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Non-helical turbulence within a linear shear flow has demonstrated efficient amplification
of large-scale magnetic fields in numerical simulations, but its precise mechanism remains
elusive. The incoherent α mechanism proposes that a zero-mean fluctuating transport
coefficient α (linked to kinetic helicity) in the shear flow is a candidate driver. Previous
renovating-flow models have proposed that the correlation time of helicity fluctuations
must be sufficiently extended to overcome turbulent magnetic diffusivity, yet only
empirical validation of this concept has been obtained. In this study, we conduct direct
numerical simulations of weakly compressible non-helical hydrodynamic turbulence. We
scrutinize the correlation times of velocity and kinetic helicity fluctuations in distinct
flow configurations, including rotation, shearing and Keplerian flows, as well as the
shearing burgulence counterpart. Our findings indicate that rotation contributes to a
prolonged correlation time of helicity compared with velocity, particularly notable in
auto-correlations of both volume-averaged quantities and individual Fourier modes due
to the formation of large-scale vortices. In contrast, moderate shear strength does not
exhibit significant scale separation, with shear flows elongating vortices in the shear
direction. Shearing burgulence, characterized by shorter helicity correlation times, appears
less conducive to hosting the incoherent α effect. Notably, at modest shear rates, only
Keplerian flows exhibit sufficiently coherent helicity fluctuations, in contrast to shearing
flows. However, the relative strength of helicity fluctuations compared with turbulent
diffusivity is significantly lower, raising doubts about the viability of the incoherent α

effect as a potential dynamo driver in the subsonic flows examined in this study.
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1. Introduction

Magnetic fields in astrophysical systems, encompassing celestial bodies such as stars,
galaxies and accretion disks, necessitate sustained mechanisms for their persistence against
the effects of microphysical dissipation, a role aptly fulfilled by dynamos. The study of
magnetic field evolution, especially on scales exceeding the outer scale of turbulence, is
conventionally approached through the prism of large-scale or mean-field dynamo theories
(Steenbeck, Krause & Rädler 1966). A fundamental driver in mean-field dynamos is the
net kinetic helicity intrinsic to the flow (Parker 1955) which naturally emerges in the
presence of rotation and density stratification, commonly encapsulated in the α effect.
In this context, the mean-field dynamo coefficient α intricately depends on the product of
kinetic helicity and the eddy turnover time.

The last two decades have witnessed the recognition of a novel class of mean-field
dynamos that operates without the need for a net kinetic helicity. Instead, a background
shear flow coupled with non-helical turbulence, is deemed sufficient (Brandenburg 2005;
Yousef et al. 2008). A leading theoretical framework to explain this phenomenon is the
shear-current effect (Rogachevskii & Kleeorin 2003, 2004; Rädler & Stepanov 2006;
Rüdiger & Kitchatinov 2006; Pipin 2008; Sridhar & Subramanian 2009a; Sridhar & Singh
2010; Singh & Sridhar 2011; Squire & Bhattacharjee 2015b; Zhou & Blackman 2021;
Skoutnev, Squire & Bhattacharjee 2022), which postulates a dynamo driver rooted in an
anisotropic turbulent magnetic diffusivity tensor.

While the shear-current effect has been theorized to exist, its numerical substantiation
has been a subject of debate (Brandenburg et al. 2008; Squire & Bhattacharjee 2015a,c,
2016; Käpylä et al. 2020; Käpylä, Rheinhardt & Brandenburg 2022). An alternative
theoretical approach to addressing the shear dynamo problem is the incoherent α effect,
wherein the interplay of shear and a fluctuating α coefficient with a zero mean is
considered. The concept of incoherent α entering the mean-field induction equation dates
back to the seminal works by Kraichnan (1976) and Moffatt (1978), who demonstrated
that α fluctuations can effectively act as a negative turbulent diffusivity and contribute
as an effective drift velocity if they are statistically inhomogeneous, especially when
α fluctuations are delta correlated. For dynamo action to occur, it is crucial that the
fluctuations are strong and coherent enough, satisfying ταα2

rms � β, where τα is the
correlation time, αrms is the root-mean-square (r.m.s.) amplitude of α fluctuations and
β represents the turbulent diffusivity (Kraichnan 1976).

In a related study (Jingade, Singh & Sridhar 2018), the authors extended the work of
Kraichnan (1976) to include non-zero correlation times for α fluctuations in the presence of
a background shear flow. The study showed that dynamo action is possible when there are
large-scale spatial inhomogeneities in the amplitudes of the α fluctuations. The validity of
this result in the doubly averaged mean field depends on the time-scale separation between
velocity fluctuations and α fluctuations, and we aim to explore and elaborate on this aspect
in the present work.

In light of the limitations of Jingade et al. (2018), which work is confined to small
correlation times, the work of Jingade et al. (2018) was further extended to arbitrary
correlation times for the velocity field using renovating flows (Gilbert & Bayly 1992),
taking into account the background shear self-consistently. Jingade & Singh (2021)
explored helicity fluctuations of the random velocity fields, also considering the idea
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that helicity can be correlated over times much larger than the correlation time of
the velocity field, following the propositions of Kraichnan (1976) and Sokolov (1997).
The main objective of this extended study was to demonstrate that large-scale dynamo
action is possible when there is such time-scale separation between helicity fluctuations
and velocity fluctuations, in the absence of negative diffusion (in this work, by ‘scale
separation’ we always refer to the case where the correlation time of the helicity
fluctuations is much longer than that of the velocity fluctuations, although the opposite
case exhibits separated time scales as well, since only the former is relevant to mean-field
dynamo theories). This emphasizes the significance of scale separation, a factor often
overlooked in papers on mean-field electrodynamics with α (helicity) fluctuations and
scarcely measured in numerical simulations. Additionally, through the application of
the renovating-flow model in a shear flow, Jingade & Singh (2021) identified a critical
condition for mean-field dynamo action, stipulating that τh/τu > 3, where τu represents
the correlation time of the turbulent velocity field, and τh represents correlation time
of helicity fluctuations. It is crucial to highlight that this conclusion was drawn from
considering a single-scale flow model. In this study, we go beyond the single-scale model
and aim to explore whether large-scale flow phenomena such as shear or rotation induce
a time-scale separation between velocity and helicity fluctuations in direct numerical
simulations of hydrodynamical turbulence.

The possibility of a shear dynamo driven by a stochastic α has also been demonstrated
by directly solving for the large-scale magnetic field or its second-order moment, without
explicitly deriving the contribution of αrms to the turbulent electromotive force (Vishniac
& Brandenburg 1997; Fedotov, Bashkirtseva & Ryashko 2006; Proctor 2007; Heinemann,
McWilliams & Schekochihin 2011; Mitra & Brandenburg 2012; Richardson & Proctor
2012). The impact of an additional stochastic component on the conventional α effect has
been explored by Newton & Kim (2012) in the context of the solar dynamo. Moreover, Sur
& Subramanian (2009) suggested that a fluctuating α might help mitigate the catastrophic
quenching in the absence of a helicity flux.

In the aforementioned studies, α fluctuations are often prescribed (e.g. as white noise
with a given amplitude or as finite correlated noise), but the origin of such fluctuations
is not explicitly demonstrated. One potential source of these fluctuations arises from
the violation of the Reynolds-averaging rules (Hoyng 1987). Alternatively, Kraichnan
(1976), Moffatt (1978) and Kleeorin & Rogachevskii (2008) attribute them to the intrinsic
fluctuations of the turbulent flow.

The task of determining turbulent transport coefficients in simulations is significantly
facilitated by the test-field method (Brandenburg et al. 2008; Rheinhardt & Brandenburg
2010; Käpylä et al. 2020, 2022). Brandenburg et al. (2008) observed that, in shearing
turbulence, all components of the α tensor undergo random fluctuations, following a
Gaussian distribution. The amplitude αrms, normalized by β and the forcing wavenumber
kf , increases with an increasing magnetic Reynolds number Rm and saturates at Rm = 10.
However, it shows a relatively weak dependence on the shear rate at Reynolds and magnetic
Reynolds numbers � O(10). It is worth noting that the correlation time of α fluctuations
was not addressed in their study, and this is precisely the focus of the present work.

In this study, we aim to ascertain the correlation times of velocity and kinetic helicity
directly from their time series in numerical simulations, and determine whether the
correlation time of helicity fluctuations can exceed that of the velocity fluctuations in
various cases. We focus on the kinematic phase of the shear dynamo problem, i.e. when the
Lorentz back reaction is negligible in the Navier–Stokes equation. The subsequent sections
are organized as follows: § 2 briefly introduces the mean-field dynamo formalism and the
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α fluctuations. In § 3, we provide essential definitions of two-point correlators and describe
the simulation set-ups. Sections 4 and 5 delve into the investigation of turbulent velocity
and helicity correlation times under rotating and shearing background flows, respectively.
Section 6 discusses the implications of our findings and relates them to previous shear
dynamo simulations. Finally, we present a summary of our findings in § 7.

