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ELIMINATION FROM HOMOGENEOUS POLYNOMIALS
OVER A POLYNOMIAL RING

JOHN G. STEVENS

1. Preliminaries. Let Q be a field and T a parameter. We designate the set
of all polynomials homogeneous in (X) = (X,, ..., X,) with coefficients in
QT] by HQp|X] and write such polynomials as F, [/(X), or F(X, T'). The
degree of a polynomial in HQp[X] shall mean the degree in (X). Let [ =
(Fy, ..., F,) be a fixed ideal in HQp[X] generated by Iy, ..., F,. With W@
denoting the space of polynomials in HQr[X] of degree [, we investigate the
quotient [: W of I by WO in Q[T]. This quotient is the set of all poly-
nomials p(T') in Q[ T'] satisflying

1) p(IHG=0 modI

for all G in W, In particular, when I: W is not the zero ideal, we study
the monic generator of I: V(" which we call the minimal quotient for degree |
of I, written R, (T). As I: WV is contained in I:WU+D  the union of all such
ideals is an ideal with monic generator R(T) which we call the minimal
quotient of I, also denoted R([y, ..., F,)(T). In that R(T) = R\(I') for
some \, R(T) is the minimal monic polynomial in Q[T'] satisfying (1) for all
G of degrece I = N and thus for all [ sufficiently large. Further we use w,(” to
dencte the monomials in (X) of degree t. There are m(t, n) = (¢t +n — 1)!/
t!(m — 1)! such monomials. If the above is carried out for a single polynomial
Fin HQp[X] instead of W we speak of the minimal quotient of F relative to I,
denoted R (T'), which generates [:(F) and is the minimal monic polynomial
in Q[ T'] satisfying p(T)F = 0 mod I. If deg I = [ then R, (T) exists if R,(T")
does and Rz(T)|R,(TI").

We state without proof certain algebraic properties of minimal quotients
which follow directly from elimination theory and the theory of elementary
divisors [3; 4].

THEOREM 1.1. For the ideul I generated by Fy, ..., F, in HQpX] with
deg F; = [; we have the following:

(1) Let (ayn) be the coefficient matrix of the polynomiuls Py = oW, F; =
Do, ™ with 1 < k < s where s = 3 iim(l — 1, n). Ry (1) exists if and
only if s =2 m(l, n) and at least one minor of order m(l, n) of the coefficient
matrix is nonzero. A nmecessury condition is v = n. Then R,(T) s the maximal
wnvariant factor of the coefficient matrix (o).
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(i) R(a) = 0 if and only if there exists a nontrivial zero of the specialized
system Fi(X,a) =...= F,(X,a) =0 where F(X, ) denotes F; with the
coefficient polynomials in QT evaluated at a.

(iii) If the classical resultant system for homogeneous polynomials specialized
for Fi(X, T') satisfies Equation (1) for all G of degree I* but not for I* — 1 (i4f
r=mun, =14+ >"%"1(;— 1)) then Rx(a) = 0 tmplies R(a) = 0. Thus if
Ry (T) does not exist, neither does R(T).

In the present paper, we study the multiplicity of the zeros of R(T') and
Rp(T). That the multiplicity of ¢ as a root of R(T') is not simply related to
multiplicity in the specialized system F{(X,«) = ... = F,(X,a) = 0 can be
seen in the following example.

Example. Let
f(X, I‘) — deu _I_ X2¢t+1 + F((X1 _I_ Xz)d-e-l . X1d+1 _ X2d+1)
with

Fi= fx,/(d+1)

(I — D)X 4 I'(X, + X))

and

Fo= fu/d+ 1)
A routine argument shows R(Fy, Fs)(T) = Ry 1(T) which equals
(1 =) 1L {1 + (e + D = 1},

the product taken over the dth roots of unity e; In particular, although
(1, —1) is projectively a zero of multiplicity d for Fy(X,1) = (X, 1) = 0,
il d is odd R(T') has only simple roots; but for d even, (1 — T)?R(I'). We
note that this example provides a negative answer to the question posed by
Dwork [1, p. 484] whether R(T) has only simple roots for the case F; =
af(X, I)/aX,; (or = X, (8f(X, T)/0X;) for which R(T) is also as given
above) with f(X, T') of the form 374 X 4 + Th(X).

