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ON THE HYPERELLIPTIC RIEMANN SURFACES
OF INFINITE GENUS WITH ABSOLUTELY
CONVERGENT RIEMANN’S THETA
FUNCTIONS

KENICHI TAHARA

Introduction

The Riemann’s theta functions associated with a closed Riemann surface
are absolutely convergent. In the present paper, we shall show an example
of an hyperelliptic Riemann surface ® of infinite genus such that the
Riemann’s theta functions associated with # are absolutely convergent.

In §1, we shall formally define theta functions of countably many
variables with rational characteristics in the same way as the usual theta
functions of finite variables, and show the sufficient conditions under which
these theta functions are absolutely convergent.

In §2, using the condition we shall really construct an hyperelliptic
Riemann surface ® of infinite genus such that the Riemann’s theta functions
associated with % are absolutely convergent.

The auther expresses his appreciation to professor Morikawa for his
suggestions and encouragements during the preparation of this paper.

We shall freely use the following notations and conventions throughout

the present paper;

2: the coordinate vector space consisting of all vectors with countably
many components in the rational number field @, of which almost all
components are Zzero,

I': the subgroup of 2 consisting of all the integral vectors,

A= QI': the residue group of 2 by I,

[al=[a, @, -+ +]: the class of a vector @ = (a;, a5, ++++) in the residue
group A.
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§1. The sufficient conditions for absolute convergence of the
theta functions of countably many variables

1.1 We shall formally define the theta functions of countably many
variables with rational characteristics in the same way as usual theta func-
tions of finite variables.

Let z;,(i,j=1,2, ----) be complex numbers such that ¢, ;=<
and z,(i =1,2, - - -+) be complex variables. For the sake of simplicity we
shall use the matrices notations; = = (¢;,;) and z= (2,25, - - - -). For each
element [a] = [a;,a, ++++] in A, we shall formally define the theta function
of variables z,,2,, « + - with characteristic [a] by the formal series
L 1) 19[',](1_[2) _ enslil-{igﬂr;,j(Mﬁat) (mj+a/)+2i§1(mf+ai)h}.

(m1,m3, se0)E2%

The function 9p,;(z]z) does not deﬁend on the choice of the representative

a= (a;,a, -+++) of the class [a], and generally it does not converge. The
theta zero-value is defined by

(1. 2) Yar () = 2 ew__l{i.gﬂ””'(m”' @) Omybas) |
. o .

(my,ma, ee0)E 2™

From the definitions (1. 1) and (1. 2), we have the following formula in the
same way as the usual theta functions;

=T ( 3 = Li2 3 Lz,
i, F=1 IR

(1. 3) aftlle +2)=¢ Iai(zl2)
(T=(lyly -+--)E27)
(1. 4) a1 (Tl —2) = I_47]2)
—ay=T( 3 rnbb+2 3 ba)
(1. 5) g[u](f]bf + Z) =e i j=1 i=1 [a]+[b](7-'lz)
(6] € A)
(1. 6) a3 (7) = I_qa)(7)
2 =T( 3 ., b8
(1.7 Ita1418) (7) = € ' (i’§=1 )19[:1] (z]b7)
([6] € A).

1. 2 We shall first be concerned with the special case: the infinite
products of the elliptic theta functions with rational characteristics.
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Let - be a complex number of which imaginary part is positive, and
z be a complex variable. For each element [¢] in Q/Z, the elliptic theta
function with characteristic [¢] is defined by

Yy (cl2) = mgz g™ ~Lr(mtatt2a(mtad}

Then these functions J;,i(r|2)([a] € Q/Z) are absolutely convergent in any

bounded domain of values of 2.
We shall recall the estimations of the elliptic theta functions 9,;(c|2).

