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Abstract Strictly proper scoring rules are designed to truthfully elicit subjective

probabilistic beliefs from risk neutral agents. Previous experimental studies have

identified two problems with this method: (i) risk aversion causes agents to bias

their reports toward the probability of 1=2, and (ii) for moderate beliefs agents

simply report 1=2. Applying a prospect theory model of risk preferences, we show

that loss aversion can explain both of these behavioral phenomena. Using the in-

sights of this model, we develop a simple off-the-shelf probability assessment

mechanism that encourages loss-averse agents to report true beliefs. In an ex-

periment, we demonstrate the effectiveness of this modification in both eliminating

uninformative reports and eliciting true probabilistic beliefs.
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1 Introduction

Accurately obtaining subjective probabilistic information about uncertain future

events is an essential step in the decision making process in many different

economic and public policy settings. In many cases, rather than trying to build a

model to estimate probabilities, the best and most informative assessments come

from an agent who has a good amount of relevant experience and can use her

collected wisdom to estimate a subjective probability. Eliciting this information

presents an important and difficult problem in many fields such as finance and

macroeconomics (Diebold and Rudebusch 1989; Ghysels 1993), decision analysis

(Keeney 1982), and meteorology and weather forecasting (Murphy and Winkler

1984). In addition, probability assessments often comprise an important component

of economic experiments. Even when the ultimate objective is not to elicit

subjective beliefs, obtaining this information may be a critical secondary step in an

experimental procedure.

Well-designed scoring rules provide a useful tool for procuring this subjective

information by providing an agent with the right incentives to carefully evaluate and

quantify her beliefs, and to honestly reveal her subjective assessment of the

likelihood of these uncertain future events. The quadratic scoring rule (QSR), a

variant of which was first introduced by Brier (1950), is the most commonly used.1

The incentive design of scoring rules implicitly assumes, however, that the agent

is risk neutral, which contrasts with how people often behave. Winkler and Murphy

(1970) examine the effects of nonlinear utility on the optimal report under a proper

scoring rule, showing that risk aversion leads an agent to hedge her reports away

from categorical forecasts of 0 and 1 and risk seeking leads the agent to bias her

reports closer to 0 or 1. This biasing effect of risk preferences can be easily

corrected by applying the inverse utility function to the scoring rule (Winkler 1969).

In practice, however, an even more troubling pattern of excessive reports equal to

the baseline probability of 1/2 emerges as well, a phenomenon not explained by

classical expected utility models. For example, Offerman et al. (2009) tested

responses by 93 subjects to a QSR for objective probabilities that ranged from 0.05

to 1 and found that they reported 1/2 more than three times as often as they should

have (15.3 % versus 5 %). This particular type of conservatism inhibits the decision

maker’s ability to discern among a broad domain of moderate beliefs and conceals a

significant amount of useful information.

In this paper, we employ the insights of prospect theory (Kahneman and Tversky

1979; Tversky and Kahneman 1992) to understand the ways in which an agent will

distort her report when she receives an uncertain reward from a QSR. Employing

Palley’s (2015) model of prospect theory with an endogenous reference point, we

highlight how loss aversion can account for why an agent may both report 1/2 for a

range of moderate beliefs and bias her reports toward 1/2 for beliefs closer to 0 or 1.

1 References include McKelvey and Page (1990), Offerman et al. (1996), Huck and Weizsäcker (2002),

Nyarko and Schotter (2002), Costa-Gomes and Weizsäcker (2008), Armantier and Treich (2013),

Offerman et al. (2009), Blanco et al. (2010), Andersen et al. (2010), and Kothiyal et al. (2011). For a

survey of the work on scoring rules and other belief elicitation methods, see Schlag et al. (2014)
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The main contribution of our paper is the introduction of a generalized

asymmetric QSR, the L-adjusted rule, which eliminates the incentives for

conservative reports and enables the elicitation of true probabilistic beliefs. The

payoffs in this L-adjusted rule are the same as in a classical QSR except negative

outcomes are shrunk by a factor of L, a parameter that controls the size of the loss

adjustment. We use previous experimental work estimating population parameters

to derive an off-the-shelf variant of this L-adjusted QSR that requires no prior

agent-specific calibration. In an experiment, we demonstrate its effectiveness in

recovering truthful and precise probability assessments, and show that it alleviates

the shortcomings associated with the classical QSR. In agreement with previous

results, we find that in response to the classical QSR, agents tend to report the

implicit benchmark probability of 1/2 for a wide range of beliefs near 1/2 in order to

ensure a certain payoff. By matching the choice of L to previous empirical estimates

of parameters for the overall population, we also obtain a modified QSR that

recovers truthful beliefs experimentally. In doing so, we provide a practical and

simple off-the-shelf scoring rule that encourages agents to report their beliefs

truthfully.

We want to emphasize that the use of the L-adjusted QSR is as easy as the use of

a standard QSR. Exactly as with a standard QSR, each subject receives a table that

lists how their payoff varies depending their probability judgment and the actual

outcome of the predicted phenomenon. The only difference between a standard QSR

and an L-adjusted QSR is that the actual payoffs in the table are changed to

accommodate subjects’ loss aversion. As a result, subjects are encouraged to

automatically report judgments that are very close to true objective probabilities.

The simplicity of our approach depends to a large extent on the fact that we

provide each subject with the same L-adjusted QSR based on parameter estimates

for the general population. A natural question is how much precision is sacrificed by

ignoring differences that may exist in people’s loss-aversion attitudes. To

investigate this question, we include a treatment in which we adjust the scoring

rule separately for each subject on the basis of an individually estimated loss

parameter. Interestingly, we do not find better results for this treatment.

Recently, several related approaches have been suggested to recover true beliefs

from conservative reports. Offerman et al. (2009) propose a revealed preference

technique that allows the researcher to correct the reported beliefs of agents who are

scored according to a standard QSR. In this method, agents initially provide reports

for a range of objective probabilities, which then yields an optimal response

mapping that can be inverted and applied to infer subjective beliefs from later

reports. In an experiment, Offerman et al. demonstrate the effectiveness of this

approach in recovering beliefs from reports that do not equal the baseline

probability of 1/2. Kothiyal et al. (2011) extend this method to overcome the

problem of discriminating between moderate beliefs in a range around the baseline

probability of 1/2, for which agents give the same optimal report. By adding a fixed

constant to one of the QSR payoffs, they both eliminate the excess of uninformative

baseline reports and yield an invertible response mapping that makes possible the

recovery of true beliefs, while maintaining the properness of the original scoring
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rule. Kothiyal, Spinu, and Wakker do not provide an experimental test of their

method.

The approaches taken in Offerman et al. (2009) and Kothiyal et al. (2011) are

precise and elegant because they do not need to make structural assumptions on how

people make decisions under risk. The downside of these methods is that they are

laborious to employ, because a sufficiently dense risk-correction map has to be

derived for each agent before any inferences can be made. In both decision analysis

and many experimental economics applications, the elicitation of beliefs is a

secondary goal, and a simpler and quicker approach may be preferred, as long as it

does not sacrifice precision. The method presented in this paper pursues this

purpose.

Other elicitation methods that do not make use of scoring rules exist as well. For

example, if the utility function is unknown, Allen (1987) presents a randomized

payment method that relies on the ‘‘linearization’’ of utility through conditional

lottery tickets to incentivize truthful reports. Alternatively, Karni (2009) proposes a

procedure with two fixed prizes where the payment function is determined by

comparing the agent’s report to a random number drawn uniformly from [0,1],

analogous to the Becker et al. (1964) mechanism. Under this method, if the agent

exhibits probabilistic sophistication, she has a dominant strategy to report her true

belief, irrespective of her risk attitudes. However, in experiments, subjects have

been found to have a hard time understanding Becker-DeGroot-Marschak-type

procedures (Rutström 1998; Plott and Zeiler 2005; Cason and Plott 2012), and

empirical comparisons of these methods with scoring rules have yielded mixed

results (Hao and Houser 2010; Hollard et al. 2010; Trautmann and van de Kuilen

2011).

The rest of the paper is organized as follows: Sect. 2 introduces our L-adjusted

QSR and characterizes the corresponding optimal reporting policy under the

prospect theory model of risk behavior. We discuss how this predicted behavior

provides a parsimonious explanation of previously observed conservative reporting

patterns and how the parameter L can be calibrated to allow for the recovery of

estimates of any probabilistic belief. Readers who are interested mainly in how well

our method encourages subjects to simply report true probabilities may skim Sect. 2

and refer to Proposition 1 and Corollary 1. Sections 3 and 4 detail the experiment

that we carried out to test the usefulness of this adjusted scoring rule in practice and

demonstrate its improvements over the classical QSR. Section 5 concludes and

Appendix 1 characterizes reporting behavior for the general asymmetric L-adjusted

QSR and contains proofs of all results. Appendix 2 in Supplementary Material

provides images and instructions from the experimental interface.