(1 — D)X 4+ I'(X, + X))o

Specializing now to the case in which Q is algebraically closed, we shall use
multiplicity varieties as conceived by Ehrenpreis to give geometric content to
the multiplicities involved and to develop criteria for determining them. A
differential operator shall mean a linear combination of differentiations
a"/aX ™. .. dX ™ with polynomials in (X) as coefficients. A multiplicity
variely is an ordered collection 1 of varieties in ", not necessarily irreducible,
and differential operators associated with the varicties, written V =
(Vi, 01; ... ; Vi, 9,) where 9, is the differential operator associated with V.
We call (V,, 8;) a component of V. For P in Q[ X], we mean by P|, the re-
striction of P to the variety V. By the restriction of P’ to a multiplicity variety
V, Plv, is meant (9:P|y,, ..., 3.P|y.). We shall use the following theorem
due to Ehrenpreis; the proof is given in a somewhat different setting in

[2, Chapter II].
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MurtipLICITY VARIETY THEOREM. For any tdeal I in QX with variety V
in Q, there is a multiplicity variety V. = (Vy, 81;...; Va 04) such that V =
ViU, ..UV, and any polynomial P in Q[X] 15 in I if and only if P restricted
to V is zero, 1.e., Plv = (0,...,0).

In our application of multiplicity varieties we take the variables to be
(X1, ...,X,, ') and designate zeros of F(X, I') by (¢, ..., &, a) or simply
(¢, a). Suppose R(Fy, ..., F,)(T) = 11 (I — a,)**. We know from Theorem
1.1(ii) and the homogeneity in (X) that the common zeros of Iy, ..., F, are
of the form (£(¢),a) = (t&, . .., t&,, a) where a is one of the a,, t takes on all
values in @, and one or more such rays belong to each of the a,. From the
homogeneity in (X), (0, @) is a zero for all @ in Q.

In the sequel we assume V' to be normalized by eliminating from any
differential operator 9, of a component (V;, ;) all terms

ci(X, T)om/aX ™ ... dX oI

for which ¢;(X, I')|y, = 0.

If 9 is a linear combination of differentiations of the above form we call the
maximum of the mr ranging over the differentiations the order of T'-differen-
ttation of d and the maximum of the sums m; + ... + m, the order of (X)-
differentiation of 9. For fixed a in Q let Vi{a} = {(§ a)|F1(§,a) = ... =
F,(¢ a) = 0}. For V let d{a} = {9,/(V,, ;) is a component of V with V;,
contained in V{a} and V; # {(0, a)}}. We define the I'-multiplicity of V at a
to be one plus the maximum of the orders of T'-differentiation of 4, as 9,
ranges over d{a}, if d{a} is nonempty; and to be 0, if d{a} is empty.

2. Main results.

TueoreM 2.1. Let V be the normalized multiplicity variety for the ideal
(F1, ..., F,) in HQp[X]. Then kis the T-multiplicity of V at a if and only if a
is a zero of R(Fy, ..., F,)(T) of multiplicity k.

We prepare with the following lemma.

LEMMaA 2.2. If 9 4s « differential operator with differentiations in (X) alone,
normalized on the variety (t1(&), «) with & 5% 0 for some k, then there is o mono-
mial M of arbitrarily high degree such that dM| ) o # 0.