2. Background

2.1. Mean-field setting: α-fluctuations
The evolution of the magnetic field in magnetohydrodynamics is described by the
induction equation, which, in the non-relativistic limit, can be expressed as

∂B
∂t

= ∇ × (U × B) + η∇2B, (2.1)

where U is the velocity field, B is the magnetic field and η represents the microscopic
diffusivity. Dynamo theory postulates that the action of turbulence on the seed magnetic
field exponentially amplifies the magnetic field countering the microscopic diffusivity.
Furthermore, in a mean-field theory, it is assumed that the typical length scale of
large-scale fields is L and that of the small-scale turbulent fields is �0, with L � �0. By
averaging over �0, and assuming that the Reynolds rules of averaging hold, we can obtain
the mean-field induction equation (Steenbeck et al. 1966; Moffatt 1978)

∂t〈B〉 = ∇ × (〈U〉 × 〈B〉 + E) + η∇2〈B〉, (2.2)

where E = 〈u × b〉 is the turbulent electromotive force (EMF), and u and b are the
fluctuating velocity and magnetic fields, respectively.

The calculation of the turbulent EMF involves solving for the fluctuating magnetic
field, which in general is a complex task. When Rm � 1 or when the Strouhal number
St � 1, the quasi-linear approximation (also referred to as the first-order smoothing
approximation) is valid, and the fluctuating field is assumed to be generated by the action
of the turbulent velocity field on the initial seed mean magnetic field. With the further
assumption of homogeneity and isotropy of the turbulence (see, e.g. Brandenburg &
Subramanian 2005a), an ansatz for the EMF can be obtained as follows:

Ei = α〈B〉i − βεijk∂j〈B〉k, (2.3)

where α = −τu〈u · ∇ × u〉/3 is related to the mean kinetic helicity H = 〈u · ∇ × u〉, and
β = τu〈u2〉/3 is the turbulent diffusion in the kinematic regime. Here, τu is the correlation
time of the velocity field. At Rm � 1 as relevant for astrophysical flows, other closure
models like the eddy-damped quasi-normal Markovian approximation and the τ -closure
give similar results in the kinematic regime (Pouquet, Frisch & Leorat 1976; Blackman &
Field 2002).

As turbulence is stochastic in nature, the kinetic helicity of the flow also fluctuates
in time. To propose a new dynamo mechanism in non-helical turbulence (i.e. when α

vanishes on average), Kraichnan (1976) suggested that helicity fluctuations may have a
length scale of variation, �α , larger than the turbulent scale �0, but still smaller than
the mean-field scale L. The final mean-field equation can be obtained by averaging the
mean-field equation (2.2) again over the scale �α , i.e. a double-averaging scheme, which
yields

∂t〈B̄〉 = (β − α2
rmsτα)∇2〈B̄〉, (2.4)

where ·̄ indicates the second averaging and τα is the correlation time of the α fluctuations
(in Kraichnan 1976, the terms helicity and α fluctuations are used interchangeably
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without distinction between them), and α2
rms = α2 is the average of the square of the

α-fluctuations. We can define the dynamo number Dα = α2
rmsτα/β. When Dα > 1, i.e.

when there is a negative diffusion in the turbulence, the double-averaged mean magnetic
field grows. Thus, Dα can exceed unity either when the fluctuation strength is stronger
or due to the longer correlation time, and hence both these aspects are crucial for
determining the dynamo action. However, in the present study, we majorly focus on the
duration of the correlation time of α-fluctuations as it is essential for the validity of
the double-averaged mean-field equation in (2.4). In the shearing-turbulence simulation
carried out by Brandenburg et al. (2008), the total turbulent diffusion coefficient turns out
to be positive.

Several studies have investigated the role of zero-mean α fluctuations and shear in
explaining the dynamo observed in non-helical shear turbulence, including works by
Heinemann et al. (2011), Mitra & Brandenburg (2012) and Jingade et al. (2018). In all
of these models, the success of the approach depended on the existence of the temporal
and spatial scale separation between the perceived fluctuations of velocity and α, i.e.

τα � τu and �α � �0. (2.5a,b)

In an alternate approach, Jingade & Singh (2021) utilized the renovating-flow model
(Dittrich et al. 1984; Sokolov 1997) to directly solve for (2.1) without explicitly
determining the form of the turbulent EMF. The next subsection provides a brief
introduction to this approach, and also motivates the need for studying correlation times
of individual Fourier modes.

2.2. Renovating-flow model: helicity fluctuations
In the renewing flows, time is divided into intervals In = [nτ, (n + 1)τ ] of length τ for
n = 0, 1, 2, . . . . A random flow u(t, x) is generated by choosing

u(t, x) = uτ (t − nτ, x), (2.6)

for each interval In, where uτ is chosen randomly from the ensemble Στ of smooth flows,
given by

Στ = {uτ (t, x) : 0 ≤ t < τ }. (2.7)

The velocity fields in each interval are considered to be random and statistically
independent realizations of the underlying probability distribution function. The random
velocity field of the ensemble Στ is chosen to be a single-scale finite time solution of the
Navier–Stokes equation without the Lorentz force (see Jingade & Singh 2021 for details).
The model velocity field u(t, x; S, q, h) hence depends on a number of parameters: S is
a constant shear rate so that the background shear flow is of the form U shear = Sxey,
q = (q1, q2, q3) is the wave vector of uτ at initial time and the value of h controls the
relative helicity of the flow u which varies in the range [−1, 1].

Under the assumption of statistical independence of the velocity field across the
intervals, the evolution of the magnetic field equation can be written separately for any
given interval [(n − 1)τ, nτ ] in Fourier space. Specifically, the magnetic field at time nτ

can be written in terms of the initial magnetic field at time (n − 1)τ , after averaging over
the initial randomness of the magnetic field and the statistical ensemble of the velocity
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field, as (see Jingade & Singh 2020 for details)

B(nτ, k) = G(τ, k)B0((n − 1)τ, k), (2.8)

where G is a response tensor that describes the average deformation of fluid particle
trajectories over the interval τ due to the velocity field statistics. The response tensor
is obtained by neglecting the diffusion term in the induction equation. As a result, the
magnetic field at specific realizations exhibits fine structures similar to those at large
Rm. However, the averaging over the velocity statistics introduces the effective turbulent
diffusivity for the growing magnetic field, smoothing the field over the turbulent velocity
scale.

In the renovating-flow model presented by Jingade & Singh (2021), the idea of helicity
fluctuations introduced by Kraichnan (1976) and Sokolov (1997) is incorporated. In this
model, the helicity of the flow is assumed to take independent and random values in
successive time intervals, while the durations of these intervals are fixed. It is also assumed
that the renovation time of helicity, τh, is an integral multiple of the renovation time of the
velocity field, τ , i.e. τh = mτ , where m ≥ 2 and τ is the correlation time of the flow. In
(2.8), the response tensor is averaged over the statistics of the velocity field, except for the
helicity parameter h. To incorporate the helicity fluctuation and its time-scale separation
in the averaging, the response tensors from adjacent intervals are multiplied together while
the helicity is fixed over the m intervals. Later, the product of the response tensor is
averaged over the helicity statistics to obtain the double-averaged mean field. Thus, the
magnetic field at time nτ can be expressed in terms of the magnetic field at (n − m)τ as

B(nτ, k) = G(τ, k)B0((n − m)τ, k), (2.9)

G(τ, k) = 〈G(τ, kn−1) . . . G(τ, kn−m)〉h, (2.10)

where G(τ, k) is the double-averaged response tensor, whose eigenvalues determine the
growth rate and cycle period of the dynamo wave (see Jingade & Singh 2021 for details).
It is shown that a non-helical large-scale dynamo can be generated only when the ratio
between the time scales is ≥ 3.

2.3. Sources of helicity fluctuations
In non-helical turbulence, the kinetic helicity fluctuates around zero, and these fluctuations
have two primary contributions. The first contribution arises from the non-equivalence of
volume averaging and ensemble averaging. In renovating flows, averaging is conducted
over the ensemble of the velocity field, strictly adhering to the Reynolds-averaging rule.
Conversely, in mean-field theory, averaging is performed over a length scale or a finite
volume, leading to an approximate adherence to Reynolds’ rules, as argued by Hoyng
(1987, 1988) and Zhou, Blackman & Chamandy (2018). In the work by Hoyng, the
resulting error terms manifest as a forcing term in the mean-field equation, giving rise
to fluctuations in the transport coefficients, whereas in the work by Zhou et al. (2018), the
deviation from Reynolds’ rules introduces additional terms in the mean-field equations,
but these appear as spatial gradients of the mean fields. Since volume average is not strictly
equivalent to an ensemble average, the volume-averaged mean helicity H fluctuates over
time in simulations of non-helical turbulence, although typically with relatively small
amplitudes (see figure 1 in the supplementary material available at https://doi.org/10.
1017/jfm.2024.1006 for the evolution of the volume-averaged helicity). We denote the
correlation time of H as τH , which serves as our first analogue to the correlation time
of α fluctuations.
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Note that the volume-averaged helicity scales as V−1/2, where V is the volume of the
box, assuming the helicity fluctuations within each eddy remain consistent regardless of
the volume. Furthermore, if the helicity fluctuations in each eddy are independent and
identically distributed with a uniform correlation time τ0, then the correlation time of
the mean helicity will also be τ0, independent of the volume. In this study, we examine
how the correlation time varies with rotation or shear rate, keeping the volume fixed. The
implications of finite volume, such as a scale-dependent dynamo growth rate, could be
significant for astrophysical dynamos and will be explored in future work.

