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The purpose of this paper is to characterize all ways in which an initial 
interval of natural numbers can be partitioned into a unique arithmetic sum of 
certain of its subsets. 

Preliminaries. We set forth below certain explanations, conventions, and 
definitions pertinent to our subject. 

Numbers and sets. By number we mean a natural (that is to say, an arithmetic 
or finite ordinal) number 0, 1, 2, . . . . Every set of numbers is required to contain 
0. A set containing a number other than 0 will be called proper. The improper set 
comprising solely 0 will be written 0. The set consisting of all numbers dx as x 
ranges over a set X is denoted by dX. 

Intervals. An (initial arithmetic) interval is a set of numbers containing 
every predecessor of each number in it. A finite interval containing d numbers 
thus consists of the first d numbers r < d where d > 1. An infinite interval 
contains all natural numbers, that is, all numbers r < co where co is the first 
transfinite ordinal. Denote by 1(d) the interval consisting of all numbers r < d 
where 1 < d < co. 1(d) is finite or infinite according as d < co or d = co, proper 
or improper according as d > 1 or d = 1. For this reason we call an ordinal d 
proper if 1 < d < co. 

Proper sequence. A finite (terminating) or infinite (non-terminating) numeri­
cally indexed1 sequence du d2, d3, . . . of ordinals will be called proper if not 
only is each ordinal in it proper but its ordinal product is also. Thus 1 < dm 

< co for each index m and 1 < d\ d2 dz . . . < co. Consequently, if there is an 
index m such that dm = co, the sequence terminates at this index m. 

Partitions. We shall say that a set X is partitioned into (a unique arithmetic 
sum of) finitely or infinitely many numerically indexed2 sets X" if every number 
x in X can be uniquely expressed in the form x = £xM where the unique co­
ordinate xM of x belongs to XM for each index /* ; and if furthermore every number 
x of this form belongs to X. To indicate this we write X = £X" . It is easily 
seen that order and grouping of the terms X* in such a sum are not significant 
and that any two differently indexed terms XM have 0, and only 0, in common. 

Division algorithm. As an apposite example of partitioning an interval 
consider the division algorithm. Let du d2 be a proper sequence of two ordinals. 
According to the division algorithm every number r < d\d2 can be uniquely 
expressed in the form 
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Subscript indices indicate that the order of indexing is significant. 
Superscript indices indicate that the order of indexing is not significant. 
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Y = n + di r2l 

where rx < dx and r2 < d2\ and furthermore every number r of this form is 
< di d2. That is, 

I(d1d2) = I(d1)+d1I(d2). 

Statement of results. Our first result concerning partitions of an interval 
merely extends the division algorithm to any proper sequence and provides 
a recipe for constructing interval partitions. Our second result asserts that every 
interval partition can be constructed, and in a certain sense uniquely, by 
following this recipe. 

THEOREM I. Let d\, d2, d%, . . . be a proper sequence of ordinals. Then 

I(dl d2dz...) = lid,) + d1 I(d2) + dx d2 I(d8) + • • • • 

Coarser repartitions of I {di d2dz. . .) can be formed from this partition by grouping 
the above terms together in arbitrary fashion. 

THEOREM II. Let I = X^> be a partition of a proper interval I by indexed 
sets X». There then exists a unique proper sequence of ordinals du d2, </3, . • . gene-
rating the following finer repartition of I: 

I = I(d! d2 dz . . .) = I(dO + di I(d2) + dx d21(d*) + . . . , 

the sets X» of the given partition of I being formed by appropriately grouping 
together the terms of this finer repartition of 7, with consecutive terms allocated to 
different X» sets. 

Proofs. We shall establish the results stated above somewhat formally 
by using three lemmas. The first lemma is used in proving the first theorem, all 
three lemmas in proving the second. 

