete semifield metric spaces we can introduce

and study contractive mappings. Standard results on the continuity of such

maps and the existence of fixed points in complete spaces can be obtained.

We will not, however, list these results here.

By an obvious generalization of the standard proof for metric spaces

using equivalence classes of Cauchy nets (see [3], pp. 123-12*0 we can

construct a unique completion of a semifield metric space, where one need

only be careful to always choose as directed sets the {n_} of Theorem H

with cardinality equal to cardfjj .
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