The second contribution to helicity fluctuations arises from the intrinsic randomness
of turbulence, where the helicity associated with each Fourier mode fluctuates around
zero due to the nonlinear interaction of waves. Consequently, our second analogue to
the correlation time of helicity fluctuations pertains to individual flow modes rather than
volume-averaged quantities. Compared with τH , this idea aligns more closely with the
renovating-flow model by Jingade & Singh (2021), where a single-scale flow is used to
investigate the dynamo phenomenon, associating fluctuating helicity at a particular mode
q with some correlation time.

However, real turbulence involves multiple scales. The single-scale model of Jingade
& Singh (2021) can be extended to multi-scale flows by constructing the velocity field
from independent non-interacting helical waves, with amplitudes following specific power
laws across scales (see Singh & Sridhar 2017 for details). In turbulence’s steady state,
the nonlinear term only cascades energy across scales, leaving the dynamics of individual
modes unaffected. This extension justifies our scale-by-scale approach to verifying the
dynamo action criteria. Similar methods have been employed by Wilkin, Barenghi &
Shukurov (2007) and others to study dynamo problems. Consequently, our objective is
to determine the correlation times of both velocity and helicity fields across a spectrum of
wave vectors k and verify the dynamo criteria scale by scale.

The correlation time of the helicity field is obtained by considering the helicity density
in Fourier space, defined as

g̃(t, k) = ũ∗(t, k) · ik × ũ(t, k), (2.11)

where ũ is the Fourier transform of the velocity field. It is important to note that g̃ is a real
quantity and represents the helicity of the velocity field of a particular mode k and at time
t. We must distinguish g̃ from the Fourier transform of the helicity density in configuration
space, h = u · ∇ × u, which is not used in our analysis.

3. General definitions and numerical methods

3.1. Velocity and helicity auto-correlations
In theoretical analysis, ensemble averages are often used to define averages of a quantity in
turbulence. However, in simulations, ensembles are often not available, and the turbulent
field at different times can be treated as copies of the ensemble, provided the turbulence is
stationary. In our simulations, we perform the statistical averaging of the velocity field over
time. The equivalence between the ensemble average discussed in the previous section and
the temporal average is ensured by the ergodic theorem. The correlation times of velocity
and helicity fluctuations are computed through their auto-correlation functions. We define
the auto-correlation function of a velocity field u(t, x) at the space point location x as

Tu(τ, x) ≡
∫ ∞

t0
dt[u(t + τ, x) − ū(x)] · [u(t, x) − ū(x)], (3.1)
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Figure 1. Three typical auto-correlation curves for run R3, demonstrating how the correlation times of the
velocity and helicity fluctuations vary with the wavenumbers parallel (k‖) and perpendicular (k⊥) to the rotation
axis.

where t0 represents the initial time of the simulations when turbulence has become
stationary and an overbar denotes a time average. Similarly, the auto-correlation of the
Fourier transform of the velocity is defined as

Tũ(τ, k) ≡
∫ ∞

t0
dt[ũ(t + τ, k) − ¯̃u(k)] · [ũ(t, k) − ¯̃u(k)]∗, (3.2)

where the asterisk indicates the complex conjugate.
We also define the auto-correlations of the mean helicity as

TH(τ ) =
∫ ∞

t0
dt[H(t + τ) − H̄] · [H(t) − H̄], (3.3)

where H(t) = ∫
d3 xu(t, x) · ω(t, x) = ∫

d3kg̃(t, k), and ω = ∇ × u is the vorticity field.
Here, H has a vanishing ensemble-average mean, but in simulations they fluctuate around
zero, as discussed in § 2.3. The auto-correlation of the helicity density g̃(k, t) in the Fourier
space is

Tg̃(τ, k) ≡
∫ ∞

t0
dt[g̃(t + τ, k) − ¯̃g(k)] · [g̃(t, k) − ¯̃g(k)]∗. (3.4)

Finally, we define the volume-integrated correlation function as

Cu(t) =
∫

d3 xTu(t, x) =
∫

d3k
(2π)3Tũ(t, k). (3.5)

The second equality is due to Parseval’s theorem.
Figure 1 displays three typical auto-correlation curves of run R3 (further details can be

found in § 4). The correlation time of an auto-correlation curve is determined by fitting its
initial positive part with an exponentially decaying curve and identifying the time at which
its value reaches 1/e of its maximum. We denote the correlation time of TI by τI , where
I ∈ {u, ũ, g, g̃, H}.

3.2. Distinguishing different helicity time scales
A volume-integrated correlation function for the helicity modes is defined by integrating
the helicity auto-correlation function over the wave vector space, similar to (3.5)

Cg(t) = Cg̃(t) =
∫

d3k
(2π)3Tg̃(t, k). (3.6)
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It should be noted that, although one might expect the correlation times of Cg and CH to
be similar, this is not necessarily the case. To see the reason, we assume that g̃(k) has a
vanishing mean for the moment and note that

CH =
∫

dt′
∫

d3k1

(2π)3 g̃(t′, k1)

∫
d3k2

(2π)3 g̃(t′ + t, k2), (3.7)

Cg =
∫

d3k
(2π)3

∫
dt′g̃(t′, k)g̃(t′ + t, k). (3.8)

It is clear from (3.7) and (3.8) that CH is the auto-correlation of the sum of all modes,
whereas Cg is proportional to the mean of the auto-correlations over all modes.

Both τg and τH have been utilized in dynamo models, each with its own significance.
In the original negative diffusion model proposed by Kraichnan (1976), the time scale for
fluctuations of the α coefficient was closely related to τH . Similarly, stochastic α dynamo
models, such as those by Vishniac & Brandenburg (1997) and Richardson & Proctor
(2012), also adopt a time scale associated with τH . On the other hand, researchers studying
turbulence using random waves, as exemplified by Jingade & Singh (2021), focus on the
damping time of a single helical wave and therefore utilize τg. In our study, we present
results for both τg and τH , recognizing the importance of considering both perspectives.

3.3. Numerical set-ups and methods
Focusing on the kinematic dynamo regime and neglecting Lorentz forces, we perform
compressible isothermal hydrodynamic simulations of isotropically and non-helically
forced turbulence using the publicly available PENCIL CODE (Pencil Code Collaboration
et al. 2021). The equations to be solved are

Dt ln ρ = −∇ · u, (3.9)

Dtu = Suxey − c2
S∇ ln ρ − 2Ω × u + 1

ρ
∇ · (2ρνS) + f , (3.10)

where Dt = ∂t + u · ∇ + Sx∂y, S is the shear rate of the shear flow U shear = Sxey, cS is
a constant sound speed, ν is the viscosity and Sij = (∂iuj + ∂jui)/2 − δij∇ · u/3 is the
rate-of-strain tensor. In the burgulence cases, the density equation (3.9) is dropped and
the second term on the right-hand side of (3.10) is set identically to zero, turning the
Navier–Stokes equations into Burgers’ equation. The rotation rate Ω = Ωez is applied
along the z-direction, and the random force f takes the form of a non-helical plane wave
(see Brandenburg 2001 for details). The forcing wave vector has a fixed magnitude kf , but
its phases and directions change at each time step. The simulation box has dimensions
L3 = (2π)3 with periodic boundary conditions in all the directions or shear-periodic
(in the case of shear) boundary conditions in the x-direction. In all runs, the forcing
wavenumber is kf = 5, and the Mach number is approximately 0.1. A summary of the runs
is provided in table 1, which includes the Reynolds number Re = urms/(νkf ), the Coriolis
number Co = 2Ω/(urmskf ) and the dimensionless shear number Sh = −S/(urmskf ). For
the rotating turbulence cases R1 to R5, we compute the Coriolis number by excluding the
k < kf modes when computing the root-mean-square velocity urms (see § 4). We denote the
Coriolis number computed using this definition of urms as Cof . For runs R3 to R5, their
Coriolis numbers are sufficiently large to allow for condensation of large-scale vortices,
and therefore their Reynolds numbers are apparently higher than those of runs R1 to R2.
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Run N3 Ma q = −S/Ω Re Co or Cof Sh kze

NH 2563 0.12 / 45.93 0 0 /

R1 2563 0.02 0 32.17 0.43 0 0.35
R2 2563 0.03 0 33.14 0.86 0 5.19
R3 2563 0.07 0 90.34 2.03 0 14.24
R4 2563 0.08 0 108.06 3.20 0 25.68
R5 2563 0.09 0 115.94 4.29 0 40.75