LemMa 1. Let s be the tmaginary part of <, being positive, and x be the
imaginary part of z.  Then
o

[900(cl2) | < & 1 17% ¢e® (deQlz)

and

T2

|Satele) =1 s [1— e s (e @),

Proof. From the definition of the functions 9y,;(c|2) it follows that

oy (el2) [ 3 emisembarsasonta)

meZ
ma? 2
5 —7s m+a+i)
e’ e ( s
'mgz

s [ et ) 4 Sw

—c0

e""(”‘”‘%)zd y 1

IA

w2t 1)
- e—na(as+2x) + L_ eT

Similarly we have the last inequalities, Q.E.D.
Putting [a] =[0], we have

COROLLARY.

Ltz

’9[o]<rlz)’§1+‘% ot

D See p. 10, [1].
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and

a2

1 s
I 2)—1l|<—e ° .,
ro1(c12) =

Let z;(i = 1,2, - - - +) be complex numbers of which imaginary parts s,
are positive, and #z,(i = 1,2, - - - ) be complex variables. For each element
[al =[ay @, -+ - +]1in A, consider the infinite product

Igl’g[ai] (eils)
of the elliptic theta functions ,;(z;]2,).

PropostTioN 1. Let s, (i =1,2,+ -+ ) be the imaginary parts of ;, being
positive for all i. If the infinite series

© 1
2

is convergent, then the infinite products of the elliptic theta functions 9,7 (c;12;)
iI=I18[ai] (ci124) (al=1la, @, -+--1€ 4)
are absolutely convergent in any bounded domain of values of each variable z;?.

Progf. The infinite product ii.—il Y4 (zil2;) is absolutely convergent in
any bounded domain D of values of each variable z, if and only if the
infinite series gl | 9aq(zil2;) —1] is convergent for each z= (2,2, «---)
such that all z,._ are in D. Since [a] belongs to A, there exists a natural
number N such that ¢, =0 for all i >N. From Lemma 1 and it’s corol-
lary it follows that

22

o N oo
2 sl — 1] B [emmecenin —q 4 5 gme
¢ i=1 i=11/si

i=1

where z; mean the imaginary parts of z;,. If the infinite series 3} Vi:
=1 i

is convergent, then the infinite series

2) “Variables 2=(2q,25,+++) are in a bounded domain of values of each variable z;”
means that each variable z; is in one and the same bounded domain in the complex plane.
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nx2

e ™

27

17s;

converges for each z = (2,2, ----) such that all z; are in D, Q.E.D.
1.3 Let ¢, 4i,7=1,2,----) be complex numbers such that 7, ; =,

and 2; (i =1,2, ---.) be complex variables. We shall give the sufficient

conditions such that the theta functions 9,;(z|z)([a]l€ 4) are absolutely

convergent in any bounded domain of values of each variable z,.

Prorosition 2. Let s, ,(i,j=1,2, - -+ +) be the tmaginary parts of <, ;.
If the following conditions are satisfied,

(%) Si — _21 |s;,;1 are positive for all i
=
i
and
(+4) e oo,
A
’ «/si.i_ 2 lsi.jl
j=1
j#Ei

then the theta functions 9,,(z|z) (lal € A) are absolutely convergent in any bounded

domain of values of each variable z,.

Proof. Assume that the conditions () and (s+) are satisfied. Denote
by x; (i =1,2, -+ .) the imaginary parts of z;, From the inequalities

2 Isi.j(mi + a;) (mj + aj)l = ‘Si,jl {(m; + a)? + (mj + aj)z}’
it follows that

]19[.,] (zl2)]

o o o
e-ﬂ{ I Sii(mita)?+2n B s, j(mita;) (mytaj)|~2n 3 @i (mit+a;)
—(m m ez i=1 J>1 i=1
1,Mg, oo

—71'_020 (S~ ; Is651) (my+a;)2—2m ; 2, (mi+a;)
= € =1 J=1 i=1
(my,ma, eee)E 2 Jet

Putting s; = s;,;, — X2} s:,;], then s, are positive for all i, If the infinite
=1

J#i
series

ad —7s, 2 _onx,
(1. 8) _21 l Z ¢ nsi(mit+a)? —2na,(my +a) 1l
i=

meZ
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is convergent, then the infinite product

(oo}

1.9 10 e*‘"st(mi-l-at)z—2"xi(mt+ﬂ¢)