LEMMA 1. Let there be given a proper sequence of ordinals dmi and sequences 
of sets Am and Xm, all sequences of the same length, such that: 

Am (m terminal), 
Xm — 

Am + dm Xm+i (m non-terminal). 
Then 

Xi = Ai + di A2 + di d2 Az + 

Proof. For each Xi in X\ the sequences xm in Xm, am in Am are uniquely 
determined by recursion as follows: 

am (m terminal), 

am + dm xm+i (m non-terminal), 
so for each m, 

xi = d\ + di a2 + . . . + d\ d2. . . dm-i xm. 
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If m is terminal xm = am. If, on the other hand, the sequence dm does not ter­
minate, then by choosing m so large that d\ d2 . . . dm > xi we find xn = 0 and 
an = 0 for all n > m. Therefore, whether the sequences terminate or not, 

#i = ci\ + d\ a<i + d\ di az + . . . , 

this representation being unique, as was to be shown. 

Proof of Theorem I. Let dm be a proper sequence of ordinals, terminating or 
not. According to the division algorithm 

I(dm dm+1 . . .) = I(dm) + dm I(dm+i . . .) 

for all nonterminal m; so the hypotheses of Lemma 1 are satisfied by taking 
Am = I (dm) and Xm = I(dm dm+i • . .)> whereupon 

I(di d2d3. . .) = /(di) + di I(d2) + di d2I(dz) + . . . , 

as was to be shown. 

LEMMA 2. Le/ I = A + B bë a partition of a proper interval I and d a proper 
ordinal such that A contains 1(d) but not d. There then exist: an interval I with I 
= 0 if d = co, and sets Â and B such that 

(1) A = 1(d) + dl, 

(2) B = dBt 

(3) 7 = 1 + 5. 
Proof. If d = co it is evident that A — I = /(co) and B = 0, so the lemma is 

verified by taking / , Â, B all equal to 0. Furthermore, propositions (1) and (2) 
imply the remainder of the lemma. For since A + B is a unique sum, À + B is 
also a unique sum. Define I = A -\- B. Thus J satisfies (3) and in addition 

I = 1(d) + dl. 

From this it follows that I is an interval. For if u < v with v in J, then dw < dv 
with dz; in / , whence du is in / and hence u is in I. 

It therefore remains to prove (1) and (2) for d < co. Now (1) and (2) together 
are equivalent to affirming for each q = 0, 1, 2, . . . the following proposition. 

$ff: if r < d and r + dq belongs to A or B1 then p + dq is in A for all p < d in 
case r + dq is in A, and r = 0 in case r + dq is in B. 

We establish these propositions $ff by induction. Obviously ^30 is true. 
Assume then that tyn holds for all n < q with q > 1 : to prove tyq. We do this by 
first establishing from the induction hypothesis the following weaker prop­
osition pq obtained from tyq by putting r = 0: 

pq: p + dq is in A for all p < d in case dq is in A. 

Then from pq and the induction hypothesis we prove tyq. 
To prove pç, let dq be in A : we are to show that p + dq is in A for all p < d. 

Because q > 1, d < dq and dq is in I, so d is in I. Since 4̂ contains 1(d) but 
not ci, the ^-coordinate of d is > 0 and hence > ci, so must equal d. Therefore 
d is in B. This, together with dq in A, shows that dq + d belongs to A + B = / . 
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Consequently p + dq, being < dq + d, is also in / . Let p + dq have coordinates 
a in Ay b in B. We wish to show that p + dq is in ^4, or, what amounts to the 
same, that b = 0. Suppose, to the contrary, that 6 > 0. Write b in the form 
b = r -\- d(3 with r < d. Hence 0 < q. If 0 = g, then r > 0, for otherwise we 
would have dg = b in 5 as well as dq in A. The number dq-\-d with coordinates 
dg in ^4, d in J5 thus has alternative coordinates d — r in A, r + dq = b in B; 
which is impossible. On the other hand, if /3 < g, then r = 0 by the induction 
hypothesis, so b = d/3. Thus a has the form a = p + da where a + ft = q and 
0 < a < q since 0 < (3 < q. Therefore da is in A by the induction hypothesis: 
so dq in A has positive coordinates da in A, d/3 in B; which is impossible. This 
dilemma proves our contention that p + dq is in A. Thus $q is proved. 