2 The model

We consider an agent who must report a subjective belief about the chances of an

uncertain future event A. Her true belief is that event A will occur (X ¼ 1) with

probability p and its complement �A will occur (X ¼ 0) with probability 1� p. She

4 T. Offerman, A. B. Palley
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submits a reported probability r 2 ½0; 1� that A will occur and receives a payoff

according to an L-adjusted QSR, a generalization of the asymmetric QSR

introduced by Winkler (1994).

Definition 1 (L-adjusted Quadratic Scoring Rule) The L-adjusted asymmetric

QSR is defined by

SLðX; rÞ ¼

ð1� cÞ2 � ð1� rÞ2

c2L
if A occurs and r\c;

c2 � r2

c2
if �A occurs and r\c;

ð1� cÞ2 � ð1� rÞ2

ð1� cÞ2
if A occurs and r � c;

c2 � r2

ð1� cÞ2L
if �A occurs and r � c:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

In general, the L-adjusted QSR can be centered around any baseline probability c

of the event A occurring,2 but for most of the paper we will focus on the typical case

of a symmetric baseline c ¼ 1=2. When L ¼ 1 this scoring rule reduces to the

asymmetric QSR and when L ¼ 1 and c ¼ 1=2 it reduces to the classical binary

QSR.

The pattern of reporting behavior that previous studies have observed cannot be

explained by classical expected utility theory. Therefore, to understand how an

agent will respond to this risky payoff function, we apply a prospect theory model of

risk preferences. Prospect theory applies psychological principles to incorporate

several important and frequently observed behavioral tendencies into the neoclas-

sical expected utility model of preferences. This more flexible formulation provides

a useful descriptive model of choice under risk (Camerer 2000) and generally

includes four main behavioral components:

1. Reference Dependence The agent evaluates outcomes as differences relative to

a reference point rather than in absolute levels.

2. Loss Aversion Outcomes that fall below the reference point (‘‘losses’’) are felt

more intensely than equivalent outcomes above the reference point (‘‘gains’’).

3. Risk Aversion in Gains, Risk Seeking in Losses, and Diminishing Sensitivity to

Both Gains and Losses The agent tends to prefer a sure moderate-sized outcome

over an equal chance of a large gain or zero gain, but prefers an equal chance of

taking a large loss or avoiding the loss altogether over a sure moderate-sized

loss. In addition, the marginal effect of changes in the outcome for the agent

diminishes as the outcome moves away from the reference point.

2 The decision maker may find it useful to select an asymmetric baseline c 6¼ 1=2 if he expects the

assessed probability of the event to be particularly low (e.g. the probability of rain on a given day in a

desert location) or high (e.g. the probability of rain on a given day in a rainforest location). However, in

practice this baseline is usually taken to be c ¼ 1=2, as in the classical QSR.
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4. Probability Weighting The agent overweights probabilities close to 0 and

underweights probabilities close to 1.

Of critical importance in applying prospect theory to model choices under risk is the

determination of the reference point. Often the reference point is implicitly set to

equal 0, but this assumption may not be realistic when all outcomes are positive, as

is typical in practice when rewarding subjects for providing reports according to a

QSR. For example, if the reference point were taken to be 0, then all outcomes in

our experiment would be viewed as ‘‘gains’’ and the prospect theory model would

be unable to explain the observed reporting behavior.

Instead, we argue that even in settings where all outcomes are nominally positive,

an agent may still feel elation or disappointment based on whether the payoff she

receives falls above (a ‘‘gain’’) or below (a ‘‘loss’’) what she expected at the time

that she submitted her report. To model this, we assume that the agent possesses a

reference-dependent utility function of the form of Palley (2015), in which the agent

develops an expectation E about her outcome S from the scoring rule, and this

expected outcome then forms a natural reference point for her to evaluate the

outcome that she ultimately receives. This utility function extends existing models

of an endogenously determined reference point (see, e.g., Shalev (2000)) to

accommodate the case of an agent with prospect-theory-type preferences. This

model will provide a parsimonious explanation for the behavior that is observed,

and most importantly, can be readily used to provide a solution to the problem and

insight into why it works.

Specifically, we assume that when the agent’s outcome exceeds this expectation,

she feels an additional gain of ðS � EÞa, where a 2 ð0; 1� specifies the curvature of

her risk preferences. When her outcome falls below her expectation, she perceives

this as an additional loss equal to �kðE � SÞa, where k� 1 additionally

parameterizes the agent’s degree of loss aversion. Mathematically, this utility

function is specified by

vðS;EÞ ¼
E � kðE � SÞa if S\E

E þ ðS � EÞa if S�E:

�

If a ¼ 1, this formulation coincides with the loss-averse utility function detailed in

Shalev (2000). If a ¼ k ¼ 1, then this simplifies to the risk-neutral objective of

maximizing expected payoff that the definition of a proper scoring rule implicitly

assumes.3

In addition, we assume that the agent applies probability weighting functions

wþðpÞ and w�ðpÞ for scores that fall above and below E (positive and negative

events), respectively. wþð�Þ and w�ð�Þ are assumed to be strictly increasing with

3 Several existing studies estimate average parameters k and a for the general population using the

classical cumulative prospect theory model of Tversky and Kahneman (1992), who find k ¼ 2:25 and

a ¼ 0:88. In recent work, Tu (2005) finds k ¼ 3:18 and a ¼ 0:68, Abdellaoui et al. (2007) find k ¼ 2:54
and a ¼ 0:72, and Booij et al. (2010) estimate k ¼ 1:58 and a ¼ 0:86. While these estimates are derived

from a different model of risk (cumulative prospect theory with a fixed rather than endogenous reference

point), their interpretation corresponds directly to our model, so we use an average of these estimates as a

rough benchmark for a representative agent of the general population.

6 T. Offerman, A. B. Palley
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wþð0Þ ¼ w�ð0Þ ¼ 0, wþð1Þ ¼ w�ð1Þ ¼ 1, and wþðpÞ þ w�ð1� pÞ ¼ 1 for all

p 2 ½0; 1�.4 The ex ante expected-valuation that an agent receives from responding

to a binary scoring rule is then given by a probability-weighted sum over the

possible scores; VðEÞ ¼
P

S wðpSÞvðS;EÞ:5
Until this point, we still have not specified the details of how the reference point

E is determined. The motivating intuition we follow here is that the agent’s

expected-valuation of the prospect should be consistent with her expectation about

the prospect. In other words, if she uses E as her reference point in determining

VðEÞ, then the resulting expected-valuation should simply equal E itself.

Specifically, we assume that the reference point E is determined endogenously

according to the consistency equation VðEÞ ¼ E, as in Palley (2015). In this sense,

for a given prospect, a consistent reference point E is the expectation that perfectly

balances the agent’s potential gains against her potential losses, weighted according

to her beliefs of their respective likelihoods.

A consistent reference point E is the natural evaluation of a prospect for an agent

who carefully contemplates the possible outcomes and anticipates her possible ex

post feelings, providing a summary measure of how the agent evaluates the risk in

an ex ante sense. An agent who initially forms a reference point R higher than E will

find that her expected losses �kðR � SÞa outweigh her expected gains ðS � RÞa,
causing her to adjust her expectation downward.

Conversely, an agent whose reference point is initially lower than E will find that

her expected gains outweigh her expected losses, causing her adjust her reference

point upward. A thoughtful agent will thus converge to a unique consistent

expectation E. This notion of expectations as an endogenously determined reference

point is introduced and developed in the models of Bell (1985), Loomes and Sugden

(1986), Gul (1991), Shalev (2000), and Koszegi and Rabin (2006, 2007).

Note that the relationship between the reference point and the valuation function

possesses an intentional ‘‘circularity,’’ which is an important part of the model. For

any prospect, there exists only one unique reference point E that satisfies V(E) = E,

and this is the reference point that represents the agent’s ex ante valuation of a given

prospect. It is this equation that ensures the consistency of the valuation function

and the reference point, and which pins down the appropriate expectation E.

Figure 1 displays an example of this reference point formation process. We see

that a loss-averse agent with subjective beliefs of p ¼ 0:7 would derive an ex ante

expectation of �0:17 from truthfully reporting r ¼ 0:7 in response to a QSR, while

4 These assumptions hold trivially for the unweighted case wðpÞ ¼ p and approximately for most existing

estimates of weighting functions that overweight low probabilities and underweight high probabilities.