( ) i=1 méz

is bounded for each z= (2,2, - ---) such that all 2z, are in any bounded
domain D. Since [a] = [aj,a,, - +]11s in A, there exists a natural number
N such that ¢, =0 for i >N. We have the following inequalities in the
same way as the proof of Lemma 1,

T2

Si

N oo
= E le‘””ﬁ(‘zisi“i‘zzﬁ) _ 1i+ 2 F e .
1 i=1VS8;

H‘

Similarly as the proof of Proposition 1, if the infinite series

1
17s;

M

z

It

is convergent, then the infinite series (1. 8) hence the infinite product (1. 9)
are bounded, which completes the proof of Proposition 2.

Prorostrion 3. Let s;,;(¢,7 =1,2, - -+ -) be the imaginary parts of <;, ;.
If the following conditions are satisfied;

(%) Sii— 23 8;.52— (6 — 1) are positive for all i,
i>i

and

() i T s < 00,

then the theta functions 9,(z|2)(lal € A) are absolutely convergent in any bounded
domain of values of each variable z,.

Proof. Denote by »; (i =1,2, -+ -.) the imaginary parts of z,, From
the inequalities

2] si,j(mi + a;) (mj + aj)l = si.jlz(mi +a)? + (le + 0]')2};
it follows that

[y (z12)]
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© © o
e“".E Si, (myta)?+en 3 |s, j(mita;) (mj+ap)|—2n 3 5 (m+a;)
i=1 J*i i=1

T (my,mg, e )E 2

< e_nieél{si' i_jgi i 2 =G =D} mi+a)? —27’7:02:1%(7’”1 +a)
——(m;,mz,---)EZ°° :
Therefore, similarly as the proof of Proposition 2, we have Proposition 3,

Q.E.D.

§2. An hyperelliptic Riemann surface of infinite genus with
absolutely convergent Riemann’s theta functions

2.1 We shall show an example of an hyperelliptic Riemann surface
R of infinite genus such that the Riemann’s theta functions associated with
R are absolutely convergent in any bounded domain of values of each variable.

Let e, ef, e, ¢}, -+ -- be a set of countably many number of succes-
sively increasing points on the real axis of the complex plane, which are
the candidates of branch points of an hyperelliptic Riemann’s branch cover-
ing of infinite genus over the Riemann sphere. Let C, be an hyperelliptic
curve of genus p defined by

).

We construct the two-sheeted Riemann surface %, of C, by joining the

P
2 _ __fX?ﬁ) X
y(p) x il;Il 1 e, (1 :

e

sheets along (p +1) non-intersecting cuts; — 0 0; ee]; ee}; - -3 eyeh.
We define on R, a set of 2p retrosections A;, B, in the usual way: Let A;
be a circuit in the first (upper) sheet surrounding the cut e;e}, and B, be
a circuit which crosses the only cuts — 0, e;ei. Then these circuits
Ay, Ay + -+, Ay By B,y - -+, B, are a canonical system of ®i,, from which
a canonical system of an hyperelliptic Riemann surface ® =lim®, is ob-

P

tained by the limit p — oo in the usual sense.
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Therefore {A;, Bi};—1,... i5 a canonical homology basis on the Riemann

surface ®; namely; let (C,C’) denote the intersection number of two cycles
C,C’ on R, then the intersection numbers of cycles on ® are characterized

by
(Ay A)) =0, (Bi,B)=0 (5,7=12, +--")
(A4, B))=0 (i#+j), (A,B)=1
We shall construct a system of elementary normal integrals of the first
kind on .

ProrositioN 4 (Myrberg). There exists a system of linearly independent
integrals ¥, (i =1,2, -+ +) of the first kind on R with the following periodsysiem
with respect to the canonical homology basis {A: Bi}icis,....

T 0 0 cvce 5 Ty Tie Tis
0 —=x 0 v v 5 Toy Taa Tas
.1 .
(2 ) 0 0 —_ o o 0 5 T31 T3z T3.3
such that
(2. 2) T, = T3 = V=1 85, (6,7 =1,2, «+ )

are pure imaginary numbers, and

(2. 3) $i,; >0 (6,7 =1,2, «~+>).

