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Abstract. It is known that the concept of Moufang loops, Moufang 3-nets and
groups with triality are strongly related. Due to S. Doro, a group with a splitting
automorphism of order 3 can lead to a group with triality. This construction naturally
appears in the classification of simple Moufang loops. In this paper, we consider groups
with triality related to groups with splitting automorphism. We give a classification of
Moufang loops corresponding to this construction.

2000 Mathematics Subject Classification. 20N05, 20F19.

1. Basic concepts. Let L be a set endowed by a binary operation x · y = xy and
let us define the left and right translations λx(y) = xy, ρx(y) = yx.

DEFINITION 1.1. We say that (L, ·) is a loop if on the one hand λx, ρx : L → L are
invertible maps and on the other hand, 1x = x1 = x holds for a distinguished element
1 ∈ L. The loop L is a Moufang loop if the identity ((xy)z)y = x(y(zy)) holds.

The Moufang property can be equivalently expressed by both identities x(y(xz)) =
((xy)x)z and (xy)(zx) = x((yz)x).

DEFINITION 1.2. For a Moufang loop L, we define the multiplication group Mlt(L)
of L as the permutation group generated by the left and right translations λx, ρx, x ∈ L.

To a loop (L, ·), one can associate a incidence geometric structure called 3-net.

DEFINITION 1.3. A 3-net consists of a point set P and a line set L which is
partitioned in three classes L=L1 ∪ L2 ∪ L3 such that the following hold.

(i) Two lines from the same class have no points in common and lines from different
classes have precisely one point in common.

(ii) Every point is incident with precisely one line from each class.

If L is a loop then the choice P = L × L, L1 = {{(c, y) | y ∈ L} | c ∈ L}, L2 =
{{(x, c) | x ∈ L} | c ∈ L}, L3 = {{(x, y) | x, y ∈ L, xy = c} | c ∈ L} defines a 3-net.
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Conversely, given a 3-net N = (P, L) and the origin O ∈P , we can introduce a
multiplication on the 1-line � through O that turns � into a loop, called the coordinate
loop of N . For introductory reference on loops and 3-nets see [2], [9].

Let �∈Li be a line of a 3-net and let Lj,Lk be the other two line classes. We denote
by σ� the permutation of P which interchanges the line classes Lj,Lk and leaves the
points of � fixed. These properties determine σ� uniquely and imply ϕσ�ϕ

−1 = σϕ(�) for
any collineation ϕ of the 3-net. A theorem of G. Bol says that σ� is a collineation of
the 3-net for every line � if and only if the coordinate loop is Moufang. We call such
3-nets Moufang nets.

For a group G, we use the common notation xα instead of α(x) for x ∈ G and α ∈
Aut(G). Moreover, we put xy = y−1xy, [x, y] = x−1xy = x−1y−1xy and [x, α] = x−1xα.

DEFINITION 1.4. Let G be a group and S = 〈σ, ρ | σ 2 = ρ3 = (σρ)2 = 1〉≤ Aut(G).
We say that the pair (G, S) is a group with triality if the following identity holds for all
x ∈ G.

[x, σ ][x, σ ]ρ [x, σ ]ρ
2 = 1 (1)

REMARK 1.5. An equivalent formulation of this concept is the following. Let
� be a group with normal subgroup G. Take three involutions σi ∈� \ G and put
Ci = σ G

i = {g−1σig | g ∈ G}, i = 1, 2, 3. Assume �/G ∼= S3 and (τiτj)3 = 1 for all τi ∈ Ci,
τj ∈ Cj, i 	= j. Then, (G, 〈τi, τj〉) is a group with triality. (Cf. [4, Lemma 3.2].)

Let N be a Moufang net. Let us define the following collineation groups
of N : � = 〈σ� | �∈L〉, G = {γ ∈ � | γ (Li) =Li, i = 1, 2, 3}. Then, G � � and �/G ∼=
S3. Let P be a point of N and �1, �2, �3 be the three lines through P. Then
σ�1σ�2σ�1 = σ�2σ�1σ�2 = σ�3 , hence (σ�1σ�2 )3 = 1. By Remark 1.5, this implies that for
SP = 〈σ�i , σ�j 〉= 〈σ�1 , σ�2 , σ�3〉 ∼= S3, (G, SP) is a group with triality.