For example, using Goldstein and Einhorn’s (1987) parameterization wðpÞ ¼ dpc

dpcþð1�pÞc, Abdellaoui

(2000) finds dþ ¼ 0:65, cþ ¼ 0:60, d� ¼ 0:84 and c� ¼ 0:65, Abdellaoui et al. (2005) find dþ ¼ 0:98,
cþ ¼ 0:83, d� ¼ 1:35 and c� ¼ 0:84 and Booij et al. (2010) estimate dþ ¼ 0:77, cþ ¼ 0:62, d� ¼ 1:02
and c� ¼ 0:59. We use a rough average of these existing estimates as a benchmark for a representative

agent for the overall population, but a number of other functional forms for the weighting functions could

be used as well (see, e.g., Prelec (1998)).
5 Further details about the mechanics and intuition of this model can be found in Palley (2015). In this

case decision weights reduce simply to weighted probabilities because there are only two possible

outcomes.
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deriving an ex ante expectation of �0:05 from reporting r ¼ 0:6. Both of these

reports are therefore dominated by reporting the baseline r ¼ 0:5, which yields an

outcome of 0 with certainty and a corresponding ex ante expectation of 0. Whereas a

risk-neutral agent would prefer to report r ¼ 0:7, which yields the highest expected

score, the loss-averse agent in this case will prefer to report r ¼ 0:5.
We assume that the agent seeks to maximize her expected outcome E over all

possible reports r 2 ½0; 1�, subject to the consistency requirement, which essentially

means that the agent will consider her ex post prospects when she chooses her report

and forms her ex ante expectation about her outcome. The timeline of events is

displayed in Fig. 2.

Proposition 1 The optimal consistent report function when c ¼ 0:5 is given by

r�LðpÞ¼

KðpÞ
1
a

KðpÞ
1
aþL

; p\min w�1
�

La

kþLa

� �

;
1

2

� �

1

2
; min w�1

�
La

kþLa

� �

;
1

2

� �

�p�max w�1
þ

k
Laþk

� �

;
1

2

� �

L

Kð1�pÞ
1
aþL

; p[max w�1
þ

k
Laþk

� �

;
1

2

� �

;

8
>>>>>>>>><

>>>>>>>>>:

where KðpÞ¼ kw�ðpÞ
wþð1�pÞ is the agent’s loss-weighted odds ratio of event A:

The optimal consistent response function for more general (asymmetric) baseline

probabilities c can be found in Appendix 1.6

Proposition 2 For any positive linear rescaling of the payoffs
~SLðrÞ � aSLðrÞ þ b, a[ 0; b 2 R, the optimal consistent report remains ~r�LðpÞ ¼

S(r,A) = 0.36

S(r, Ā) = −0.44

r = 0.6: [S] = 0.12
E = −0.05

S(r, A) = 0.64

r = 0.7:
[S] = 0.16

E = −0.17

S(r, Ā) = −0.96

Fig. 1 Two examples of an agent’s possible report choices and corresponding ex ante reference point
formation in response to an classical QSR with baseline c ¼ 0:5 when the agent believes the probability
of event A is p ¼ 0:7, has prospect theory parameters k ¼ 2:4 and a ¼ 1, and does not apply probability
weighting

6 If a ¼ 1, k ¼ 1, and wðpÞ ¼ p, then the optimal report is r�ðpÞ ¼ p and E�ðpÞ ¼ E½SðX; pÞ�, the

expected score function in the simpler risk-neutral model (see Winkler (1994)). This behavioral model

therefore includes the risk-neutral model that proper scoring rules are based on as a special case, yielding

a consistent prediction regarding the reports and expected outcome. If the agent is risk-neutral, does not

over- or under-weight probabilities, and does not exhibit loss aversion, then the QSR retains its ex ante

incentives for truthful reporting.

8 T. Offerman, A. B. Palley
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r�LðpÞ and the corresponding optimal ex ante expected outcome is rescaled

according to ~E�ðpÞ ¼ aE�ðpÞ þ b.

In other words, in contrast to the predictions of the cumulative prospect theory

model with a fixed reference point and many classical utility formulations, the

agent’s behavior will be invariant to positive linear rescaling of the payoffs. This

means, for example, that the agent’s optimal behavior would not change if the

decision maker decided to pay her in a different currency with exchange rate a:1 or

pay her an additional fixed fee b for providing the report.

Figure 3 displays the shape of optimal reports as a function of the agent’s beliefs

p in response to the classical QSR. For a large region of moderate beliefs near 1=2,
the agent will prefer to simply report 1=2 in order to receive a payoff of 0 with

certainty. While the width of this region depends jointly on k, a, wþð�Þ, and w�ð�Þ, it
is largely driven by the loss aversion parameter k. The shape of the optimal

consistent report function closely mirrors the theoretical results of Offerman et al.

(2009). Here the decision maker cannot simply provide the agent with the classical

QSR and then infer her true beliefs from her report because the resulting response

agent believes

probability of

event A is p

agent chooses report r

and forms a consistent
expected outcome E

about her prospect

seeks to maximize
this expectation E

X realized
(A either occurs
or does not occur)

agent receives
payoff S(X, r)

feels an additional
gain or loss S(X, r) − E

Fig. 2 Timeline of the agent’s report choice, reference point formation, and ex post evaluation of the
event

Fig. 3 Optimal consistent report r�ðpÞ (the dashed line) to the classical QSR (c ¼ 0:5, L ¼ 1) for
k ¼ 2:4, a ¼ 0:8, and w�ðpÞ ¼ wþðpÞ ¼ p versus truthful reporting (the solid line)

Lossed in translation: an off-the-shelf method… 9
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function r�ðpÞ is not invertible. All beliefs p in the interval

½w�1
�

1
kþ1

� �
� p�w�1

þ
k

kþ1

� �
� are mapped to the conservative risk-free report of

1=2 (this is the flat region of the optimal report function). This means that observing

a report of 1=2, which may happen quite frequently if the agent is loss-averse and

has moderate beliefs, tells the decision maker only that the agent’s beliefs lie

somewhere within that interval.

2.1 Determining the L-adjustment

To recover true beliefs, the decision maker needs to instead adjust the scoring rule to

eliminate the ‘‘flat region’’ of conservative reports of 1=2, which will allow him to

invert the agent’s optimal report function r�ðpÞ and estimate p according to r��1ðrÞ.
Sensitivity analysis suggests that loss aversion accounts for the largest proportion of

this conservative behavior. The best way to counteract this phenomenon, then, is to

adjust the scoring rule so that negative outcomes are less severe by a factor of 1
L
. By

computing the value L� that solves

w�1
�

La

kþ La

� �

¼ w�1
þ

k
La þ k

� �

; ð1Þ

the decision maker can squeeze the endpoints of the ‘‘flat region’’ of conservative

reports of 1=2 together and recover the agent’s true beliefs.

Corollary 1 The optimal adjustment when c ¼ 0:5 is given by

L� ¼ Kð1=2Þ1=a ¼ kw�ð1=2Þ
wþð1=2Þ

� �1=a

:

This calibration of L ¼ L� eliminates the agent’s incentive to provide these

uninformative reports even for very moderate beliefs close to 1=2, and also removes

almost all of her distortion in the optimal reporting function. After receiving her

report, the decision maker can apply the inverse of the optimal report function to the

observed report r to recover the agent’s exact truthful beliefs p ¼ r��1
L ðrÞ. In the

absence of utility curvature and probability weighting (a ¼ 1 and wðpÞ ¼ p), the

optimal adjustment is simply equal to the loss aversion parameter (L� ¼ k) and the

inversion step is unnecessary because the optimal report function is truthful

(r�kðpÞ ¼ p).

In practice, an agent’s report may include a noisy error term �, so that the agent

reports r�LðpÞ þ � instead. This means that the inferred beliefs will also contain an

error of r��1
L ðr�LðpÞ þ �Þ � r��1

L ðr�LðpÞÞ: However, since r��1
L ð�Þ is differentiable and

close to the identity function for a broad range of reasonable parameter values, the

resulting error in inferred beliefs simply scales roughly equally to the size of the

original reporting error. Another concern with the L-adjustment method is that it

may become laborious if agents are very heterogeneous. In such a setting, the model

parameters a, k, and wðpÞ and the corresponding L� would have to be estimated

10 T. Offerman, A. B. Palley
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individually. Our experimental results show, however, that heterogeneity is only of

secondary importance and that our method does a remarkable job even without a

correction of individual differences.

Figure 4 displays the optimal reports in response to an L-adjusted scoring rule,

which is calibrated to average parameter estimates k ¼ 2:4, a ¼ 0:8, dþ ¼ 0:8,
cþ ¼ 0:7, d� ¼ 1:1 and c� ¼ 0:7 (yielding L� ¼ 3:7) from the studies discussed in

footnotes 4 and 5 for the general population, for an agent with various actual loss

aversion parameters k, utility curvature parameters a, and both with and without

probability weighting. As might be expected, given that the adjustment is primarily

designed to address distortions due to loss aversion, optimal report functions are

most sensitive to misestimation of the parameter of loss aversion k, and are less

sensitive to variations in a and the probability weighting functions. This suggests

that if the decision maker does not want to assess individual parameters, the most

important measurement to focus on is k. We also see that if L� is miscalibrated due

to errors in parameter estimates, he may observe reports both above and below the

true beliefs p, depending on whether the k estimate is too high or too low.

