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The Distribution of Totatives
R. R. Hall and P. Shiu

Abstract. D. H. Lehmer initiated the study of the distribution of totatives, which are numbers coprime
with a given integer. This led to various problems considered by P. Erdős, who made a conjecture on
such distributions. We prove his conjecture by establishing a theorem on the ordering of residues.

1 Introduction

J. J. Sylvester called the numbers a ≤ n which are coprime with n the totatives of n.
In order to study the distribution of these totatives, D. H. Lehmer [3] introduced the
counting functions

φ(n; k, �) =
∑

n�/k<a≤n(�+1)/k
(a,n)=1

1, 0 ≤ � < k.(1.1)

In particular, φ(n; 1, 0) = φ(n) is Euler’s totient function. Define

Ak = {n : k2 | n or there exists a prime p | n with p ≡ 1 (mod k)},

Bk =
{

n : φ(n; k, �) =
φ(n)

k
for 0 ≤ � < k

}
,

Ck = {n : k | φ(n)}.

(1.2)

It is clear that Ak and Bk are subsets of Ck, and in fact Lehmer [3] proved that Ak ⊂
Bk ⊂ Ck. It is not difficult to show that C p ⊂ Ap for a prime p, so that Ap = Bp = C p.
P. J. McCarthy [4] proved that Ak �= Bk when k is not squarefree, and he asked if the
result could be extended to all composite numbers k. This was done by P. Erdős [1],
who proved that the set Bk \ Ak is infinite for every composite k. Erdős also showed
that B2p = C2p for an odd prime p, and then proved that Bk �= Ck if k �= p and
k �= 2p, with p odd; see [2]. In [1] Erdős made the following

Conjecture Let p, q be distinct odd primes such that pq �∈ Ak and pq �≡ −1 (mod k).
Then pq �∈ Bk.

The study of the distribution of totatives often involves the analysis of the condi-
tion under which the sum of two fractional parts of real numbers should exceed 1. In
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particular we found that the conjecture depends on an interesting inequality associ-
ated with residue classes. For a fixed modulus k, we write x < y (mod k) to mean
that the least non-negative residue congruent to x is less than that congruent to y.

Theorem Let a, b, c be integers which are distinct (mod k) and satisfying

(ab, k) = 1, c �≡ 0 (mod k), a + b �≡ c (mod k).(1.3)

Then there exists x such that ax < cx < bx (mod k).

In the next section we show that the conjecture of Erdős follows from the theorem,
the proof of which is given in the last section. We thank the diligent referee for his
careful reading of the paper and for bringing our attention to [2].

2 Proof of the Conjecture

Let p, q be distinct odd primes such that pq �≡ −1 (mod k). The condition that
pq �∈ Ak amounts to

p, q �≡ 1 (mod k).(2.1)

We need to show that pq �∈ Bk. Since Bk ⊂ Ck, we may assume that pq ∈ Ck, which
then amounts to

pq + 1 ≡ p + q (mod k).(2.2)

By (1.1) and the counting argument given in [2], in order to show that pq �∈ Bk it
suffices to find an integer � such that

{ �pq

k

}
+
{ �

k

}
�=
{ �p

k

}
+
{ �q

k

}
.(2.3)

If pq | k then we may simply set � = k/pq. We may therefore assume that p � k. We
begin by letting c = (p+q, k). Note that the condition c �≡ 0 (mod k) in (1.3) follows
from c < k, which holds because of (2.2) and the hypothesis pq �≡ −1 (mod k).
Write p + q = cm where (m, k/c) = 1 and define a by am ≡ 1 (mod k/c), so that
(a, k/c) = 1 and

a(p + q) ≡ acm ≡ c (mod k).(2.4)

Now set b = ap. If (a, c) = d > 1 then the four numbers a, b, c, k are divisible by
d, and we replace them by a/d, b/d, c/d, k/d, respectively in the following. We may
now suppose that (a, c) = 1. Then (ab, k) = 1 and the remaining conditions in (1.3)
for the theorem follows from (2.1) and (2.4). By the theorem, there exists x such that

ax < cx < bx (mod k).(2.5)
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At this point we recover the general case on multiplying through by d. We also have,
by (2.2) and (2.4), axpq + ax ≡ axp + axq ≡ cx (mod k). Letting r(x) denote the
least non-negative residue of x (mod k) it now follows from (2.5) that

r(axpq) + r(ax) = r(cx), r(axp) + r(axq) = k + r(cx).

Writing � = r(ax) we find that r(�pq) + � < k ≤ r(�p) + r(�q), which is the same as

{ �pq

k

}
+
{ �

k

}
< 1 ≤

{ �p
k

}
+
{ �q

k

}
,

so that (2.3) is proved.

3 Proof of the Theorem

Suppose first that k = p is an odd prime, and that c = 1. For 2 ≤ a ≤ p − 1 we set

A(a) = {r : 1 ≤ r < p, ra < r (mod p)}.(3.1)

Since ra < r (mod p) is equivalent to (p − r)a > p − r (mod p) we find that r ∈
A(a) if and only if p−r �∈ A(a), so that |A(a)| = 1

2 (p−1) and hence |A(a)\A(b)| =
|A(b) \ A(a)|. It is also easy to check that A(a) = A(b) when a + b ≡ 1 (mod p),
since if for some j with 1 ≤ j < r we have ra ≡ j then rb ≡ r − j. We proceed to
show that if

2 ≤ a < b ≤
p + 1

2
,(3.2)

then A(a) �= A(b), and the required result follows from the definition of A(a). The
proof makes use of characters χ (mod p), Gauss sums and the fact that L(1, χ) �= 0.