Moreover ¥, (i =1,2, ----) are umquely determined by the initial conditions
7, (0)=0.

Proof. From the results in [3], there exists a system of linearly in-
dependent integrals ¢; (i =1,2, --+.) of the first kind on ® with the
following periodsystem with respect to the canonical homology basis
{4, Bilic12. *

2m/—1 0 0 N S TR 2
0 2m/—1 0 3ot fan fags :
0 0 2m/—1 v 5 4, lya i
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where ¢, ; are real numbers and #,;>0. Put for each natural numbers i

wz = ]/——ZL S‘oi'

Then ¥; (i =1,2, - - --) are linearly independent integrals of the first kind
on R, and it follows that
V,(A) =—x, ¥T,(A)=0 (i+7),

and

v(B) =y—1(iL).

Therefore putting s, ; = t;'j , we have the system of linearly independent
integrals ¥; (i =1,2, ----) of the first kind on R with the required
periodsystem (2. 1). Moreover, since the integrals of the first kind on %
are uniquely determined except constants by A-periods whenever the cano-
nical homology basis choosen,® ¥, (i =1,2, -+ +) are uniquely determined
by the initial conditions ¥,(0) =0, Q.E.D.

Denoting

y2=xi§1 1——2 ><1—

)

we have the explicite expressions of the integrals ¥;;

X
e;

(2. 4) o= {28 gy =12, e,

where h;(x) =k, T (1— cf ) such that only one point «; belongs to the
i=1 5
J#i

open interval (e;,ej) on the real axis and k; is constant®.

2.2 To construct a nice example for our purpose, choose countably

many real numbers ¢, e, ¢, e5, - -+ - as the following;

(2. 5) el=e+1 (i=1,2 ")
and
2. 6) 1L <o,

i=1 €;

3) See Satz 1 in [5].
9 See [5].

https://doi.org/10.1017/5002776300001285X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001285X

66 KENICHI TAHARA

We shall start with the estimations of the lower bounds of the absolute

values s,,; of the diagonal elements r;,; in the B-period matrix of (2. 1).

We choose countably many real numbers 4,, 4,, - -+ - such that

(2- 7) O'< A1‘<ez+1 _e;.
Put
2. 8) Aj.izlej_eil—dz'—'l (1),
and
2.9 o= 1 (1 =1,2, ««+-).
/1oy,
i

In the following we shall make the assumptions

(2. 10) 4;,>0 (j+1)
and
(2. 11) P, <1 (1=1,2, »+++).

Then it follows that

1

@. 12) 0< <1 (j# i)
Aj’i
Under the above assumptions (2. 5), (2. 6), (2. 10) and (2. 11), we have the
following ;
Lemma 2.
S >(1—p)e e J— % logd;, (i=1,2, «+--).

e} -+ 4,

Proof. Since ¥, (A,)=—=z and ¥(B;,) =vV—1 s it follows that

T = S:, Jﬁ%‘@)ﬂ\dx
(2. 18) < |k |—= 10 l:,i’gj; _ r/i"”’ do
T el ) G -0

where z runs over the closed interval [e;, e;], and
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S = Sei:“tlﬁ%@—‘dx

xl

;><1— .

¢} and 2’ runs over the

(2. 14) <lk|

AT

where 0< 4, < ¢;4; —

min

e/ +4;