Next, note that any remaining difference between the optimal report function in

response to the L�-adjusted rule and truthful reporting, which in theory could be

corrected by applying r��1ð�Þ to the observed report, would be completely swamped

by any noise in reports and the distortionary effects of errors in the parameter

estimates. As a result, in practice there is very little benefit to attempting to carry out

this second inversion step on the reports r. A more practical approach is to simplify

the assessment process by eliminating this second inversion step and taking the

reported probability as our estimate of the agent’s true beliefs. In doing so, the

decision maker should keep in mind the remaining potential for distortion, which is

mainly caused by incorrect estimation of the agent’s parameters, and understand

that her reports may be somewhat noisy due to this miscalibration.

If the decision maker wishes to avoid the potentially laborious process of

individually assessing parameter values for each agent beforehand, a simple

approach is to simply present the agent with the L-adjusted QSR with L� ¼ 3:7 and

take her resulting report as the estimate of her true beliefs. If the decision maker

does want to spend some time and effort to estimate the agent’s parameter values

ahead of time, he should focus on accurately assessing her loss-aversion parameter

k, since this offers a fair amount of flexibility in calibrating the scoring rule, and

variation in the other parameter values has a less significant effect on the optimal

report function.

Below we outline a simple approach that the decision maker can use to estimate k
and L on an individual basis: first, assume that the agent’s utility curvature is a ¼ 1

and probability weighting function is wðpÞ ¼ p. This implies that for a 50–50 lottery

between receiving x1 and x2, where x1 � x2, her consistent expectation is given by7

7 More generally, for any two outcomes x1 � x2, where x1 occurs with probability p and x2 occurs with

probability 1� p, the consistent expectation in this case can be written as

E ¼ ðx2 þ kpx1=ð1� pÞÞ=ð1þ kp=ð1� pÞÞ.
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Truthful Report (r=p)

Truthful Report (r=p)

(no loss aversion)

Truthful Report (r=p)

No Probability
Weighting (w(p)=p)

Probability Weighting

Fig. 4 Optimal consistent reports r�LðpÞ in response to the L-adjusted QSR with L ¼ 3:7 and c ¼ 0:5
when k ¼ 2:4, a ¼ 0:8, dþ ¼ 0:8, cþ ¼ 0:7, d� ¼ 1:1 and c� ¼ 0:7 versus truthful reporting (the solid

line). The upper graph considers varied values of k, keeping the other parameters fixed. The middle graph
considers varied values of a, keeping the other parameters fixed. The lower graph considers the cases of
probability weighting and no probability weighting, keeping the other parameters fixed
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E ¼ ðx2 þ kx1Þ=ð1þ kÞ: ð2Þ

Next, the agent is offered a choice from a carefully designed set of coin flips that

offer different payoffs depending on whether the coin ends up heads or tails. We

assume that the agent makes this choice so that she maximizes the consistent

expectation given in Eq. 2, meaning that she will prefer different lotteries for

different values of k. Specifically, the set of coin flips offered is designed so that

each lottery is the most preferred option for a specific interval of possible k values.

Once the agent selects her most preferred lottery from this set, the decision maker

can use her choice to make inferences about her loss aversion parameter, for ex-

ample, by taking the midpoint of the interval of k values for which that flip is the

most preferred. As noted in the discussion of Corollary 1, under these assumptions,

the optimal L-adjustment is then simply equal to that k estimate. An example of

such a set of coin flip lotteries and the k parameters implied by each can be found in

the description of the IC treatment in Sect. 3.

3 Experiment

Offerman et al. (2009) show that, in practice, proper scoring rules fail to elicit

truthful reports from human agents, with patterns of reporting behavior that match

the theoretical model of this paper. In this experiment we confirm the predictions of

the preceding theory and demonstrate the feasibility of the L-adjusted scoring rule

in recovering truthful beliefs from human subjects. In doing so, we demonstrate that

the L-adjusted rule provides a simple modification of the QSR that can be used for

most agents to obtain relatively accurate reports from the general population without

having to arduously assess individual parameter and curvature estimates. In

addition, we test several values of L and show that the proposed rescaling L� ¼ 3:7
is indeed the most effective at eliciting truthful beliefs from agents.

3.1 Experimental design and procedures

The computerized experiment was carried out at the CREED laboratory of the

University of Amsterdam. Subjects were recruited from the undergraduate

population using the standard procedure, with a total of 183 subjects participating

in the experiment. Subjects earned on average 13.00 euros (€) for an experiment that

lasted approximately 35 min. Subjects read the instructions on their screen at their

own pace. After finishing the instructions, they had to correctly answer some control

questions that tested their understanding before they could proceed to the

experiment. Subjects also received a handout with a summary of the instructions

before beginning the experiment (Appendix 2 in Supplementary Material provides a

sample of the instructions).

We employed a between-subjects design, in which each subject participated in

exactly one of four treatments. The first three treatments differed only in the size of

the loss correction applied to the QSR. In the control treatment we used L ¼ 1,

which therefore corresponds to the classical QSR that has been previously employed

Lossed in translation: an off-the-shelf method… 13
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in many experiments. We refer to this treatment as NC (mnemonic for no

correction). In treatment medium correction (MC), we applied a moderate-sized

correction of L ¼ 1:5 and in treatment large correction (LC) we applied the large

loss correction of L ¼ 3:7 derived and predicted to be optimal in Sect. 2.1.

In each of these three treatments, subjects were informed that the experiment

would last for 20 rounds and that at the end of the experiment one of the rounds

would be randomly selected and used for actual payment. In each round, a subject

was asked to give a probability judgment that a randomly drawn number from the

set f0; 1; . . .; 99; 100g would be in the range f0; 1; . . .; Yg. The randomly drawn

number was an integer and subjects knew that each number in the set

f0; 1; . . .; 99; 100g was equally likely. The range was given at the start of a round

and differed across rounds. The lower bound of the range was 0 and the upper

bound, which determined the true objective probability, differed across rounds. In

the 20 rounds we used the Y values f5; 10; . . .; 30; 33; 35; 40; . . .; 95g, in a random

order. For example, in the round that used Y ¼ 45, the subject was asked to give the

probability judgment that the randomly drawn integer would fall in the set

f0; 1; . . .; 45g. While the subject was free to report any probability that he or she

wanted, the objective probability of this event is given by p ¼ Yþ1
101

, so in the

example of Y ¼ 45 the true probability was p ¼ 46
101

. Each subject was presented

with the ranges in a random order to prevent the possibility that order effects might

confound the results. Subjects did not receive any feedback between successive

rounds, so there was no opportunity to learn from previous rounds.

Subjects were given a handout with a tabular depiction of the L-adjusted QSR

that pertained to their treatment. The table clarified how their possible payoffs

would change depending on what probability they reported. The scoring rules were

in units of euros rescaled by a factor of 3 and shifted upward by 12, so that payments

ranged between a minimum of €3 and a maximum of €15, and participants could

assure themselves a payoff of €12 by always reporting r ¼ 0:5.
Appendix 2 in Supplementary Material includes the three payoff tables that we

used in the experiment. When a subject had tentatively decided which report r he or

she wanted to provide in a given round, they were asked to type this probability

judgment into a box on the upper part of the screen. Once this response was entered,

the lower part of the screen then automatically displayed the relevant part of the

payoff table with the current decision highlighted. Using arrows, subjects could

scroll through the payoff table and if they desired, increase or decrease their report

until they settled upon an ultimate response. Their choice was not finalized until

they clicked the button ‘‘Satisfied with choice’’ (Appendix 2 in Supplementary

Material shows the decision screen). After a subject had provided all 20 responses,

the computer randomly selected exactly one round (indexed by the upper bound of

its range Y), which then determined his or her payment as follows: first, the

computer drew a random integer from the set f0; 1; . . .; 99; 100g and determined

whether the number was in the range f0; 1; . . .; Yg of that round or not. Second, the

payoff was determined by inputting both the realization of whether the number was

in the range or not and the subject’s probability judgment r for that round into to the
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scoring rule that the subject had faced. At the end of the experiment subjects filled

out a questionnaire and were privately paid their earnings.

In the fourth treatment we provided each subject with an individually calibrated

L-adjusted rule.8 We included this treatment individual correction (IC) to

investigate how much precision was lost by correcting each subject with the same

L-adjusted QSR. The uniform loss corrections that we use in MC and LC may not

work well when subjects differ substantially in their loss-aversion attitudes.