Write

F(a, χ) =
∑

r∈A(a)

χ(r)(3.3)

and we proceed to prove that F(a, χ) �= F(b, χ) for some character χ, which then
implies A(a) �= A(b). We first establish the formula

F(a, χ) =W (χ){1 + χ̄(a− 1)− χ̄(a)},(3.4)

where

W (χ) =
1

p

∑
1≤r<p

rχ(r).(3.5)
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The usual procedure of using an exponential sum to identify those r ∈ A(a) leads to
the following

F(a, χ) =
∑

1≤r<p

χ(r)
∑

0≤s<r

1

p

∑
0≤h<p

e

(
−h(s− ra)

p

)

=
1

p

∑
1≤r<p

rχ(r) +
1

p

∑
1≤h<p

∑
1≤r<p

χ(r)e
( hra

p

) ∑
0≤s<r

e
( −hs

p

)

=W (χ) +
1

p

∑
1≤h<p

1

e(−h/p)− 1

∑
1≤r<p

χ(r)e
( hra

p

){
e
( −hr

p

)
− 1
}
.

Let

G(χ, x) =
∑

1≤r<p

χ(r)e
( rx

p

)
,

so that G(χ, x) = χ̄(x)G(χ), where G(χ) = G(χ, 1), and hence

F(a, χ) =W (χ) +
1

p
G(χ)

∑
1≤h<p

χ̄(ha− h)− χ̄(ha)

e(−h/p)− 1
.

The sum here can be evaluated from

∑
1≤h<p

χ̄(h)

e(−h/p)− 1
= − lim

λ→1

∑
1≤h<p

χ̄(h)

1− λe(−h/p)

= − lim
λ→1

∑
1≤h<p

χ̄(h)
∞∑

m=0

λme
( −mh

p

)

= − lim
λ→1

∑
1≤h<p

χ̄(h)
∑

0≤m<p

λme(−mh/p)

1− λp

= lim
λ→1

∑
1≤h<p

χ̄(h)
∑

1≤m<p

mλm−1e(−mh/p)

pλp−1
(l’Hôpital)

=
1

p

∑
1≤m<p

m
∑

1≤h<p

χ̄(h)e(−mh/p)

=
1

p

∑
1≤m<p

mχ(m)G(χ) =W (χ)G(χ),

and (3.4) now follows from |G(χ)| =
√

p.
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When χ is an odd character, that is χ(−1) = −1, the sum (3.5) can be evaluated.
Thus, from

W (χ) =
∑

1≤r<p

( r

p
−

1

2

)
χ(r)

= −
∑

1≤r<p

∑
m∈N

χ(r)
sin(2πmr/p)

πm

=
1

2π

∑
m∈N

χ̄(m)

m

∑
1≤r<p

χ(mr)

(
e
( mr

p

)
− e
( −mr

p

))
,

and the fact that χ is odd, so that the terms−e(−mr/p) just double up, we find that

W (χ) =
i

π

∑
m∈N

χ̄(m)

m
G(χ) =

i

π
G(χ)L(1, χ̄).(3.6)

In particular, W (χ) �= 0 for an odd character, and we may now consider the sum

∆(a, b) =
∑
χ

� |F(a, χ)− F(b, χ)|2

|W (χ)|2
,(3.7)

where � indicates that the sum is restricted to odd characters χ. From (3.4) we have

∆(a, b) =
∑
χ

�
|χ̄(a−1)− χ̄(a)− χ̄(b−1) + χ̄(b)|2

= 2(p − 1)− S(a−1, a)− S(b−1, b)− S(a−1, b−1)− S(a, b)

+ S(a, b−1) + S(a−1, b),

where

S(x, y) = 2 Re
∑
χ

�
χ̄(x)χ(y) =

{
±(p − 1) if x ≡ ±y (mod p),

0 otherwise.

When a, b satisfy (3.2) we find that S(a−1, a) = S(b−1, b) = S(a−1, b−1) =
S(a−1, b) = 0. Moreover, if a ≡ ±b (mod p) then a = 1

2 (p−1), b = 1
2 (p + 1), with

S(a, b) = −(p− 1). Finally S(a, b− 1) �= 0 if and only if a = b− 1, when its value is
p − 1. Therefore, for a, b satisfying (3.2),

∆(a, b) =




2(p − 1) if a < b− 1,

3(p − 1) if a = b− 1 < 1
2 (p − 1),

4(p − 1) if a = b− 1 = 1
2 (p − 1).
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In particular ∆(a, b) > 0, so that, by (3.7), there exists a character χ such that
F(a, χ) �= F(b, χ). Indeed, since |L(1, χ)| 
ε 1/pε for every ε > 0, it now follows
from (3.6), (3.7) and∆(a, b) ≥ 2(p − 1) that

∑
χ

�
|F(a, χ)− F(b, χ)|2 
ε p2−ε.

This implies

1

p − 1

∑
χ

|F(a, χ)− F(b, χ)|2 
ε p1−ε,

that is |A(a) \A(b)| 
ε p1−ε as p →∞.
For the general case, when k is composite and c �≡ 0 (mod k), we need to re-

place the definition of A(a) in (3.1) by A(a) = {r : 1 ≤ r < k, (r, k) = 1, ra <
rc (mod k)}. Then A(a) = A(b) when a + b ≡ c (mod k), so that (3.2) has to be
adjusted accordingly. The argument then proceeds in the same way except that the
occurrence of p − 1 should be replaced by φ(k).
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