Conversely, any group with triality determines a Moufang net if one puts Li = Ci,
and the points are defined as subgroups 〈τi, τj〉 ∼= S3, τi ∈ Ci, τj ∈ Cj, i 	= j. The incidence
is the reverse containment. This construction appeared in [4]. The original observation
on the relation between Moufang loops and groups with triality was made in [3].

The relation between Moufang loops, Moufang nets and groups with triality is in
force for surjective homomorphisms as well. This means the equivalence of a surjective
homomorphism of the coordinate loop, a surjective direction preserving collination of
a Moufang net and an S-homomorphism of the group with triality. In particular, there
is a 1-1 relation between simple Moufang loops, simple 3-nets and S-simple groups
with triality. (Cf. [4, Proposition 4.2].)

2. Some groups with triality. The following examples of groups with triality are
of big importance. The constructions come basically from Doro [3].

EXAMPLE 2.1. Type I. Let A be a group, G = A3, and define the automorphisms
σ : (a1, a2, a3) 
→ (a2, a1, a3) and ρ : (a1, a2, a3) 
→ (a2, a3, a1) of G. Then G is a group
with triality with respect to S = 〈σ, ρ〉.

EXAMPLE 2.2. Type II. Let A be a group with ϕ ∈ Aut(G) satisfying x xϕ xϕ2 = 1
for all x ∈ A. Put G = A × A, σ : (a1, a2) 
→ (a2, a1) and ρ : (a1, a2) 
→ (aϕ

1 , aϕ−1

2 ). Then
G is a group with triality with respect to S = 〈σ, ρ〉.
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PROPOSITION 2.3. Let L be a Moufang loop giving rise to group with triality G.
(i) If G is of type I, then L ∼= A. In particular, L is associative.
(ii) If G is of type II, then L ∼= (A, ◦), where the operation x ◦ y is defined on A by

x ◦ y = x−ϕ2
yx−ϕ = y−ϕxy−ϕ2

.

Proof. Part (i) is shown in [3, Proposition 1]. (The proof does not use finiteness.)
Applying (1) for x−ϕ2

y, we obtain x−ϕ2
yx−ϕ = y−ϕxy−ϕ2

. Hence, part (ii) makes sense.
Put

σ1,a = (a, a−1)σ, σ2,a = (
aϕ, a−ϕ−1)

ρσ, σ3,a = (
a−ϕ−1

, aϕ
)
σρ,

and

Ci = {σi,a | a ∈ A} ⊆ � = G � S.

Then, C1 = σ G, C2 = (σρ)G and C3 = (ρσ )G. Moreover, we have σ3,a = σ2σ1,aσ2 =
σ1σ2,aσ1, which means that σ1,a, σ2,1, σ3,a and σ1,1, σ2,a, σ3,a to reflections of concurrent
line triples. In particular, the underlying set of L can be identified by A.

On the other hand, the lines through the point (x, y) correspond to the reflection
σ1,x, σ2,y and σ3,x◦y, respectively, hence σ3,x◦y = σ1,xσ2,yσ1,x. In our case, this implies

σ3,x◦y = (x, x−1)σ
(
yϕ, y−ϕ−1)

ρσ (x, x−1)σ

= (x, x−1)
(
y−ϕ−1

, yϕ
)
ρ−1(x, x−1)σ

= (x, x−1)
(
y−ϕ−1

, yϕ
)(

xϕ, x−ϕ−1)
ρ−1σ

= (
xy−ϕ−1

xϕ, x−1yϕx−ϕ−1)
σρ

= (
(x ◦ y)−ϕ−1

, (x ◦ y)ϕ
)
σρ.

Hence, we have indeed x ◦ y = x−ϕ2
yx−ϕ .

The nucleus N(L) of a loop L consists of the elements n ∈ L for which n(xy) = (nx)y,
(xn)y = x(ny), (xy)n = x(yn) hold for all x, y ∈ L. For a Moufang loop L, we have
N(L) = {n ∈ L | n(xy) = (nx)y}, see [9, IV.1.5 Corollary]. The center of a loop L is
Z(L) = {x ∈ N(L) | ∀y : xy = yx}. The second center Z2(G) of the group G consists of
the elements z ∈ G, for which [[z, x], y] = 1 for all x, y ∈ G.