Treatment IC consisted of two parts: At the start, subjects were informed that they

would make 21 decisions in total, 1 in part 1 and 20 in part 2, and that at the end of

the experiment one of these 21 decisions would be selected at random for actual

payment. While making their decision for part 1, subjects did not yet have access to

the instructions of part 2. In part 1, each subject chose one of the 12 options listed in

Table 1. Subjects were told that if this decision were selected for payment, their

chosen option would determine their payment together with the outcome of a

random coin toss by the computer. If the coin flip came up heads (tails), then the

payoff in the second (third) column would apply.

The fourth column of Table 1 lists the L parameter implied by a subject’s choice

(this was not observed by our subjects). After part 1, subjects proceeded with part 2,

which was the same as in the other three treatments, except for the fact that each

subject was provided with their own individual L-adjusted scoring rule

corresponding to their choice in part 1. The 12 possible payoff tables for these

L-adjusted QSRs are included in Appendix 2 in Supplementary Material.

Table 1 Individual assessment of the loss-aversion parameter k (part 1 of treatment IC)

Option Earnings if

Heads

Earnings if

Tails

Implied L

(k interval)

How often

chosen?

jp � rj

1 24.25 3.00 1.0 (k� 1:25) 7 8.6 (12.1)

2 23.00 4.00 1.5 (1:25� k� 1:75) 2 11.6 (10.4)

3 21.25 5.00 2.0 (1:75� k� 2:25) 1 24.9 (18.3)

4 19.00 6.00 2.5 (2:25� k� 2:75) 13 8.7 (9.9)

5 16.25 7.00 3.0 (2:75� k� 3:25) 9 9.4 (13.8)

6 13.00 8.00 3.5 (3:25� k� 3:75) 8 6.9 (9.4)

7 11.50 8.40 4.0 (3:75� k� 4:25) 7 6.6 (5.8)

8 10.65 8.60 4.5 (4:25� k� 4:75) 1 47.3 (29.4)

9 9.65 8.75 5.0 (4:75� k� 5:25) 1 10.5 (9.7)

10 9.47 8.84 5.5 (5:25� k� 5:75) 0 –

11 9.18 8.89 6.0 (5:75� k� 6:25) 0 –

12 8.93 8.93 7.0 (k� 6:25) 1 1.9 (3.8)

The left 3 columns list the options between which the subjects in part 1 of treatment IC were asked to

choose; earnings are denoted in euros. The fourth column lists the L-parameter implied by a choice. The

fifth column lists how often each option was chosen and the final column lists, for each option, subjects’

average absolute deviations of the reported probabilities r from the true probabilities p (as determined by

the range Y according to p ¼ ðY þ 1Þ=101), with the standard deviations in parentheses

8 We are grateful to an anonymous referee for suggesting this treatment.
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We ran two separate sessions for each treatment. In total, 45 subjects participated

in NC, 42 subjects in MC, 46 subjects in LC, and 50 subjects in IC.

4 Experimental results

We start with a brief description of the individual differences in treatment IC listed

in Table 1. In part 1, 74 % of the subjects chose options that correspond to moderate

L parameters in the range ½2:5; 4�. The most common deviation was for subjects to

behave risk-neutrally and choose option 1; 14 % of our subjects behaved in this

way. The final column of Table 1 displays the absolute difference between reported

and true probabilities, averaged for all individuals who chose the same option in part

1. Interestingly, there is no clear relation between a subject’s implied L parameter

and the average absolute deviation of the reports from the true probabilities.

Subjects with large loss adjustments can be corrected roughly as well as subjects

with small loss adjustments.

Figure 5 provides an overview of the results by graphing the average reported

probabilities in each treatment as a function of the true objective probability p. The

solid black line presents the ideal report function of correct objective probabilities

r ¼ p. The control treatment NC displays a commonly observed pattern for data

collected with uncorrected scoring rules. Subjects overwhelmingly bias their reports

in the direction of risk aversion by reporting probabilities that are closer to 50 %

than the true probabilities. In the treatment with a medium correction MC, subjects’

these differences are substantially diminished compared to the control treatment, but

a systematic bias in the direction of risk aversion still survives. The treatment with

individual corrections IC provides on average the same results as MC when the true

probability is below 50 % but better results for true probabilities above 50 %.

However, under the treatment with a large loss correction LC, the systematic bias

Fig. 5 Average reported probability function rðpÞ for each treatment versus the true objective probability
report r ¼ p. Note that probabilities in the graph are written in percentage terms (% from 0 to 100) rather
than decimal units (0–1)
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vanishes and the average reported probabilities are almost identical to the true

probabilities across the whole range of p 2 ½0; 1�.
A good elicitation method not only avoids systematic biases but also minimizes

variance in the reported probabilities, so that reports will be both honest on average

and relatively precise, meaning that a typical deviation from the honest report will

not be too large. Figure 6 provides a more detailed view of reports in each treatment

by adding standard deviations above and below the average reported probabilities.

For treatments NC and MC, the standard deviation is smallest for the true

probability of 50 % and increases proportionally with the distance between the true

probability and 50 %. The picture is somewhat different for treatments LC and IC,

in which the standard deviation gradually diminishes as the probability increases.

Figure 7 displays the median reports in each treatment, which provides another

perspective of the ‘typical’ behavior under each treatment. We can see that median

reports in the control treatment NC display a wide flat region of uninformative

reports near 0:5 that is predicted by the preceding theory. This characteristic flat

region, which is highlighted more readily by the computation of the proportion of

50 % reports in Table 2 below, is masked in the graphs in Fig. 6 because the

underlying flat region is averaged against more extreme reports.

Table 2 compares the performance of the treatments with respect to six measures.

First, for each subject we computed the average absolute difference between the

reported and true probabilities. Both treatments MC and LC that apply a loss

correction perform substantially better than the control treatment without such a

correction, with absolute errors roughly halved. Mann-Whitney tests that use

average statistics per subject as data points reveal that the differences between MC

and NC and between LC and NC are both significant. Thus, in both treatments

where a uniform loss-correction is applied (MC and LC), subjects’ reported

probabilities are systematically closer to the actual probabilities than without a loss-

correction (NC). Treatment LC performs on average somewhat better than MC, but

this difference is not significant. Surprisingly, treatment IC produces on average

somewhat worse results than LC and MC, but the differences are far from

significant. Like MC and LC, IC yields a clear and significant improvement

compared to NC.

A similar picture emerges for our second error measure, which is based on

subjects’ average squared differences between reported and true probabilities.

Again, the MC, LC, and IC treatments substantially and significantly outperform the

control treatment NC, and while LC additionally seems to do a somewhat better job

than MC and IC, the latter differences are not significant.

As a third measure, we computed the Spearman rank correlation between

reported and true probabilities for each subject. Ideally, a belief elicitation measure

would elicit beliefs that perfectly correlate with true probabilities. In studies that

employ uncorrected scoring rules, it is well known that a few subjects are very much

attracted by the sure payoff corresponding to a report of 50 %, which results in a

poor correlation between reported and true probabilities. Table 2 shows that indeed

MC and in LC produce substantially and significantly higher Spearman rank

correlation coefficients than NC does. Likewise, IC also yields a clearly larger
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correlation than NC, but this difference fails to reach conventional significance

levels. The differences between MC, LC and IC are again insignificant.

As a fourth measure, we compare the treatments to the extent that they induce

uninformative 50 % reports. If subjects were to always report true probabilities,

reports of 50 % should occur in only 1=20th of the cases. NC and MC substantially

overshoot this ideal benchmark, with frequencies of 50 % reports equaling 39.8 and

23.5 %, respectively. In comparison, IC and in particular LC perform very well,

producing such reports only 16.0 and 10.1 % of the time, respectively. All pairwise

differences between the treatments are significant with respect to this frequency of

50 % reports, except the one between MC and IC and the one between LC and IC.

The fifth measure focuses on the frequency of uninformative 50 % reports when

the true probability equals 45 or 55 %. As explained in Sect. 2, loss corrections are

expected to matter most for such true probabilities close to 50 %. In agreement with

the theoretical arguments, the difference in the frequency of reports of 50 % is

particularly large in this category. NC and MC perform especially poorly with

respect to this benchmark, with frequencies of 50 % reports equaling 62.2 and

39.3 %, respectively. Again, LC and IC do a much better job in comparison; in these

treatments, such reports occur only 22.8 and 24.0 % of the time, respectively.