S1 2563 0.12 −4 46.86 0.03 0.07 /
S2 2563 0.14 −4 55.34 0.11 0.22 /
S3 2563 0.16 −4 64.62 0.29 0.57 /
S4 2563 0.13 −4 50.47 0.76 1.52 /
S5 2563 0.11 −8 42.15 0.91 3.65 /

SB1 2563 / −4 15.10 0.04 0.08 /
SB2 2563 / −4 15.31 0.15 0.31 /
SB3 2563 / −4 14.21 0.50 1.00 /
SB4 2563 / −4 11.95 1.24 2.48 /

K1 2563 0.12 3/2 47.62 0.13 0.10 /
K2 2563 0.13 3/2 49.80 0.74 0.56 /
K3 2563 0.12 3/2 45.60 1.69 1.27 /
K4 2563 0.11 3/2 41.96 3.67 2.75 /
K5 2563 0.10 3/2 37.36 8.24 6.18 /

Table 1. A summary of runs, where N3 is the resolution, Ma = urms/cS is the Mach number, S is the shear
rate, Ω is the rotation rate, Re = urms/νkf is the Reynolds number, Co = 2Ω/urmskf is the Coriolis number,
Sh = −S/urmskf is the dimensionless shear rate and kze is the Zeman wavenumber. For rotation runs R1 to
R5, the root-mean-squared velocity used for computing the Coriolis number excludes large-scale modes with
k < kf , and therefore their Coriolis numbers will be denoted by Cof rather than Co. For these runs the Zeman
wavenumber kze is also listed. The runs SB1 to SB4 solve the Burgers’ equation and the Mach number is
undefined.

At even higher values of Cof , the flow becomes quasi two-dimensional and dynamos will
not be supported (Cowling 1933). Therefore, we exclude the exploration of high Coriolis
numbers.

In this study, particular attention is given to ensuring the hydrodynamic stability of
the flow in all simulations. The choice of shear rate and rotation rate is made such that
the flow remains stable throughout the simulations. This criterion for stability, −∞ <

−S/Ω < 2, as discussed in Salhi (2002) and Balbus & Hawley (2006), has been taken
into consideration. The presence of instabilities in the flow could lead to vorticity dynamos
(Käpylä, Mitra & Brandenburg 2009), i.e. the generation of additional mean flows. Such
mean flows would render the system non-ergodic. To ensure the validity of measurements
that require time stationarity such as the temporal average of the correlation functions, it
is essential to prevent such instabilities from affecting the measurements.

We use two methods to generate auto-correlation curves of the velocity and helicity
fluctuations. In the first method, we output the time series data for ũ(t, k) from the
simulations and calculate auto-correlation curves during post-processing. The duration
of time series for all runs spans at least 200 times the eddy turnover time 1/(urmskf ) with
a sampling frequency of no less than 10urmskf . For runs with the highest shear rates (S4,
S5, SB4, K4 and K5), the sampling frequency is increased to a minimum of 20urmskf .
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Figure 2. For run NH, correlation times of shell-averaged auto-correlations for velocity (solid) and helicity
(dashed) fields. The vertical line indicates the forcing wavenumber at kf = 5.

This approach allows for obtaining auto-correlations for individual Fourier modes. As
large-scale flow patterns such as shear or rotation primarily influence the larger scales
of the flow, we have limited the output to the range −2kf ≤ kx,y,z ≤ 2kf , which has been
confirmed to encompass the energy-dominant modes.

The first method needs high data output frequency and therefore is only applied to a
limited range of wave modes. In the second method, correlation functions are computed on
the fly and for all the wave modes, although this approach results in a smaller sample size
for time averaging. The method is specifically used to obtain shell-averaged correlation
functions in the Fourier space. To implement this, we regularly update an time-independent
auxiliary field ṽ(k) to match ũ(t, k) at specific time intervals (every �t = 50 in code units,
roughly 27 times the eddy turnover time of the isotropic run). The field ṽ(k) is kept fixed
between updates. At a given update time t0, we set ṽ0(k) to be the value of ũ(t0, k). During
the interval t0 ≤ t < t0 + �t, the velocity auto-correlation between ṽ0(k) and ũ(t, k) is
computed as

Tũ(t, k) = ṽ∗
0(k) · ũ(t0 + t, k) = ũ∗(t0, k) · ũ(t0 + t, k), 0 ≤ t ≤ �t. (3.11)

Similarly, the helicity correlation Tg̃ is computed. These correlation curves are then
averaged at discrete intervals.

While this method allows us to analyse modes at the largest wavenumbers, it limits the
number of averaged ensemble members to T/�t, where T is the overall time duration of
the simulation.

In figure 2, we present correlation times for shell-averaged quantities in isotropic
non-helical turbulence. The shell-averaged correlation functions are defined by

Cũ,g̃(t, kr) = 1
4π

∫
sin θ dθ dφTũ,g̃(t, k), (3.12)

where (kr, θ, φ) are the spherical coordinates in Fourier space. Subsequently, the
correlation times for each wavenumber are fitted as τ 1D

ũ (kr) and τ 1D
g̃ (kr) for the velocity

and helicity auto-correlations, respectively. The identified k−1
r power law for τ 1D

ũ in
figure 2 suggests that the Eulerian correlation time is primarily influenced by the sweeping
effect, where small-scale eddies are transported by larger-scale eddies. Consequently,
τ 1D

ũ ∝ 1/(urmskr), aligning with findings from prior theoretical and numerical studies
(Chen & Kraichnan 1989; Sanada & Shanmugasundaram 1992; Favier, Godeferd &
Cambon 2010; Clark Di Leoni, Cobelli & Mininni 2015).
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–0.6

–1.2

0

Figure 3. The z component of the vorticity field (normalized by kf urms) at the z = 0 slice for run R4 in the
steady state.

We have also computed the correlation time of the volume-integrated velocity or helicity
correlation, along with that of the total helicity using (3.3), (3.5) and (3.6). The obtained
values are

τuurmskf = 3.11, τH/τu = 2.42, τg/τu = 0.61. (3.13a–c)

These values serve as a set of fiducial references, which we will compare with the results
obtained when rotation or shear is introduced. Brandenburg & Subramanian (2005b)
previously reported a Strouhal number St = τuurmskf around unity for the u · ω correlation,
determined by dividing the α coefficient from a test-field method by one third of the mean
kinetic helicity. Our value of 3.11 is not fundamentally at odds with this, mainly due to the
different methods and, consequently, the different definitions of τu employed.

In the next two sections, we present the measured correlation times for velocity and
helicity fluctuations in rotating and shearing turbulence, respectively. A more detailed
discussion of the implications for the shear dynamo problem along with the comparison
with previous simulation results is provided in § 6.

4. Rotating flows

In this section, we compare the correlation times of velocity and helicity fluctuations in
rotating turbulence. Rotating turbulence is known to form a condensate through the inverse
cascade of energy and, in a steady state, counter-rotating vortices are formed to cancel
the effect of global rotation (this is a consequence of the generalization of the Kelvin
vorticity theorem in a rotating frame and it is known as Bjernkne’s theorem) (Kraichnan
1967; Bartello, Metais & Lesieur 1994; Alexakis 2015). The rotation tends to suppress
velocity gradients along the direction of rotation, making the flow quasi-two-dimensional
at sufficiently large Coriolis numbers.

In figure 3, the z component of the vorticity field at the z = 0 slice for run R4 is plotted
at the steady-state regime of the simulation, and we observe asymmetric cyclonic and
anti-cyclonic vortices aligned in the direction of rotation (also seen in Seshasayanan &
Alexakis (2018), Dallas & Tobias (2018) and the references therein). The vortices display
an asymmetry in their positive and negative strengths, with cyclonic vortices having a
comparatively higher strength than anti-cyclonic vortices. This is because one of the
vortices is Rayleigh stable for a given sign of rotation and strength (Tritton & Davies
1985). The formation of these vortices will alter the estimate of the correlation time of
both velocity and helicity fluctuations.
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Figure 4. For rotating turbulence, the velocity (|ũ|2, a–e) and helicity (|g̃|2, f –j) energy densities on a log10
scale. The dashed curves indicate the forcing wavenumber kf = 5.

Since our interest is in the large-scale dynamos, we focus on the turbulent flow
and therefore exclude the k < kf modes when computing the root-mean-square velocity
urms. We denote the Coriolis number computed using this definition of urms as Cof .
At sufficiently large wavenumbers where the isotropic eddy turnover rate is larger than
the rotation rate, the turbulence is expected to recover the Kolmogorov scaling with a
power-law energy distribution of k−5/3. The scale at which this transition occurs is referred
to as the Zeman scale, given by kze = (Ω3/ε)1/2, where ε = 〈u · f 〉 is the energy injection
rate. This is the scale at which the rotation rate Ω equals the eddy turnover rate kũ(k)
(Zeman 1994).