Proof. Choose a differentiation 9™/9X ™. .. dX,"™ in 0 with maximum m
from among those differentiations with maximum m,. The coefficient of the
differentiation does not vanish at (& «) from the normalization of 9. The
desired monomial is then M = X,/ ... X/... X, with j 2 my; as all
other differentiations in 9 applied to M are zero at (§) and

(X X Xy aX L aX e L aX, ) e # 0.
Proof of Theorem 2.1. Let k be the I'-multiplicity of V at ¢ and R(T') =
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(T — a)*Q(T), Q(u) # 0. Suppose v < k. Let 9 be a differential operator in
d{a} with k& — 1 as its order of I'-differentiation and W as its variety. Then

ak—l
d = dx T + 01

where dy is a differential operator in (X) alone and the order of I'-differentia-
tion of 9, is less than & — 1. In that W is composed of rays of the form (¢£(¢), «),
we can choose by Lemma 2.1 a homogeneous polynomial M of arbitrarily high
degree such that dy M|y = 0. R(T)M and thus M; = (I — «)* D= R(I'NM

are in the ideal and must vanish on V. However,

k—1

i)
IM1w = % ST Milw 4 0:Ma|w = Q@) (k — D!oxM|y # 0

as 91 My|w = 0. Thus » 2 k. Consider now the polynomial R(T) =
IT (T — a)*@ where k() is the D-multiplicity of 7 at a. Now Ry(T')P(X) is
in the ideal for all polynomials P (X) homogeneous in (X) of sufficiently high
degree. This follows in that R,(T")P(X) satisfies 9, R (T)P(X)|y; = 0 where
V., C V{ia} for any a as k(a) is at least one greater than the order of T-
differentiation of d,. Thus we need only check 8;R(T)P(X)|,; =0 for
V', C {(X) = 0}. However for P(X) of degree greater than the orders of
(X)-differentiation of any such 9;, 9,R;P will still have (X) dependence and
will vanish on V;. Thus R(T')|R:(I') which implies » £ % and completes the
proof.

COROLLARY 2.3. If N s the maximum of the orders of (X)-differentiation of
differential operators which have associated wvarieties contained in {(X) = 0},
then R(T') = Ry 1 (T).

Proof. Any homogeneous polynomial of degree N 4+ 1 will satisfy all the
differential operators described in the hypothesis. Further, T-multiplicity
associated with varieties not contained in {(X) = 0} perseveres from the
above proof.

Analogously, we have the following theorem for the minimal quotient for a
polynomial F, which we state in the case that F is a polynomial in (X) alone
i.e., having coefficients in €.

THEOREM 2.4. Let 9, = 5.0 9,,0'/0T" be the differential operators in
dfa} where (V,, 9;) are components of the multiplicily variety for the ideal
(F1, ..., F,) and 8,; are differentiations in (X)) alone. If I'(X) is « polynomiul
in (X) alone, then 8, F(X)|y, = 0 for all j, for © = k, and 9; —nF(X)|v;, # 0
for some j if and only if « is a zero of Rp(T') of multiplicity k.
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Proof. Suppose [I'(X) satisfies the differential relations. Considering

9p (D) (T — ) 'Fly; = Z <am(% p(0)(I = a)"“)lw

i
+ @) (o @@ = ),

k) i
+ 2 (0uF) (% () = a)k“)IVf
i=k

we see that the sums on the right hand side are zero while the middle term is
zeroifandonlyif p(¢) = Oor 9, ,_1F|y, = 0. Letting Rz(T') = (I' — a)*Q(T),
Q(a) # 0, it follows that v £ k as otherwise (I' — «)*~'Q(T)F would be in
the ideal and yet for the choice of j such that 9, ,-1/]y; # 0, we would have
the middle term of the above not equal to zero, a contradiction. Now let
P(1) = II (1 — «,)* where 8{a,} # @ and k, is defined as is k in the state-
ment of the theorem. Then P(T)F|v = 0 and so P(T')F is in the ideal. Thus
Ry (T)|P(T), giving B < v and thus k£ = ». The converse follows similarly in
that (I — «)Q(T)F is in the ideal if 7 = k and thus 9;,F|,, = 0 for all j,
and (I' — «)*'Q(T)F is not in the ideal giving 9,(I' — «)*1Q(T) Fly; # 0
for some j and thus 9;,,-1/v; # 0. This completes the proof.