To prove $ff, let r < d and r + dq belong to A or B : we are to show that 
p -\- dq is in A for all p < d in case r + dq is in ^4, and that r = 0 in case r -\- dq 
is in £ . Now r + dg is in / , so dq is in I also. Let dq have coordinates a in A, b 
in J3. Then b has the form b = d(3 with £ < g: obviously in case & = Jg, by the 
induction hypothesis in case b < dq. Hence a has the form a = da with a < g. 
Consequently r + da is in 4 : by pq in case a = g, by the induction hypothesis 
in case a < q. The number r + dq then has the coordinates r -{- da in ^4, dfi in 
5 . Therefore if r + dg is in A, dfi = 0 so dq = da is in A ; whence p + dq is in 
4̂ for all p < d by >v And if r + dg is in B, r + da = 0; whence r = 0. This 

completes the proof of ^q and hence, by induction, the proof of the lemma. 

LEMMA 3. Let I = £X M be a partition of a proper interval I. There then 
exist: a proper ordinal d, an interval 1 with 1 ~ 0 if d = a>, an index a with d not 
in Xa, and sets XM, all of these unique, such that 

(4) X» = Ô*~I(d) + dX», 

(5) I = £ * * , 

where ô is Kronecker's delta: ô"a = 1 or 0 according as n = a or not. 

Proof. Since / ^ 0, 1 is in / . Therefore 1 = J^x» with x* in X». Clearly a 
unique index a exists such that x" = 1 and x& = 0 for all remaining indices 
P y£ a. Define 4 = Xa and £ = "£X^. Then J = .4 + B. Let d be the smallest 
ordinal not in A = Xa. Since 1 is in A, d is a proper ordinal. Now 4 contains 
1(d) but not d, so the hypothesis of Lemma 2 is satisfied, and thus the conclusion, 
whereby the unique sets Î,Â, B are furnished. Therefore I = 0 if d = œ. Define 
Xa = I ; then by (1), 

X« = 1(d) + dXa. 

By (2), d divides every number in B and hence every number in each Xfi, so 
X13 is of the form 

X0 = dXt, 

with 5 = £ ^ - Evidently (4) summarizes the two formulae above. As for (5), 

Ï = A + B = X« + £ X* = £ X" 

by virtue of (3). This completes proof of the lemma. 
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Proof of Theorem II. Let / = £ X» be a partition of a proper interval / . 
By recursive use of Lemma 3 we construct: a proper sequence of ordinals dm, 
a sequence of indices ami consecutive ones being different, and Sequences of sets 
X^ with X^ = X^j all these sequences unique and of the same length, such that 

8fi<XmI(dm) (m terminal), 
Xm = 

ôli0CmI(dm) + dmXm+i (m non-terminal). 

Therefore, by Lemma 1, 

XM = dliaiI(d1) + à^'di I(d2) + B^'di d2 I(dz) + . . . , 

whereupon 
/ = £ X» = I(d,) + dx I(d2) + dx d21(di) + . . . , 

as was to be shown. 
This finer repartition of the given partition of I has evidently been constructed 

in a unique fashion ; it will be called the resolution of the given partition. Any two 
consecutive terms of this resolution lie in different X11 sets, or, as we shall say, 
are separated. 

Number of partitions. Consider for given positive numbers m and n a 
partition of the interval I(n) into m sets: 

/(») = X, + . . . + Xm. 

Call the ordered sequence of sets Xi, . . . , Xm an ordered w-partition of / (») , 
and let pm(n) be the number of such partitions. 

The values of this partition counting function3 can be obtained recursively as 
follows. Let n > 1. The (terminating) resolution of an ordered w-partition of 
I(n) may be formed from the resolution of an ordered m-partition of 1(d), 
where d < n is a divisor of n, by adding the term T = dl(n/d) as separated 
terminal term to one of the partitioning sets of 1(d). If d = 1, all m partitioning 
sets of 1(d) are 0, so T can be added to any one of these m sets. If d > 1, T 
can be added to any one of the m partitioning sets of 1(d) except that one 
which contains the terminal term of the resolution of the partition of 1(d). This 
procedure uniquely delivers all ordered w-partitions of I(n), so 

pm(n) = 1 + ( m - 1 ) I M 4 

the summation extending over all divisors d < n of n. Though derived for 

n > 1, this formula is also valid for n = 1, since obviously £m(l) = 1. 

Institute for Advanced Study 
Princeton, N.J. 

3Two explicit formulae for this function are derived from the recursion relation developed 
here in Proc. Amer. Math. Soc., 3 (1952), 31-35. 
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