The properties of the flow are different in the direction of rotation (k̂‖) and in the
direction perpendicular to it (k̂⊥), presenting axial symmetry. We therefore obtain the
correlation functions by performing the azimuthal average as

Caxi
ũ,g̃(t, k⊥, k‖) = 1

2π

∫
dφTũ,g̃(t, k). (4.1)

Additionally, we average over modes with the same |k‖|, because the correlation functions
of velocity or helicity are invariant under coordinate reflection over the k‖ = 0 plane.

Note that Caxi
ũ,g̃(t = 0, k⊥, k‖) are just the velocity and helicity energy densities (i.e.

quadratic in ũ or g̃), which we show in figure 4. For the nearly isotropic cases R1 and
R2, both velocity and helicity energy densities concentrate near the forcing scale kf = 5.
At high rotation rates, the velocity energy density smears into the low-k region manifesting
the large-scale vortices, and the helicity modes favour to reside along the k‖ direction.

The correlation times, denoted as τ axi
ũ (k⊥, k‖) and τ axi

g̃ (k⊥, k‖) for velocity and
helicity fluctuations, respectively, are estimated by fitting the positive part of the
correlation function to an exponential curve, as described in § 3.1. Figure 1 displays three
representative auto-correlation curves for run R3, which show that helicity fluctuations
become increasingly coherent over time as we move to smaller-wavenumber regions in the
Fourier space. This coherence is a result of the formation of cyclonic and anti-cyclonic
vortices in the rotating turbulence. Visualizing this phenomenon of increasing correlation
time of helicity, fluid elements entering these vortices would follow a spiralling trajectory,
and the helicity sign of these elements would be contingent upon the angle of entrance
relative to the vortices’ axis.
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Figure 5. For rotating turbulence, the first and second rows show the correlation times of velocity and helicity
fluctuations in the k⊥ − k‖ plane, respectively. The correlation times are normalized by the eddy turnover time
1/(kf urms) and displayed on a log10 scale. Here, urms excludes large-scale modes with wavenumbers k < kf
and kf denotes the forcing scale, indicated by the black dashed curve at kf = 5. The third row shows the ratio
of these two times on a linear scale, which is displayed only for the region where the ratio is equal to or greater
than unity.

The correlation times for a range of (k⊥, k‖) pairs are displayed in the first two rows
of figure 5. In the third row of the same figure, the ratio of the helicity to velocity
coherence times, ζ axi ≡ τ axi

g̃ /τ axi
ũ , is displayed for regions where ζ axi ≥ 1, highlighting

the modes for which the coherence time of helicity fluctuations is longer than that of
velocity fluctuations, therefore potentially capable of driving large-scale dynamos (Jingade
& Singh 2021). This should be contrasted with figure 2 and (3.13), where the opposite
trend ζ < 1 is seen for all the wavenumbers in the isotropic case. With increasing rotation
rate, an increase in both the area where ζ axi ≥ 1 and the maximum values of ζ axi can
be observed. The Zeman scale, which is the scale at which the rotation rate becomes
equal to the eddy turnover time, has also been computed for all the runs and is provided
in table 1. As seen from the table, the scales where ζ axi = τ axi

g̃ /τ axi
ũ > 1 are within the

Zeman scale for runs R1 and R2, indicating that the difference in coherence times is a
result of the rotation rate having a significant impact at these scales. For runs R3 to R5,
the Zeman wavenumbers are out of the plotted range. Nevertheless, the condition ζ axi > 1
predominantly occurs within the region k < kze.

For volume-averaged time scales, in order to exclude the impact from the secondary
mean flows generated by large-scale vortices, we calculated the volume-integrated
auto-correlation for the small-scale fields by summing over all the Fourier modes with
k ≥ kf

Cu(t) =
∫

|k|≥kf

d3k
(2π)3Tũ(t, k), (4.2)
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Figure 6. For weakly compressible rotating turbulence, the volume-averaged velocity and helicity correlation
times, and their ratios. Here, Cof is the Coriolis number 2Ω/(urmskf ), with urms excluding the modes with
k < kf . The dotted blue and dashed red lines are the fitted power-law relations for τH/τu and τg/τu, respectively.

CH(τ ) =
∫ ∞

t0
dt[Hf (t + τ) − Hf ] · [Hf (t) − Hf ], with Hf =

∫
|k|≥kf

d3k
(2π)3 g̃(k),

(4.3)

Cg(t) =
∫

|k|≥kf

d3k
(2π)3Tg̃(t, k). (4.4)

This analysis includes all the small-scale modes and is complementary to figure 5, which
only considered wavenumbers up to 2kf . In figure 6, we present the correlation times
obtained from these correlators. As the Coriolis number Cof increases, all the three
dimensionless times scales τu,g,Hurmskf decrease, with τHurmskf decreasing at a slightly
lower rate. Meanwhile, the ratios of the time scales τH,g/τu increase with increasing Cof ,
although with a rather weak dependence, as indicated by the dotted lines in the figure. The
ratio τg/τu never exceeds unity even at the largest rotation rate we have explored, whereas
the ratio τH/τu has a larger magnitude and is always above unity. The trend of the ratio
τg/τu for the modes k > kf appears to be unaffected by the rotation rate, suggesting that
these modes are unimportant for large-scale dynamo action.

In addition to the helicity correlation time, the efficiency of the incoherent α effect
also depends on the amplitude of helicity fluctuations (see (2.4)). In figure 7, we
depict the probability density functions (PDFs) of the relative helicity, g̃/k|ũ|2, for 10
different representative modes with varying scales, across all runs. The relative helicity
is defined such that, when the mode at wavenumber k is fully helical, g̃/k|ũ|2 = ±1
(corresponding to positively or negatively helical cases), and it becomes 0 when the mode
is non-helical. Partially helical modes have relative helicities between ±1. The PDFs for
the low-wavenumber modes (k < kf ) tend to have a non-zero mean, indicative of the
presence of asymmetric counter-rotating large-scale vortices that affect the distribution
of helicity fluctuations. On the other hand, the PDFs for the high-wavenumber modes
(k > kf ) exhibit symmetry around zero and are nearly uniform in nature.

We can estimate the dynamo number, which is the ratio of the strength of the helicity
fluctuations to the turbulent diffusivity (see the discussion below (2.4)), by utilizing
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Figure 7. Probability density functions of the normalized helicity g̃/k|ũ|2 for a few modes for the rotating
turbulence runs.

αrms � τuHrms/3 (with Hrms being the root-mean-square value of the fluctuating mean
kinetic helicity H), β � τuu2

rms/3 and either τα = τH or τg as follows:

DH,g � τH,gα
2
rms

τuu2
rms/3

� τuτH,gH2
rms

3u2
rms

. (4.5)

The calculated values indicate that DH,g < 2 × 10−3 across all the purely rotating
turbulence runs, implying that negative diffusion due to helicity fluctuations is negligible
in these simulations. For mean helicity fluctuations H, even though the correlation time
surpasses that of velocity fluctuations, the amplitude of the helicity fluctuations are
insufficient to instigate the negative diffusion needed to trigger the dynamo, as predicted
by Kraichnan (1976).

5. Turbulence in shearing flows

We now turn to the analysis of turbulence in a shearing box. In this section, the Cartesian
coordinates in the laboratory frame are denoted by (X , Y , Z), and we investigate shearing
flows denoted by U shear = SXey. We also include a small yet negative rotation with
q = −S/Ω < 0 to circumvent vorticity dynamos, as discussed in Elperin, Kleeorin &
Rogachevskii (2003) and Käpylä et al. (2009). Figure 8 presents an XY-slice of the
Z-component of the vorticity field, revealing the absence of significant large-scale vortices,
in contrast to figure 3. Instead, long streaky structures are evident, elongated in the
direction of shear, hinting at the presence of stretched vortices aligned with the shear
direction. In this section, we will investigate how shear-induced elongation of vortices
affects the velocity and helicity fluctuations.
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Figure 8. The z component of the vorticity field (normalized by kf urms) at the z = 0 slice for run S4 at the
end of the simulation.
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Figure 9. For run S1, correlation times of YZ-averaged velocity auto-correlations in the laboratory frame
(dashed) and the shearing frame (solid). Spatial homogeneity is restored in the latter case.

5.1. Shearing box and shearing-frame transformation
The shearing box approximation is commonly used in numerical simulations to study a
small patch in a differentially rotating flow whose scale is much smaller than the local
curvature of the rotating flow (Goldreich & Lynden-Bell 1965). When considering mean
linear shear flows imposed on the turbulent velocity field, the resulting turbulence exhibits
inhomogeneity and anisotropy when observed in the laboratory-frame coordinates. In
particular, fluid parcels are advected by the background shear flow, making the same-point
two-time correlation (3.1) Tu(τ, X ) have a shorter correlation time towards the boundary
of the box X = ±π; see the dashed curve in figure 9.