We now apply the above theorem to obtain a criterion for multiplicity in
Rz (T) in the case in which the generating polynomials depend linearly on T
which does not explicitly depend on a representation for the multiplicity
variety but rather on the coefficient matrix discussed in Theorem 1.1(i). First
" observe upon letting G(X, T') = Y21 0,(T)w, P where v, are the mono-
mials in (X)) of degree [ in a specified order, that if  is a differential operator
with differentiations in (X') alone, then

GX, Do = Z_:l bi(M)aw, |0 = (G, ),

where G = (by(a), ..., 0,(¢)) and @ = (dw, V|, ..., d0,|). Note that
G depends on «; d depends on (£); and both depend on [ and the order for
;Y. This dependence is clear in context and thus is suppressed in the notations
G and 9. Also we use the notation H® for the p X p matrix with ones in the
superdiagonal and zeros elsewhere.

THEOREM 2.5. Let (Fy, ..., F,) be an ideal with F;in HQ [ X where each of
the F; have as coefficients linear polynomials in T and deg F; = ;. Suppose
R,(T) = (T — a)’Q(1), Q(a) # 0, with R,(0) # 0. Then the coefficient matrix
of the polynomials w9, F; relative to a fixed order for w, " can be transformed
by linear combinations of its rows to the form

.Qll"&m_:l S ,:_(ﬁ)_mgm_]
[Om’Xm + I (ﬁ*)m’Xm )

Further, letting («(T')) = luxn + T'(B), suppose &; are column vectors such that
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(@(@))o; =841, 0 =7 = v — 2; and (a(a))d,—1 = 0 with no vector other than
8,-1 being « null vector in the range of (a(w)). Then for any polynomial I'(X) in
(X) alone, F is orthogonal to 8,y w £ 1 < v — 1 with p = 1 but not orthogonal
to 8,1 if and only 1f a is a zero of R (1) of multiplicity p.

Proof. As the F; arc lincar in T' and R,;(0) ## 0 the coefficient matrix for
degree [ is of the form (p) + T'(¢) with (p) of maximal rank. Thus there is a
unit (7) such that

06 = | = |

Om'Xm
and (7)((p) + TI'(¢)) is of the desired form. We can take « to be 1 by formally
substituting a T for T'and (1/a)(¢) for (¢). Let V be a multiplicity variety for
(Fy, ..., F,). Because (I’ — 1)*|R,(T') we must have a component (1, d) in
V with (¢(¢),1) C V and
81

k
= Al —_
9 ;) (1/1-)613Fi )

d; differentiations in (X) alone and £ = v — 1. Further, for degree [, 3; = 0
for ¢ 2 v and 98,1 # 0 by Theorem 3.3. As all the polynomials of the form
w9 F; are in the ideal we have 9w _,; FF;

(@(1))d + (8)d, = 3y + (8)ds + (B)d, = 0.

In general, from (T — 1)"0@®,_,F)|y = 0, m £ » — 2 we obtain

v = 0 or equivalently

(a(l))am + (B) am+1 = am + (B)am + (B) am+] = 0.
From (T — 1)~'w®,_,F|y = 0and 3, = 0 we have
(@(1)81 = 81 + (B)d,1 = 0.

Using (8)0,-1 = — 8,1 in (a(1))d,—2 4+ (8)8,—1 = 0, we obtain («(1))d,-» =
9,_1. Thus it follows that (B)d,_ 2 = 8,1 — 8,_2 and that («(1))d,_3 =
9,2 — 8,_; and in general

@a = 3 (=1,

Defining
y—2 .
d, = 2 (V ; 122)61, ifi<y—1landd,-; = 9,;
=1 -
we have
2 (v—i—2
@ina =3 (7557 %)@,
j=1
=2 (V—-’i—Q)(v_l 1
- ] ] )Rt )
j;i J—1 k;rl ( ) B
= = aifv—17—2
= > <—1>k(2 (*1)’“( o ))ak.
k=i+1 =1 j—1
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As