Finally, our sixth measure makes precise the extent to which the three treatments

suffer from systematic risk biases. For each subject, we computed how much on

average a subject biased the report in the direction of 50 %. If the average risk bias

is positive (negative) then this provides evidence that subject are risk averse (risk

seeking). Consistent with Fig. 6, the final column of Table 2 shows that subjects are

bFig. 6 Average reported probability function rðpÞ with þ=� one standard deviation for each treatment
versus the true objective probability report r ¼ p. Note that probabilities in the graphs are written in
percentage terms (% from 0 to 100) rather than decimal units (0 to 1)

median

Fig. 7 Median reported probability function rðpÞ for each treatment versus the true objective probability
report r ¼ p. Note that probabilities in the graph are written in percentage terms (% from 0 to 100) rather
than decimal units (0 to 1)
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very biased in the direction of risk aversion in treatment NC. In treatments LC and

IC, there is almost no bias, and the bias in treatment MC falls roughly in the middle

of the other treatments. All risk bias differences between the treatments are highly

significant, except the one between MC and IC.

Figure 8 shows how average absolute errors jr � pj in the report vary with the

objective probability p in each of the treatments. The uncorrected scoring rule

performs well precisely where we would expect it to—the incentives to make a

conservative baseline report of 50 % impel almost unanimously honest reporting

when the objective probability is in fact very close to 50 %. However, the

uncorrected scoring rule performs far worse than the loss-corrected scoring rules

when the true probabilities are larger than approximately 65 % or smaller than

approximately 35 %. In other words, errors in the uncorrected scoring rule occur

exactly in cases where the effects of loss and risk aversion kick in most heavily.

Overall, the uncorrected scoring rule thus proves to be unreliable for eliciting

subjective beliefs, since the decision maker does not know which of these regions

the true probability belongs to.

Figure 9 displays the empirical density of the Spearman-rank correlation

coefficients in the three treatments. In all treatments most subjects have fairly high

Spearman-rank correlation coefficients larger than 0.9, while a few subjects have

very low coefficients smaller than or equal to 0.5. The treatments differ primarily in

the relative frequency of these two categories of correlation coefficient (high or

low). The proportion of overly cautious or haphazard reporters with a low

coefficient of less than or equal to 0:5 equals 20.0 % in NC, 14.0 % in IC, 7.1 % in

MC and only 2.2 % in LC.9
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Fig. 8 Average absolute error jr � pj in the reported probability function rðpÞ for each treatment. Note
that probabilities in the graph are written in percentage terms (% from 0 to 100) rather than decimal units
(0–1)

9 In total, 6 subjects in NC, 2 subjects in MC and 1 subject in IC reported 50 % in every round, while no

subject in the LC treatment reported 50 % in every round. In contrast, the proportion of consistent

reporters with a coefficient of at least 0.9 equaled 60.0 % in NC, 73.8 % in MC, 78.0 % in IC and 80.4 %

in LC.
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5 Discussion

In practice, quadratic and other proper scoring rules can fail to recover the true

probabilistic beliefs that they are designed to elicit. Distortions in agents’ reports

generally take one of two forms: first, a risk-averse agent may bias her report away

from categorical beliefs of 0 and 1, as predicted by, for example, the theory of

Winkler and Murphy (1970). Second, a risk-averse agent with moderate beliefs

close to the baseline probability of 1=2 may revert to simply reporting 1=2 in order

to receive a risk-free payoff. In other words, under proper scoring rules such as the

classical QSR, we should expect to see a large proportion of uninformative reports

of r ¼ 0:5, and even strong beliefs near 0 or 1 will be skewed toward this focal point
of c ¼ 0:5. This pattern of conservative behavior, which has been observed

experimentally by, for example, Offerman et al. (2009) and in the experiment of this

paper, is explained by the prospect theory model in Sect. 2 of this paper.10

The predictions of this theory reinforce the existing result that agents may not

reveal their true beliefs even when assessed by a proper scoring rule, and provide an

explanation for when and why we might expect to see these two forms of

distortions. As demonstrated in Sect. 2, both effects appear to be largely driven by

loss aversion, which motivates the agents to seek a certain payoff when they have

moderate beliefs and to lower their risk by generally shading their reports closer

toward 1=2 for stronger beliefs. The intuition here is that reporting something other

0.5 0.6 0.7

Spearman rank correlation between r and p

0.8 0.9 1

Fig. 9 Histogram of the Spearman-rank correlation (SRC) between the true probabilities p and the
subject’s reported probabilities r. The figure displays for each SRC the percentage of subjects that fall in
the interval [SRC - 0.05, SRC ? 0.05]. The few observations where SRC\ 0.5 are added to SRC = 0.5

10 In situations where agents receive rewards from reporting beliefs and from making additional

decisions, other distortions may emerge. In such cases, agents may hedge their beliefs, for example in

order to guarantee a minimal payoff. The extent to which hedging biases reports when beliefs are

incentivized is discussed in Blanco et al. (2010) and Armantier and Treich (2013).
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than 1=2 introduces uncertainty into the payoffs, so that some outcomes will be felt

as gains and some outcomes will be felt as losses. As a result, a loss-averse agent

with beliefs close to 1=2 (who doesn’t have much better information than the default

baseline prediction) will not find it worthwhile to expose herself to the possibility of

these losses. The L-adjusted QSR, which generalizes the classical QSR, can be

calibrated to correct for both forms of distortions predicted by this prospect theory

model of optimal reports. The L-adjusted QSR provides a simple scoring rule that

can be used in a straightforward manner to elicit an agent’s true subjective

probabilistic beliefs. The main challenge in successfully implementing this rule is

that the optimal choice of L� requires an accurate estimate of the agent’s parameters

a, k, and wðpÞ. In particular, when applying this adjustment the decision maker

needs to be careful not to use an unsuitable value of L. For example, an agent who is

truly risk neutral will respond to an L-adjusted scoring rule by biasing her reports

away from 1=2 for any choice of L[ 1.

Our experimental results demonstrate that the biases in people’s reports respond

to the adjusted QSR as predicted by the theory. Our data suggests that the optimal

calibration of L� ¼ 3:7 for the average population does indeed perform better than

the other treatments, but even the moderate-sized correction of L ¼ 1:5 provides a

vast improvement over the classical unadjusted QSR. The major potential benefits

of this L-adjustment include eliminating the flat region of reports r ¼ 1=2 for

moderate beliefs, which are uninformative and prevent the optimal report function

from being inverted, and de-biasing reports, so that they provide truthful subjective

beliefs on average.

In theory, when processing reports, an decision maker would need to implement

an additional second step of computing r��1
L ð�Þ and inferring true beliefs according

to r��1
L ðrÞ rather than simply using the raw report r as the estimate. In practice,

however, the impact of this additional step will be very small and likely dwarfed by

noise in the reports and errors in the calibration of L to the agent. Our experiment

confirms that the second step is indeed unnecessary, and that reports can be simply

recorded as provided in a straightforward manner.

For the general population, L ¼ 3:7 does seem to be the best adjustment to use, as

predicted by applying existing empirical estimation of population parameters to our

theoretical results and as evidenced in our experiment. Importantly, a more

laborious procedure in which we provide each subject with an individually

calibrated L-adjusted rule produces slightly worse results. The difference in

performance is small though, and far from significant. One possible explanation is

that we did not estimate subjects’ loss aversion parameters with sufficient precision.

An avenue for future research is to try to improve the results of the IC treatment by

estimating a subject’s loss-aversion parameter on the basis of a series of choices.

Our conjecture is that the potential benefits of such an approach are limited. As the

results of our paper indicate, no systematic risk bias remains when subjects are

adjusted with the L� ¼ 3:7 rule. Moreover, absolute differences between reported

and true probabilities are small under this approach, leaving very little scope for

improvement.

Lossed in translation: an off-the-shelf method… 23

123

Downloaded from https://www.cambridge.org/core. 23 Aug 2025 at 03:43:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Finally, we would like to emphasize that while we only formally examined L-

adjustments to a QSR, an exactly analogous adjustment could be applied to any

other proper scoring rule with bounded payoffs. Applying the same analysis of

behavior under risk will yield similar results; we would expect loss aversion to

induce both a region of uninformative baseline reports for moderate beliefs and

reports that are biased away from the agent’s true belief for stronger beliefs. The

same L-adjustment should be equally effective at recovering informative responses

by pulling the endpoints of the interval of baseline reports together until this ‘‘flat

region’’ in the response function is eliminated. While there exists a closed-form

solution for these results under the QSR, these optimal response functions and L-

adjustments would have to be solved numerically for more general scoring rules.
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Appendix 1

Reporting under a general asymmetric L-adjusted QSR

To derive a closed-form solution for the optimal reporting strategy in response to a

general asymmetric L-adjusted QSR, we need to make an additional assumption on

reporting behavior:

Definition 2 (Directional Reporting) We say that the agent’s reporting preferences

are directional if p� c ) r � c and p� c ) r � c for any beliefs p.