Such decoherence effect can be removed by exploiting a fundamental symmetry of
shearing flows. An observer co-moving with the mean flow velocity SXeY at location
X perceives the same turbulent velocity field as an observer in the laboratory frame at
the origin. This principle, known as Galilean invariance, ensures the homogeneity of
the velocity field in the shearing coordinates (x, y, z) given by (Sridhar & Subramanian
2009a,b)

x = X; y = Y − St X; z = Z. (5.1a–c)
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The general Galilean-invariant time-stationary velocity correlation can be written in the
laboratory frame using the symmetry property of shear flow as (see Appendix A)

ulab(t, X ) · ulab(t′, X ′) = Tu,lab(X − X ′ − S(t − t′)XeY , t − t′), (5.2)

where overhead bar denotes the time average in our case. This correlation is time stationary
but exhibits spatial inhomogeneity along the X-direction. To address this, we can transform
the correlator into the shearing frame, where it becomes spatially homogeneous but loses
time stationarity. The latter can only be restored in two special slices in the Fourier space
(see below for details). The solid curve in figure 9 shows the velocity correlation time of
the yz-averaged correlators, which restores both spatial homogeneity and time stationarity.

An additional advantage of using the shearing frame is the restoration of normal periodic
boundary conditions, allowing for a Fourier transform in the shearwise direction x̂. Fourier
modes in the shearing frame, denoted as (kx, ky, kz), are equivalent to shearing-wave
modes with wave vectors K = (kx − St ky, ky, kz) in the laboratory frame. It is important
to note that there would be no difference in the correlation time of the total kinetic
helicity, denoted as τH , between the two frames. This is due to the fact that H(t), being a
volume-averaged quantity, remains constant regardless of the frame of reference.

Without further notice, we shall always refer to shearing-frame coordinates by using
(t, x, y, z) in the configuration space and (kx, ky, kz) in the Fourier space. The helicity
density at the shearing-wave vector k is given by g̃(k) = ũ∗(k) · ω̃(k), where the
vorticity field ω̃ = K(k, t) × ũ is obtained by first taking the curl of u in the laboratory
frame, followed by the shearing-frame transformation, and then performing the Fourier
transformation.

Sacrificing time stationarity in the Fourier space is unavoidable when reintroducing
spatial homogeneity in the shearing frame (see Appendix A). In other words, the
unequal-time auto-correlation function 〈ũ(t + t′, k) · ũ(t′, k)〉 not only depends on the
time difference t but also on t′. This outcome is a general consequence of Galilean
invariance (Sridhar & Singh 2014). In Appendix A, it is demonstrated that the correlation
functions Tũ,g̃(t, t′, k) can maintain stationarity on two two-dimensional slices in Fourier
space, i.e.

CIx
ũ,g̃(t, ky, kz) ≡

∫
dkx

2π
Tũ,g̃(t, t′, k), (5.3)

and

Cxz
ũ,g̃(t, kx, kz) ≡ Tũ,g̃(t, t′, kx, ky = 0, kz). (5.4)

Since inverting x → −x or y → −y is equivalent to S → −S for the correlation functions,
CIx,xz

ũ,g̃ will be invariant under (kx, ky) → (−kx, −ky), and so are the corresponding
correlation times. We can thus focus ourselves to half of the (kx, ky) plane. Furthermore,
the quadratic functions CIx,xz

ũ,g̃ are also invariant under kz → −kz. We therefore only show
the results in the kx,y,z ≥ 0 planes.

In the upcoming subsection, we present τ Ix
ũ,g̃ and their corresponding ratios on the (ky, kz)

plane. The second quantity (5.4) exclusively involves axisymmetric modes (ky = 0) and,
as per the anti-dynamo theorem (Cowling 1933; Zel’dovich 1956), cannot solely induce
a dynamo. For a comprehensive view, the ky = 0 slices (5.4) and the energy densities for
both velocity and helicity (corresponding to both quantities (5.3) and (5.4) when t = 0)
are presented in the supplementary material.
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Figure 10. The PDFs of the normalized helicity g̃/k|ũ|2 for a few modes for the shearing-turbulence runs.

5.2. Helicity probability distributions
In figure 10 we show 10 typical PDF curves of the normalized helicity modes g̃(k)/k|ũ|2
for each of the runs. At large enough shear rate (runs S4 and S5) and low wavenumbers
(k < kf ), the PDFs are typically asymmetric with respect to zero, possibly caused by the
shear flow. However, the asymmetry is different to those appear in the low-wavenumber
modes in purely rotating cases (cf. figure 7). For the rotating cases, helicity fluctuations
appear to be small (i.e. the g̃(k)/k|ũ|2 values are close to zero), with a slight shift of
the mean deviating from zero. For the shearing cases, helicity fluctuations with one
particular sign are more favoured. In this sense, low-wavenumber modes (k < kf ) in
shearing turbulence would have stronger helicity fluctuations than those in the rotating
turbulence. At large wavenumbers (k > kf ), the PDFs becomes symmetric about zero, and
runs with lower shear rates (S1 and S2) exhibit flat PDFs, whereas at higher shear rates (S3
to S5), helicity fluctuations demonstrate less extreme values at g̃/k|ũ|2 = ±1, suggesting
a decrease in the occurrence of maximally helical fluctuations. This is in contrast to the
rotating cases (figure 7) where high-wavenumber modes still exhibit flat PDFs at large
rotation rates.

5.3. Results of correlation times
The correlation times for the kx-integrated correlation functions (5.3) are presented in
figure 11. Unlike cases of rotating turbulence, the instances where τg̃/τũ ≥ 1 are quite
limited, with the exception of the most strongly sheared runs, S4 and S5. This trend aligns
with the red dashed line in figure 12, illustrating the ratio between the volume-integrated
correlation times τu and τg. This ratio follows a Sh0.4 scaling and surpasses unity only
around Sh � 2. Simultaneously, the ratio between the correlation time of the total helicity,
τH and τu exhibits a similar Sh-dependent scaling but with an overall amplitude exceeding
unity. The absence of significant scale separation between velocity and helicity fluctuations
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Figure 11. For shearing turbulence, correlation times measured from kx-integrated velocity and helicity
correlations in the (ky, kz) plane normalized by the eddy turnover time (a–e and f –j, log10 scale), and their
ratios (k–o, linear scale).

0.1 0.5 1.0 5.0

0.5

1.0

5.0

10.0

Sh

C
o
rr

el
at

io
n
 t

im
es

 a
n
d
 r

at
io

s

Sh0.6

Sh0.4

τuurmskf τHurmskf τH /τu

τgurmskf τg /τu

Figure 12. For weakly compressible shearing turbulence, volume-averaged velocity and helicity correlation
times and their ratios. The dashed blue and dashed red lines are the fitted power-law relations for τH/τu and
τg/τu, respectively.

at moderate shear can be ascribed to the elongation of vorticities along the shear direction
in shearing flows. Additionally, the lack of distinctive vortex formation, which is observed
in rotational flows, contributes to this phenomenon.

The dynamo numbers DH,g (see (4.5)) computed are less than 1.7 × 10−3, indicating
that there is no negative diffusion in the shearing flows due to the helicity fluctuations.
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Considering the strength of helicity fluctuations and the lack of scale separation at
moderate shear, we can conclude that, in the kinematic regime, the helicity fluctuations
(incoherent α mechanism) may not be the possible driver of the shear dynamo simulations.

5.4. Shearing burgulence
Burgers’ equation is often used as a prototype equation to study turbulence, as it simplifies
the Navier–Stokes equations by excluding the pressure gradient term. The form of Burgers’
equation that we used to simulate the Burgulence counterpart of the shearing turbulence
is given as

Dtu = Suxey − 2Ω × u + 1
ρ

∇ · (2ρνS) + f , (5.5)

where u represents the velocity field, S is the shear rate and ν is the kinematic viscosity.
This equation captures essential features of turbulence, such as shock formation and energy
dissipation, making it a useful tool for theoretical and numerical studies of turbulent flows.

Theories employing either the second-order correlation approximation or the τ

approximation closures in the shear-current effect argue for the essential role of the
pressure gradient term in the Navier–Stokes equation (Squire & Bhattacharjee 2015b;
Zhou & Blackman 2021). Without this term, the required turbulent transport coefficient
becomes identically zero. Recent simulations demonstrating shear dynamos in burgulence
(Käpylä et al. 2022) seemingly challenge the shear-current effect as the primary driver
in this context. However, this does not automatically confirm the incoherent α or helicity
fluctuations as the correct explanation. The theoretical and numerical understanding of the
role played by the pressure gradient term in the incoherent α effect is limited, and whether
it persists in burgulence remains an open question. In this subsection, we present evidence
that the helicity correlation weakens in burgulence, posing a challenge to the efficiency of
the incoherent α effect in this scenario.

To avoid simulation crashes in burgulence runs, it was necessary to increase the viscosity
(refer to table 1). This adjustment led to slightly lower Reynolds numbers compared with
their counterparts in the Navier–Stokes simulations S1 to S5, but still comparable to those
in Käpylä et al. (2022).