I,

V5 1)(

€;

closed interval [e}, e} + 4,].
Since only one point «; belongs to the open interval (e;, ¢j) (j i), we

have
x — a; 1 *r — a; 1
~~~~~~~~~ <1 , | PTG e
z— e * d;. x—e§‘< + 4;.
and
2" — a; 1 x' —a; 1
& 11— , ] —
z’ —e; ~ 4;, x’ —ej I >1 4;.
where 4;; = |e;—e;| —4;—1. From (2. 12), we have
s 1 o 1
o 1 j21.1°g(1+’2;:) PV ey

I (1+——)=e" <ot = by

j=1 .1

Jj*i

i=t 21 Ay v

j#*i J#i
and

ol +4, da’ -

[ —'x“i)‘x'*’ = 2/e,ef log W4, +1 +V4;)

“ \/< e, < PU I)

>]/eie§ IOg 4.

Therefore by virtue of inequalities (2. 13) and (2. 14), it follows that

Ikzl 0

2

and

| k;

’
A

L
+ 4,

s“'>M1/e (1— p,) log 4,
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where M= ( IOIo veel) ( ﬁ a;)'. Hence we have
i=1 j=1
J#Ei

s> (U= plet ) O ogd, (i=1,2, -+ +), QED.

We shall estimate the upper bounds of the absolute values s;; of
non-diagonal elements z; ; in the B-period matirix of (2. 1).
Under the assumptions (2.5), (2.6), (2.10) and (2. 11), we have the

following;
LeEmMMa 3.
. 2¢* | el ( 4;+1 RO
Sed = (1—0py) \/e; \|ej+A,-—ei|—1>Af2 (1)
Furthermore
4eP: 1/61 o
S5, << —p) (€ — ey — A ( ) (j< i)
and
Vel 4 -
4¢°: _ ___,,‘e_g (45 5 ) ‘
Si’j< (1_pl) (eiﬂ + Ai+1 —e; — 1) AJ( e§ > (] > l)-

Proof. By the similar method as the diagonal elements z;,;, we have
the following estimations;

iﬁ—kdm
Yy

,,::gef’ hy(
1 %

R [ e s ¢<el-1><1—

where z runs over the closed interval [e;, €], and

= R

r)

dz'" (j+ i)

’

11— ,x,: 1— x,

(2.16) < Ikl

/(4 ")(— 1>m¢(1— ")(1- o)

/I

https://doi.org/10.1017/5002776300001285X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001285X

RIEMANN SURFACES OF INFINITE GENUS 69

14

e +4; d
Y s
7 1)
€;

— x’
ARG

where z’” runs over the closed interval [e}, ¢} + 4,]. Similarly as the proof

of Lemma 2 we have

a1 ‘J’L_‘a& _ 1
T — €y >1 An,i ’ x~—e,’, >1 An.i
z!' —a ‘ 1 | 2 —a ’ 1
X Tl |1 , " B
‘ 2’ — e, <1+ An,j 'xn _ 81/; <14+ An’j
and
x — a; |< Aj +~1/~~_44A z — a; Aj +1
o —e | le;tdi—el—1" |27 —ef | Jeytdi—el —1°
Moreover
e/ +4; dx' e/ +4, du’ N
s N A e = W) ol A 2
ef ej £l

From the inequalities (2. 15) and (2. 16), it follows that

.|
1[>M ]/e:

(1—p)=

and

[Fil 4;+1 0 4
sea <My (g Ay = 1) A

Hence we have

2% el 4;+1 -
Sui <1 —p) \/7]< le; + 4, — e;] —1’)"f2‘
Furthermore
,Mﬁlfﬁ,* Z 4;+1 1 . .
o< @ oy o Came a1 ) 4T U<
Ve 4\
_ defs _Ve; (45N
< 1—p0;) (e,—ey— 4o —1) AJ( e; ) ’
and
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Ze" 4;,+1 .
Sty < N/ ( e+ 4, — ,—1”’)‘” (7> 1)
4 4\
4e’ e} N4 4N
< 1—0;) (s +4divi—e;—1) )AJ( ej > ’ QED
2.3 Finally we shall construct an example for our purpose. Put for

all national numbers i
(2. 17)

Then we shall consider the

e; = e,

8

4, = e,

assumptions (2. 10) and (2. 11) in this case.

From (2. 17) we have the inequalities
di;, =e—e;—d4;—1 (1<1i)
=e¢;—€_,—4,.,—1
=e’*—e—e—1>0,
di,=e;+4d;—e;—1 (7>1)
=e + 4 —e;—1
=e* 4 e —e—1>0.

Thus the assumption (2. 10) are satisfied in this case.

From the inequalities

2]

- e i
e—e—4,—1) ~ (a—eu—4d,-1 ~L U<i i=2
and
2] €iv1 . .
(e +4d;—e;—1) (o1 — €, — 1) =<