Directional reporting holds automatically in the optimal reporting strategy when

the baseline c ¼ 0:5 (this follows through a symmetry argument, see the proof of

Proposition 1 for details) as in the classical QSR, and approximately for a broad

range of realistic parameter values when c 6¼ 0:5. Assuming directional reports is

natural in the context of real-world agents who are asked to provide a report of their

beliefs relative to some baseline, asserting that reporting behavior will be restricted

to shading reports either toward or away from the baseline probability of c. While

this assumption is not required to compute an agent’s optimal consistent report

function, we will assume that it holds for the analysis that follows because it allows

for closed-form solutions.

Proposition 3 If the agent reports directionally, the optimal consistent report

function to an asymmetric L-adjusted QSR is
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where KðpÞ ¼ kw�ðpÞ
wþð1�pÞ is the agent’s loss-weighted odds ratio of event A.

As before, the results are preserved under arbitrary positive linear rescaling of the

payoffs. In other words, for any positive linear rescaling of the payoffs
~SLðrÞ � aSLðrÞ þ b, a[ 0; b 2 R, the optimal consistent report remains ~r�LðpÞ ¼
r�LðpÞ and the corresponding optimal expected outcome is simply rescaled according

to ~E�ðpÞ ¼ aE�ðpÞ þ b.

The decision maker should then calibrate the L-adjusted QSR by selecting the

value of L� that solves

w�1
�

cL�

1�c

� 	a

kþ cL�

1�c

� 	a

 !

¼ w�1
þ

k
ð1�cÞL�

c

� �a
þk

0

B
@

1

C
A

in order to eliminate the flat region of uninformative reports of c.

Proofs of Propositions 1–3 and Corollary 1

Proof of Proposition 1 This result is a special case of Proposition 3, with L ¼ 1,

a ¼ 1, and b ¼ 0. Note that directionality holds automatically if c ¼ 0:5. To prove

this, it is sufficient to show that �E�ðpÞ� Ê
�ðpÞ for p� 0:5 and Ê

�ðpÞ� �E�ðpÞ for

p� 0:5 whenever the expectations �E�ðpÞ and Ê
�ðpÞ are both consistent. Observe that

when c ¼ 0:5, �Eðr j pÞ ¼ Êð1� r j 1� pÞ; where Eðr j pÞ denotes a consistent

expectation from reporting r when the probability beliefs is p. Since

�r�ðpÞ ¼ 1� r̂�ð1� pÞ, we have that �Eð�r�ðpÞ j pÞ ¼ �Eð1� r̂�ð1� pÞ j pÞ ¼
Êðr̂�ð1� pÞ j 1� pÞ; or �E�ðpÞ ¼ Ê

�ð1� pÞ. In particular, this means that

�E�ð1=2Þ ¼ Ê
�ð1=2Þ and �E�ðpÞ and Ê

�ðpÞ are symmetric around p ¼ 0:5. Then to

prove directionality it suffices to show that �E�ðpÞ is decreasing in p. As shown in

Proposition 3, �E0ðrÞ\0. d
dp
�r�ðpÞ ¼ L d

dp
KðpÞ

1
a

� 	

KðpÞ
1
aþL

� 	2, where KðpÞ
1
a � 0 and

d
dp
KðpÞ

1
a ¼ 1

aKðpÞ
ð1a�1Þ wþð1�pÞkw0

�ðpÞ�kw�ðpÞw0
þð1�pÞ

ðwþð1�pÞÞ2 � 0, so d
dp
�r�ðpÞ� 0. Then by the
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chain rule d
dp

�E�ðpÞ� 0, which implies that �E�ðpÞ is decreasing in p, Ê
�ðpÞ is

increasing in p, and the agent will prefer to report r � 0:5 for p� 0:5 and r � 0:5 for

p� 0:5. h

Proof of Proposition 2 This result also follows from Proposition 3, by setting

L ¼ 1 and comparing the case where a ¼ 1, and b ¼ 0 to the case of general a and

b. The optimal consistent report function is the same in both cases, and after

simplifying the expressions for the corresponding consistent expected outcome, we

also have that ~E�ðpÞ ¼ aE�ðpÞ þ b for all p. h

Proof of Proposition 3 By Lemma 1 of Palley (2015), for any risky prospect that

yields a payoff of y with probability p and z with probability 1� p, where y� z,

there exists a unique consistent expected outcome E 2 ½y; z� such that VðEÞ ¼ E,

which means there will be a unique E associated with any report r: Consider an L-

adjusted asymmetric QSR whose payoffs have been rescaled by an arbitrary positive

linear transformation aSLðX; rÞ þ b, a[ 0; b 2 R. The agent must consider three

separate cases when selecting the value of r to report: h

Case 1 (r\c): SLðrÞ ¼
a
ð1� cÞ2 � ð1� rÞ2

c2L
þ b\b if A occurs;

a
c2 � r2

c2
þ b[ b if �A occurs;

8
>><

>>:

meaning that a
ð1�cÞ2�ð1�rÞ2

c2L
þ b\E \ a c2�r2

c2
þ b and

vðSLðrÞ;EÞ ¼
E � k E � a

ð1� cÞ2 � ð1� rÞ2

c2L
þ b

 ! !a

if A occurs

E þ a
c2 � r2

c2
þ b � E

� �a

if �A occurs:

8
>>>><

>>>>:

Consistency requires that w�ðpÞ E � kðE � a
ð1�cÞ2�ð1�rÞ2

c2L
� bÞa

� �
þ wþð1�

pÞ E þ ða c2�r2

c2
þ b � EÞa

� �
¼ E; so the consistent expectation for r\c is

�EðrÞ ¼ a
c2�r2

c2
þKðpÞ

1
a ð1�cÞ2�ð1�rÞ2

c2L

� 	

1þKðpÞ
1
a

þ b, where KðpÞ � kw�ðpÞ
wþð1�pÞ :

�E is a concave quadratic

function of r, so its maximum occurs where �E0ðrÞ ¼

2a

c2 1þKðpÞ
1
a

� 	 1
L
KðpÞ

1
að1� rÞ � r

� �
¼ 0; meaning that �r� ¼ KðpÞ

1
a

KðpÞ
1
aþL

: However, this is

only consistent for r\c, so this reporting strategy is optimal only if
KðpÞ

1
a

KðpÞ
1
aþL

\c, or

equivalently, only if p\w�1
�

ð cL
1�c

Þa

kþð cL
1�c

Þa
� �

: Then for all p\w�1
�

ð cL
1�c

Þa

kþð cL
1�c

Þa
� �

, �E�ðpÞ ¼

�E KðpÞ
1
a

KðpÞ
1
aþL

� �

[ �EðcÞ ¼ b; and for all p�w�1
�

ð cL
1�c

Þa

kþð cL
1�c

Þa
� �

, reporting r\c is not optimal.
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Case 2 (r [ c): SLðrÞ ¼
a
ð1� cÞ2 � ð1� rÞ2

ð1� cÞ2
þ b\b if A occurs

a
c2 � r2

ð1� cÞ2L
þ b[ b if �A occurs,

8
>>><

>>>:

meaning that a c2�r2

ð1�cÞ2L
þ b\E \ a

ð1�cÞ2�ð1�rÞ2

ð1�cÞ2 þ b and

vðSLðrÞ;EÞ ¼
E þ a

ð1� cÞ2 � ð1� rÞ2
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þ b � E

 !a

if A occurs

E � kðE � a
c2 � r2

ð1� cÞ2L
þ b
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8
>>>>><

>>>>>:

Consistency requires that wþðpÞ E þ ða ð1�cÞ2�ð1�rÞ2

ð1�cÞ2 þ b � EÞa
� �

þ w�ð1�

pÞ E � kðE � a c2�r2

ð1�cÞ2L
� bÞa

� �
¼ E; so the consistent expectation for r [ c is

ÊðrÞ ¼ a

ð1�cÞ2�ð1�rÞ2

ð1�cÞ2
þKð1�pÞ

1
a c2�r2

ð1�cÞ2L

� �

1þKð1�pÞ
1
a

þ b: Ê is a concave quadratic function of r, so its

maximum occurs where Ê
0ðrÞ ¼ 2a

1þKð1�pÞ
1
a

� 	
ð1�cÞ2

ð1� rÞ � Kð1� pÞ
1
a r

L

� �
¼ 0;

meaning that r̂� ¼ L

Kð1�pÞ
1
aþL

: However, this is only consistent for r [ c, so this

reporting strategy is optimal only if L

Kð1�pÞ
1
aþL

[ c, or equivalently, only if

p[w�1
þ

k
ðð1�cÞL

c
Þaþk

� �

: Then for all p[w�1
þ

k
ðð1�cÞL

c
Þaþk

� �

, Ê
�ðpÞ ¼

Êð L

Kð1�pÞ
1
aþL

Þ[ ÊðcÞ ¼ b; and for all p�w�1
þ

k
ðð1�cÞL

c
Þaþk

� �

, reporting r [ c is not

optimal.