The correlation times of velocity and helicity in the (ky, kz) plane for shear-burgulence
simulations are depicted in figure 13. Comparing the first two rows with their
hydrodynamics counterparts in figure 11, we observe that both correlation times
decrease more strongly with increasing Sh in the case of burgulence, especially in the
low-wavenumber (k < kf ) region. The resulting ratio of the time scales (the third row)
shows no substantial scale separation, similar to the shearing hydrodynamic turbulence.
The correlation times of volume-averaged correlation functions are presented in figure 14.
With increasing Sh, τu decreases at a rate similar to the hydrodynamic case, see figure 12.
However, both helicity correlation times τH,g are suppressed more strongly, resulting in
lower magnitudes. This leads to much smaller time scale ratios τH,g/τu at Sh � 1.

5.5. Keplerian runs
For Keplerian runs, we choose the value q = S/Ω = 3/2 resulting in a Coriolis number
of Co = 4Sh/3. This case is more representative of astrophysical scenarios, such as in
galaxies and accretion disks, where q can vary from 1 to 2. The methodology applied for
these runs remains consistent with the shear runs described in the previous subsection.
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Figure 13. For shearing burgulence, correlation times measured from kx-integrated velocity and helicity
correlations in the (ky, kz) plane and normalized by the eddy turnover time (a–d and e–h, log10 scale), and
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Figure 15. For Keplerian turbulence, correlation times measured from the kx-integrated velocity and helicity
correlations in the (ky, kz) plane and normalized by the eddy turnover time (a–e and f –j, log10 scale), and their
ratios (k–o, linear scale).
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Figure 16. For weakly compressible Keplerian turbulence, volume-averaged velocity and helicity correlation
times and their ratios. The dashed blue and dashed red lines are the fitted power-law relations for τH/τu and
τg/τu, respectively.

In figure 15, Fourier space results reveal a more distinct scale separation compared
with both the shearing turbulence (figure 11) and shearing burgulence (figure 13)
cases. This enhanced separation is attributed to the additional rotation, known to form
condensate through inverse cascade producing large-scale vortices. This time-scale
separation persists despite the elongation effect of the vortices in the direction of the
shear. The volume-integrated time scales shown in figure 16 also display a larger-scale
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Figure 17. Ratios of time scales τH,g/τu for different sets of runs: shearing turbulence (S), shearing
burgulence (SB) and Keplerian turbulence (K). Datasets are the same as those in figures 12, 14 and 16.

separation: the magnitudes of both ratios, τH,g/τu are similar to the shearing cases (cf.
figure 12) at Sh = 0.5. However, their scalings with Sh become much stronger, with
τH/τu ∝ Sh0.96 and τg/τu ∝ Sh1.15. Interestingly, these power-law indices are larger than
either purely rotating (∝ Co0.85

f and ∝ Co0.09
f , respectively) or purely shearing (with

weak counter-rotation, ∝ Sh0.63 and ∝ Sh0.38, respectively) cases, revealing a constructive
collaboration of the rotation and the shear flow.

In these Keplerian runs, we also find that the dynamo number DH,g (see (4.5)) is less
than 1.5 × 10−3, suggesting that the strength of helicity fluctuations is relatively weak. It is
important to note that this strength depends on the Mach number of the flows, which in our
simulations is around 0.1. The strength of these helicity fluctuations could increase with
higher Mach numbers. Therefore, further exploration of this effectiveness on the dynamo
mechanism in different flow regimes, such as transonic and supersonic flows more relevant
to astrophysical scenarios, would be of significant interest. However, such an investigation
is beyond the scope of the current work.

6. Comparison with previous shear dynamo simulations

In the previous sections we have obtained the degree of time-scale separation between
helicity and velocity fluctuations in rotating, shearing and Keplerian hydrodynamic
turbulence, as well as in shearing burgulence. In this section we compare our parameter
space with those in previous numerical simulations of large-scale dynamos in shear flows
and seek the implications in the light of figures 6, 12, 14 and 16. We note that these results
are obtained in weakly compressible flows at Ma ∼ 0.1, and the scaling indices could
change with increasing compressibility.

The general idea we gained from the previous section is that the time-scale separation
between helicity and velocity fluctuations increases with increasing rotation or shear rate.
This increase is quantified using ζ = τH,g/τu, and we present all the results of ζ for
the runs with shear in figure 17 to facilitate comparison. The renovating-flow model in
Jingade & Singh (2021) suggests that there exists a critical value ζcrit (= 3 in their work)
above which the incoherent α effect is capable of driving a shear dynamo. The exact
value of ζcrit in hydrodynamical or magnetohydrodynamical turbulence might be different
from 3, given the simplifications made in the model, but it is reasonable to expect the
existence of some ζcrit > 1, since the coherent effect has to be strong enough to overcome
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turbulent dissipation. Combining that (i) ζ increases with increasing Sh and (ii) ζcrit > 1,
it follows that the incoherent α effect requires a critical value of Sh.

A critical shear rate is also predicted in the alternative explanation of shear dynamos, the
shear-current effect, but there is an important distinction regarding its scale dependence.
The shear-current effect model predicts the dynamo growth rate for the xy-averaged field
to be (see e.g. Zhou & Blackman 2021)

γ =
[

(βxx − βyy)
2

4
k4

1 + βxyβyxk4
1 + Sβyxk2

1

]1/2

− βxx + βyy

2
k2

1, (6.1)

where βij is the magnetic turbulent diffusivity tensor (which depends on Sh), and k1 is the
wavenumber of the large-scale magnetic field of interest. Considering the simplified case
where βxx = βyy = β0 and βxy = 0, we have

γ =
√

Sβyxk2
1 − β0k2

1 = −β0

(
k1 −

√
Sβyx

2β0

)2

+ Sβyx

4β0
. (6.2)

The first equality implies that a minimal shear rate is required for the growth rate to
be positive. However, the second equality shows that the dynamo growth rate remains
finite for any small Sh, as long as the mode with the fastest growth rate fits into the
simulation box. This contrasts with the incoherent α effect, which requires a critical shear
rate Shcrit for maximum growth, even when k1 corresponds to the fastest growing mode.
This distinction can help differentiate between these two dynamo mechanisms.

Yousef et al. (2008) investigated the shear dynamo problem in the kinematic phase
using tall simulation boxes, low shear rates and without rotation. In their study, the
vertical scales of the simulation domain are always larger than the typical scales of
the large-scale magnetic fields, allowing the fastest growing mode to be captured. They
used a dimensionless shear parameter Sh � 1/(3π) � 0.1 based on our definition. All
simulations in their study exhibited shear dynamos, even at very low values of Sh (notably,
for Sh � 0.05, the large-scale fields are disrupted in the nonlinear stage; see Teed &
Proctor 2016). Therefore, combining our results on the threshold shear needed to bring
in the time-scale separation with the findings from Yousef et al. (2008) suggests that the
observed shear dynamos are unlikely to be driven by the incoherent α effect.

It is also worth noting that both Yousef et al. (2008) and Teed & Proctor (2016) used
Re = Rm � 5, which is sub-critical for a small-scale dynamo. Hence, their simulations
fall outside the realm of the magnetic shear-current effect, which requires strong magnetic
fluctuations (Squire & Bhattacharjee 2015b). Furthermore, the kinetic shear-current effect
(Rogachevskii & Kleeorin 2003) is also likely ruled out because the steep kinetic energy
spectrum at such low Re is unfavourable for the shear dynamo (Zhou & Blackman
2021). Given that the current study also disfavours the incoherent α driver, it becomes
puzzling what drives large-scale dynamos in non-helical shearing turbulence when both
the Reynolds and magnetic Reynolds numbers are not very large. This suggests a need
for further investigation into the properties of shear dynamos, potentially leading to a new
classification based on these properties.

As for large-scale dynamos in shearing burgulence, Käpylä et al. (2020) explored cases
with Sh = 1.6 and (Re, Rm) � (0.5, 2) and (Re, Rm) � (0.7, 12). By using the nonlinear
test-field method, they ruled out the shear-current effect as the driver of the shear dynamo.
In the current study, we find that the time-scale separation between the velocity and
helicity fluctuations is strongly suppressed in shearing burgulence compared with its
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hydrodynamic counterpart (i.e. the S and SB runs in figure 17). This result seemingly
suggests the incapability of the incoherent α effect with the Burgers equation. However,
we cannot rule out the possibility that the critical ratio between time scales τH,g/τu needed
for a shear dynamo in shearing burgulence is lower than that in the hydrodynamic case.

The consideration of shearing burgulence also raises the important question of the Mach
number dependence of ζ in rotating or shearing flows. The current study only explored
weakly compressible hydrodynamical turbulence at Ma � 0.1. For turbulence in accretion
disks, the Mach number depends on the Shakura–Sunyaev viscosity parameter αSS, with
Ma � α

1/2
SS (Blackman 1998). In moderately compressible flows, helicity fluctuations

might become stronger, potentially allowing the dynamo number to cross the threshold
of the incoherent α effect. Investigating how time-scale separation and helicity fluctuation
amplitudes vary with Ma could provide valuable insights into the dynamo problem in
accretion disks.