we have
_ ’f‘_f 1 + 3 1
= N Oy A L A
e, 501 e?* &1
< i+1 < ¢ sl <y
(€41 —e€;—1) =1 e® (e7*—e—1) =1 e®

Thus the assumption (2. 11) are satisfied in this case.

Put
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826 [
(2. 18) o = @ —e—1) gl 27
and
—(l—p)e?. ] €
(2. 19) g=(1—p)e FeiT

By virtue of the inequalities

€ & ___ e
el-l—A A R P |

and by Lemma 2 and Lemma 3, we have

(LJ’ 3 — 53 (5 e e
Siq > JZe i ] gi* (i =12, )
and
4e” z/el
IS L= 8] (e — eims — dis ( 1) U=,

1
4e* e Vez o . ‘Aj 2 ] )
Si'J < 7(T~—‘p) (ez+x + Az+1 ez - 1) < e;*> (] > l).

Therefore it follows that

S RS )
31'., < —
JZ=:2 ! (1—p)(626+e2’—e—1) Ez e;

4e/e 11 & -L
€ - 7’ <o
AP ie e —e—1) =° d

N

Since
ie1 T Ai+1—‘ei_1>ei—ei—1_di—x_“1>6’28"'2€"‘1 (i=2),

it follows that
3

% 4¢f/e?® + 1 2 4 7
S < S 2 T
];gg ! (1-— p) (eZG—Ze —1) j= 11/3;
J#i
0/ 026 1 1 w -3
defVe® + 1 e Sle P < (1 =2,3, + o)

< 1—p)(e®—2—1) &
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These mean the gool for our purpose;

s L——lez,j>0 (i =1,2, «+++)
J=

J#Ei
il 1
D === < 00,
i=1 had
\/Sm - 2 Si.5
j=1
i

Hence by virtue of Proposition 2 we have got the example for our purpose.

TueorREM. Let R be the hyperelliptic Riemann surface of infinite genus defined
by

&)

where e, = e and ej=e¢,+1 (i=1,2, ++++). Let {A,B}i—1,.. be the
canonical homology basis on R and ¥; (i =1, 2, - -+ +) be the system of linearly
independent integrals of the first kind on R, which are uniquely determined by the
initial conditions ¥, (0) = 0 and have the jfollowing periodsystem with respect to the
canonical homology basis {A; B;}i—13, ... ;

T 0 0 - 5 Tt Tie T ‘
0 —= 0 ==ec 5 7oy Taa Tpz vt
0 0 —= *t s T3 T3z T3z ° ¢
where t,; =y=1s;,; are pure imaginary numbers and t;; =t Then the

Riemann’s theta functions 9;,;(c|z) (lal € A) are absolutely convergent in any bounded

domain of values of each variable z;.

Remark. We can also construct an example of an hyperelliptic Riemann
surface R’ of infinite genus such that the imaginary parts of B-periods of a
normal integrals of the first kind on ®’ with respect to a canonical homology
basis satisfy the conditions (*)’ and ()" of Proposition 3.

Open problems. It is well-known that Jacobian varieties are very usefull
to study the closed Riemann surfaces. The following natural question then
arises concerning the open Riemann surfaces; What kind of the open Riemann
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surfaces have something like Jacobian varieties which shall be usefull to study
the open Riemann surfaces? Similarly as the finite case, we can define an
infinite dimensional variety by the Riemann’s theta functions associated with
the open Riemann surface ) which is given in Theorem. The infinite dimen-
sional variety is a kind of such a variety. Furthermore the natural question
arises concerning the open Riemann surface % which is given in Theorem;
Are Abel’s and Jacobi’s theorems realized for the open Riemann surface R.
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