Case 3 (r ¼ c): SðrÞ ¼ b, meaning that E ¼ b and vðSðrÞ;EÞ ¼ b. Then

consistency is satisfied since VðEÞ ¼ b ¼ E.

Then for any belief p, the agent has three reporting choices:

1. r\c, in which case she will receive �Eð�r�ðpÞÞ
2. r [ c, in which case she will receive Êðr̂�ðpÞÞ, or
3. r ¼ c, in which case she will receive E ¼ b.

If w�1
�

ð cL
1�c

Þa

kþð cL
1�c

Þa
� �

\w�1
þ

k
ðð1�cÞL

c
Þaþk

� �

, then the only consistent report for p 2

½w�1
�

ð cL
1�c

Þa

kþð cL
1�c

Þa
� �

;w�1
þ

k
ðð1�cÞL

c
Þaþk

� �

� is r ¼ c, r� ¼ KðpÞ
1
a

KðpÞ
1
aþL

for p\w�1
�

ð cL
1�c

Þa

kþð cL
1�c

Þa
� �

, and r� ¼

L

Kð1�pÞ
1
aþL

for p[w�1
þ

k
ðð1�cÞL

c
Þaþk

� �

.
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If w�1
�

ð cL
1�c

Þa

kþð cL
1�cÞ

a

� �
�w�1

þ
k

ðð1�cÞL
c

Þaþk

� �

, then for p\w�1
þ

k
ðð1�cÞL

c
Þaþk

� �

we have

r� ¼ KðpÞ
1
a

KðpÞ
1
aþL

, for p[w�1
�

ð cL
1�c

Þa

kþð cL
1�c

Þa
� �

we have r� ¼ L

Kð1�pÞ
1
aþL

, and for p 2

½w�1
þ

k
ðð1�cÞL

c
Þaþk

� �

;w�1
�

ð cL
1�c

Þa
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1�c

Þa
� �

� we have r� ¼ argmax �Eð KðpÞ
1
a

KðpÞ
1
aþL

Þ; Êð L

Kð1�pÞ
1
aþL

Þ
� �

.

Under the assumption of directional reporting, this simply reduces to r� ¼ L

Kð1�pÞ
1
aþL

for p 2 ½w�1
�

ð cL
1�c

Þa

kþð cL
1�c

Þa
� �

; c� and r� ¼ KðpÞ
1
a

KðpÞ
1
aþL

for p 2 ½c;w�1
þ

k
ðð1�cÞL

c
Þaþk

� �

�.

The consistent ex ante expected outcome corresponding to the optimal consistent

report r�ðpÞ is E�ðpÞ ¼

a

c2 � KðpÞ
1
a

KðpÞ
1
a þ L

 !2

þKðpÞ
1
a

L
ð1� cÞ2 � L

KðpÞ
1
a þ L

 !2
0

@

1

A

c2 1þ KðpÞ
1
a

� � þ b; p\min c;w�1
�

cL

1� c

� �a

kþ cL

1� c

� �a

0

B
B
B
@

1

C
C
C
A

8
>>><

>>>:

9
>>>=

>>>;

;

b; min c;w�1
�

ð cL

1� c
Þa

kþ cL

1� c

� �a

0

B
B
@

1

C
C
A;

8
>><

>>:

9
>>=

>>;

� p� max c;w�1
þ

k

ð1� cÞL
c

� �a

þk

0

B
B
@

1

C
C
A

8
>><

>>:

9
>>=

>>;

;

a

ð1� cÞ2 � Kð1� pÞ
1
a

Kð1� pÞ
1
a þ L

 !2

þKð1� pÞ
1
a

L
c2 � L

Kð1� pÞ
1
a þ L

 !2
0

@

1

A

ð1� cÞ2 1þ Kð1� pÞ
1
a

� � þ b; p[ max c;w�1
þ

k

ð1� cÞL
c

� �a

þk

0

B
B
@

1

C
C
A

8
>><

>>:

9
>>=

>>;

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

Proof of Corollary 1 If c ¼ 1=2, then we need L� to satisfy

w�1
�

ðL�Þa
kþðL�Þa
� �

¼ w�1
þ

k
ðL�Þaþk

� �
, or w�1

�
ðL�Þa

kþðL�Þa
� �

¼ 1� w�1
�

ðL�Þa
ðL�Þaþk

� �
. This means that

1=2 ¼ w�1
�

ðL�Þa
ðL�Þaþk

� �
, or ðL�Þaw�ð1=2Þ þ kw�ð1=2Þ ¼ ðL�Þa. Rearranging terms,

ðL�Þa ¼ kw�ð1=2Þ
1�w�ð1=2Þ ; which yields the desired result. h
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Huck, S., & Weizsäcker, G. (2002). Do players correctly estimate what others do? Evidence of

conservatism in beliefs. Journal of Economic Behavior and Organization, 47, 71–85.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica,

47(2), 263–292.

Karni, E. (2009). A mechanism for eliciting probabilities. Econometrica, 77(2), 603–606.

Keeney, R. L. (1982). Decision analysis: An overview. Operations Research, 30(5), 803–838.

Koszegi, B., & Rabin, M. (2006). A model of reference-dependent preferences. The Quarterly Journal of

Economics, 121(4), 1133–1165.

Koszegi, B., & Rabin, M. (2007). Reference-dependent risk attitudes. The American Economic Review,

97(4), 1047–1073.

Kothiyal, A., Spinu, V., & Wakker, P. P. (2011). Comonotonic proper scoring rules to measure ambiguity

and subjective beliefs. Journal of Multi-Criteria Decision Analysis, 17, 101–113.

Loomes, G., & Sugden, R. (1986). Disappointment and dynamic consistency in choice under uncertainty.

Review of Economic Studies, 53(2), 271–282.

McKelvey, R. D., & Page, T. (1990). Public and private information: An experimental study of

information pooling. Econometrica, 58(6), 1321–1339.

Murphy, A. H., & Winkler, R. L. (1984). Probability forecasting in meteorology. Journal of the American

Statistical Association, 79(387), 489–500.

Nyarko, Y., & Schotter, A. (2002). An experimental study of belief learning using elicited beliefs.

Econometrica, 70(3), 971–1005.

Offerman, T., Sonnemans, J., & Schram, A. (1996). Value orientations, expectations and voluntary

contributions in public goods. Economic Journal, 106, 817–845.

Offerman, T., Sonnemans, J., van de Kuilen, G., & Wakker, P. P. (2009). A truth serum for non-

bayesians: Correcting proper scoring rules for risk attitudes. The Review of Economic Studies, 76,

1461–1489.

Palley, A.B. (2015). Great expectations: Prospect theory with a consistent reference point. Working

Paper.

Plott, C. R., & Zeiler, K. (2005). The willingness to pay-willingness to accept gap, the endowment effect,

subject misconceptions, and experimental procedures for eliciting valuations. American Economic

Review, 95(3), 530–545.

Prelec, D. (1998). The probability weighting function. Econometrica, 66(3), 497–527.

Lossed in translation: an off-the-shelf method… 29

123

Downloaded from https://www.cambridge.org/core. 23 Aug 2025 at 03:43:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Rutström, E. E. (1998). Home-grown values and the design of incentive compatible auctions.

International Journal of Game Theory, 27(3), 427–441.

Schlag, K. H., Tremewan, J., & van der Weele, J. J. (2014). A penny for your thoughts: A survey of

methods for eliciting beliefs. Experimental Economics. doi:10.1007/s10683-014-9416-x.

Shalev, J. (2000). Loss aversion equilibrium. International Journal of Game Theory, 29, 269–287.

Trautmann, S.T., van de Kuilen, G. (2011). Belief elicitation: A horse race among truth serums. Tilburg

University Center for Economic Research Discussion Paper 2011–117.

Tu, Q. (2005). Empirical analysis of time preferences and risk aversion. CentER Ph.D. Thesis 142,

Tilburg University.

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of

uncertainty. Journal of Risk and Uncertainty, 5, 297–323.

Winkler, R. L. (1969). Scoring rules and the evaluation of probability assessors. Journal of the American

Statistical Association, 64(327), 1073–1078.

Winkler, R. L. (1994). Evaluating probabilities: Asymmetric scoring rules. Management Science, 40(11),

1395–1405.

Winkler, R. L., & Murphy, A. H. (1970). Nonlinear utility and the probability score. Journal of Applied

Meteorology, 9(1), 143–148.

30 T. Offerman, A. B. Palley

123

Downloaded from https://www.cambridge.org/core. 23 Aug 2025 at 03:43:38, subject to the Cambridge Core terms of use.

http://dx.doi.org/10.1007/s10683-014-9416-x
https://www.cambridge.org/core