7. Conclusions

In this investigation, we scrutinized the correlation times of velocity and helicity
fluctuations in diverse fluid flow scenarios, including rotating flows, shearing flows,
Keplerian flows and shearing burgulence. Our primary objective is to gauge the correlation
time between velocity and helicity fluctuations, crucial for elucidating the kinematic
dynamo mechanisms in non-helical turbulent flows. While both the shear-current effect
and helicity fluctuations are leading candidates for explaining shear dynamos, we focused
specifically on the latter in this study.

We have investigated the correlation times for individual Fourier modes as well as
for volume-averaged values, each used in different theories. In the context of rotating
flows, a notable temporal separation between velocity and helicity fluctuations is revealed,
particularly prominent in large-scale modes influenced by the Coriolis force arising
from rotation. In Fourier space (figure 5), an increase in the rotation rate results in
an overall elevation of the magnitudes of time-scale ratios and a greater number of
modes where this ratio surpasses unity. These modes are preferentially situated along the
rotation axis, particularly noticeable in smaller scales with wavenumbers close to, but
surpassing, the forcing wavenumber. On the other hand, the magnitudes of both velocity
and helicity correlation time scales decreases when the rotation rate increases. This
prolonged persistence of helicity fluctuations relative to velocity fluctuations is ascribed to
the formation of cyclonic and anti-cyclonic vortices within the rotating turbulence.

In shearing cases (with weak negative rotation to suppress the vorticity dynamo),
non-axisymmetric modes conducive to dynamos exhibited more coherent helicity
fluctuations only in strongly sheared flows (Sh � 2, figure 11). The lack of the required
scale separation for helicity and velocity fluctuations in non-axisymmetric modes that
is crucial for dynamo initiation was linked to vortex elongation along the shear
direction. Therefore, we infer that helicity fluctuations may not be the driving force for
shearing dynamos in non-rotating shearing flows, necessitating a re-evaluation or further
categorization of shear dynamos based on their properties. For Keplerian flows, time-scale
separation in non-axisymmetric modes is observed at moderate shear rates (Sh � 1,
figure 15), which suggests that helicity fluctuations may play a more significant role since
the shear-current effect is suppressed (Zhou & Blackman 2021).

Furthermore, the shear-current effect is estimated to vanish in shearing burgulence
(Squire & Bhattacharjee 2016; Zhou & Blackman 2021). Our results imply that removing
the pressure gradient in the Navier–Stokes equation introduces a decoherence effect to
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helicity, challenging the incoherent α effect (figure 13). Consequently, the driver for
large-scale dynamos in shearing burgulence remains elusive.

An essential consideration for dynamos is the strength of helicity fluctuations. In
our study, conducted for subsonic flows with Mach numbers �0.1, the normalized
ratio of helicity fluctuations to velocity fluctuations, as expressed in (4.5), remained
below 2 × 10−3. Such weak fluctuations raise doubts about triggering dynamos, even
in Keplerian runs. Considering the dependence on the fourth power of velocity in the
numerator and quadratic power in the denominator, an extension of this study to transonic
or supersonic cases with higher Mach numbers could significantly increase fluctuation
strength, potentially leading to large-scale dynamos. This extension may hold implications
for accretion disk dynamos.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.1006.
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Appendix A. Time stationarity in Fourier space

Consider a Cartesian frame with coordinates (X, Y, Z), where the shear flow is denoted
by U shear = SXeY . In the laboratory frame, the most general form of a two-point
unequal-time auto-correlation function can be derived using Galilean invariance (Sridhar
& Singh 2014). This invariance is associated with measurements made by observers whose
velocity, relative to the laboratory frame (t, X ) matches that of the background shear
flow. These comoving observers can be characterized by ξ = (ξ1, ξ2, ξ3), representing the
position of the origin of the comoving observer at the initial time zero. The position of the
origin of the comoving observer at time t is given by

X c(t, ξ) = (ξ1, ξ2 + St ξ1, ξ3). (A1)

Since the statistics of the velocity field remain the same, the velocity correlator measured
in the laboratory frame or the corresponding comoving frame must be the same, and can
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be expressed as

ulab(t, X ) · ulab(t′, X ′) = ulab(t, X + X c(ξ , t)) · ulab(t′, X ′ + X c(ξ , t′)). (A2)

The Navier–Stokes equation does not explicitly depend on time, indicating that the velocity
statistics must be time stationary. Consequently, a Galilean-invariant velocity correlator
with an arbitrary time shift t0 can be expressed as

ulab(t, X ) · ulab(t′, X ′)

= ulab(t + t0, X + X c(ξ , t + t0)) · ulab(t′ + t0, X ′ + X c(ξ , t′ + t0)). (A3)

This equation holds for any arbitrary ξ and time t0. By choosing ξ = −X ′ and t0 as −t′,
we obtain the most general form of the correlator as follows:

ulab(t, X ) · ulab(t′, X ′) = Tu,lab(X − X ′ − S(t − t′)XeY , t − t′). (A4)

While Tu,lab is time stationary, it explicitly depends on X, and is therefore inhomogeneous
in space. This characteristic is akin to the velocity correlator that would result from
applying the Taylor hypothesis to frozen turbulence.

In a shearing-frame transformation, a set of Cartesian coordinates (x, y, z) whose
directions are parallel to those of the laboratory frame is linked to the laboratory-frame
coordinates by

x = X − St XeY , (A5)

and the velocity field in the shearing frame is defined by

u(t, x) = u(t, X − St XeY ) = ulab(t, X ). (A6)

Applying the transformation to (A4) yields

u(t, x) · u(t′, x′) = Tu(x − x′ + St′(x − x′)eY , t − t′), (A7)

which restores spatial homogeneity at the cost of time stationarity when x /= x′.
To measure the correlation time in Fourier space, we require the velocity correlator

to be both spatially homogeneous and time stationary. Thus, we aim to construct a
correlator that preserves both of these properties. With the shearing transformation for
the spatial coordinate, we can derive the corresponding transformation for its Fourier
counterpart. This transformation is obtained from the conservation of the phase of the
wave, K · X = k · x (see the Appendix in Sridhar & Singh 2010, for details), where K is
the laboratory-frame wavevector and k is the shearing-frame wavevector. Using (A5), we
find K = k − St kyX̂ .

The spatial homogeneity of (A7) ensures ũ∗(t, k) · ũ(t′, k′) = 0 unless k = k′.
Consequently, we can define

Tũ(t, t′, k) = ũ∗(t, k) · ũ(t′, k), (A8)

whose general form is given by Fourier transforming (A7),

Tũ(t, t′, k) =
∫

d3r e−ik·rTu(r + St′rxeY , t − t′); where r = x − x′

= T̃u(k − St′kyX̂ , t − t′). (A9)

Note that the Fourier space correlator Cũ(t, t′, k) is not time stationary, given its explicit
dependence on the time t′. The time-stationary property is crucial for building statistics

1000 A17-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
06

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1006


Correlation time of velocity and kinetic helicity

over time, facilitating the averaging required to obtain the correlator. Consequently, we
opt for specific correlators constructed from (A9), designed to preserve the time-stationary
property.

Firstly if we restrict ourselves to the ky = 0 plane, we obtain a set of correlator that are
time stationary, denoted as

Cxz
ũ (t, t′, kx, kz) = Tũ(t, t′, kx, ky = 0, kz) = T̃u(kx, 0, kz, t − t′). (A10)

The other set is obtained by integrating the correlator (A9), over kx. By applying the
transformation property of Fourier wave vectors, the integrals of the correlators can be
expressed as∫

dkx dkyT̃u(kx − St′ky, ky, kz, t − t′) =
∫

dKx dKy T̃u(Kx, Ky, kz, t − t′), (A11)

where Kx = kx − St′ky and Ky = ky and the Jacobian of the transformation between
laboratory-frame and shearing-frame wavevectors is unity. Defining a correlator by
integrating over the Kx wavevector

CIx
ũ (t, t′, ky, kz) =

∫
dKx

2π
T̃u(Kx, ky, kz, t − t′), (A12)

we obtain the time-stationary correlation function, as they depend only on the difference
in time (t − t′).

We can express the integrated correlator (A12) in terms of the velocity as

CIx
ũ (t, t′, ky, kz) =

∫
dkx

2π
ũ∗(kx, ky, kz, t) · ũ(kx, ky, kz, t′)

=
∫

dxu∗(x, ky, kz, t) · u(x, ky, kz, t′), (A13)

where the last equality is due to the application of Parseval’s theorem in one dimension.
In our numerical experiments, we approximate the last expression by integrating x in the
range −5π/32 ≤ x ≤ 5π/32, which captures the small-scale modes responsible for the
dynamo transport coefficients. The compromise of integrating over a limited range of x
is made because the two-time correlators have to be calculated from the Fourier modes
during the post-processing, and the output modes are limited due to the high cadence
needed to capture short correlation times.

It is crucial to highlight that (A10) provides the axisymmetric modes, while (A12) yields
the non-axisymmetric modes in an integrated form along one dimension. The significance
lies in the fact that only the non-axisymmetric modes contribute to dynamos, making them
particularly relevant for dynamo studies.
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