= '+1(V—’i—2 k(V—1—3)
jo— J — J— —
;:1 (—=1) i ) (=1) b i—1 fork <v—1
equals 0 if 2 = » — 1, we have

@ = 5 (2707 o - du

k=1i+1
and («(1))d,_; = 0.
Now suppose D; are vectors such that (¢(1))D; =Dy, 1 =2 =v — 2,
and («(1))D,_; = 0. Then for some choice of \; with A\; =0 for ¢ > v — 1
and \,_; # 0 'we have

y—1
Di = Z )\(y—l)+i—j5j, 0s1=v~— l,
i=0

where a null vector v of (a(1)) may be added to Dy. This can be seen in that
{D,_1,D,5, ...,Dy is the most general basis preserving H® (by direct
computation or solving XH® = H®X for X general nonsingular matrix).
Then («(1))(Dy + v) = D; and yet a null vector of («(1)) can be added to
no other D, as multiples of &,_; are the only null vectors in the range of («(1)).
Hence for some choice of \;and v, D; =d;, 0 £7 < v — 1.
Observe now that the matrices relating D, to §; and d; to 9, are nonsingular

upper triangular matrices thus giving

v—1

9; = Z €9, with ¢y # 0.

j=1
Hence F is orthogonal to 8;, u < 7 < » — 1, but not to §,_; if and only if F is
orthogonal to 9;, u < 7 < » — 1, but not to 9,_;. Suppose now that 9 in the
form given above is any differential in d{a}. An analysis similar to the above
applies. That is, if p is the largest integer such that 3, # 0 then p must be less
than y and 9, is a null vector in the range of («(1)) and must thus be a multiple
of &,_;. It follows as above that

y—1
9; = Z Cijﬁj, Cii & 0.
j=(r—D—p+i
Hence F is orthogonal to 9, for p <7 <v — 1 where 341 = ... = 8,1 =0

Thus F satisfies d,F|y = 0, 1 = p, for any component (V, d) with 9 in d{a}
and there exists a differential operator in d{a} such that 9,_,F|y = 0 if and
only if F is orthogonal to 8, u < 7 = » — 1, but not to §,_;. The result follows
from Theorem 2.4.

3. Concluding remarks and example. The restriction in Theorem 2.5

that T be linearly embedded in the polynomials F; can be lifted with a slight
modification of the proof required. This follow in that in the general case as
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well, the coefficient matrix acts on 9; to give a linear combination of the form

y—1

Z Y95 Vi #0,

=1+l

with the proof continuing from that point essentially as before. Further, if
the polynomial /' is not in (X) alone but has T'-dependence, the proof of
Theorem 2.5 reveals that conditions are then required on /¥ and on 9'/7/dT'!
at T = «. As we are primarily interested in the linear case, we shall not
pursue these or other possible generalizations at this time, but conclude with
the following example.

Lxample. We consider the example given in the first section with /7, =
I —-—D)X 4 (X, + X9 7 =1,2, for which (1 — TI')?}|R(T) when d is
even, while R(T') has only simple roots when d is odd. We examine the case
when d is even and investigate conditions on F equivalent to Rz(I') having
only simple roots, when £ is homogeneous of degree 2d — 1 and in (X) alone.
The coefficient matrix for (Fi, Fs) of degree 2d — 1 relative to the order
X 21 X 202X, ) X271 with rows listed in the order X 91/, X (2 X, 1,
o X UE Xy L X5y ds of the form described in Theorem 2.5
by («(T)). Furthermore routine calculations give that 8, = (1, —1,1, —1,

., 1, —1) is, up to a multiple, the only null vector in the range of («(1)).
Thus by Theorem 2.5, R (T) has simple roots if and only if F is orthogonal to
8. As (X271 X 22X, ..., Xo22) at (1, —1) equals §; the criterion
becomes simply that /(X) vanish on (1, —1) and thus is applicable for I(X)
of arbitrary degree = 2d — 1.
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