LEMMA 2.4. Let A be a group and let ϕ ∈ Aut(A) satisfy xxϕ xϕ2 = 1 for all x ∈ A.
Define the loop (A, ◦) by x ◦ y = x−ϕ2

yx−ϕ . Then, N(A) = Z2(A) and Z(A, ◦) = {x ∈
Z2(A) | x−1xϕ ∈ Z(A)}.

Proof. We have

x ◦ (y ◦ z) = x−ϕ2
y−ϕ2

zy−ϕx−ϕ,

(x ◦ y) ◦ z = xy−ϕ2
xϕzxϕ2

y−ϕx.

Therefore, x ◦ (y ◦ z) = (x ◦ y) ◦ z holds for all y, z ∈ A if and only if z = azb, where a =
yϕ2

xϕ2
xy−ϕ2

xϕ and b = xϕ2
y−ϕxxϕyϕ . However, on the one hand, we have

ab = yϕ2
xϕ2

xy−ϕ2
xϕ xϕ2

y−ϕxxϕyϕ

= yϕ2
x−ϕy−ϕ2

x−1y−ϕx−ϕ2
yϕ

(∗)= yϕ2
x−ϕxϕyxϕ2

x−ϕ2
yϕ

= yϕ2
yyϕ = 1,

https://doi.org/10.1017/S0017089504001788 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001788
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where in step (*), we used y ◦ x−1 = y−ϕ2
x−1y−ϕ = xϕyxϕ2

x−ϕ2
. Thus, ab = 1 and x ◦

(y ◦ z) = (x ◦ y) ◦ z holds if and only if for all y ∈ A, a = yϕ2
xϕ2

xy−ϕ2
xϕ = [y−ϕ2

, xϕ ]
commutes with all z ∈ A. This precisely means that [y−ϕ2

, xϕ ] ∈ Z(A) for all y ∈ A, that
is, xϕ ∈ Z2(A). This shows N(A) = Z2(A).

Let us now suppose x ◦ y = y ◦ x for all y ∈ A. This is equivalent with x−ϕ2
yx−ϕ =

x−ϕyx−ϕ2
, that is, y = xϕ2

x−ϕyx−ϕ2
xϕ . Since x and xϕ commute, this is equivalent with

the fact that x−ϕxϕ2
commutes with every y ∈ A. With other words, x ◦ y = y ◦ x holds

for all y ∈ A if and only if x−1xϕ ∈ Z(A). This finishes the proof.

At the end of this section, we consider S-simple groups with triality in details. The
results of the next paragraph are due to S. Doro [3].

Since G must be characteristically simple and S ∼= S3, we have G = Ak, where
k ∈ {1, 2, 3, 6}. The case k = 6 contradicts to the triality property immediately. If k = 3,
then G must be of type I and the 3-net turns out to be coordinatized by the simple
group A. Conversely, if the coordinate loop of the 3-net is the noncommutative simple
group A, then the associated group with triality is of type I. Let us suppose k = 2. Doro
shows that in this case, G is of type II. He rules out this possibility only for the finite
case, using heavy theory of groups and Moufang loops. In the rest of this paper, we
classify all Moufang loops of type II. In particular, we show that they can be simple
only by being a group of prime order.

3. Splitting automorphisms. DEFINITION 3.1. If G is any group, we say that an
automorphism ϕ of G is a splitting automorphism of order n if xϕn = 1 and

x xϕ xϕ2 · · · xϕn−1 = 1 (2)

for every x ∈ G.

The following theorem is important from the point of view of simple Moufang
loops. The content seems to be folklore. On the one hand, it is mentionned without
proof and any reference in E. I. Khukhro’s book [7, p. 223], and neither could the
authors locate it stated explicitely elsewhere. On the other hand, as pointed out by the
referee, the proof is contained in a relatively old paper [8] by B. H. Neumann, however,
the result he formulates is much more specific.

THEOREM 3.2. Let G be a group admitting a splitting automorphism of order 3. Then
for every x, y ∈ G it is [x, y, y] = [[x, y], y] = 1. In particular, G is nilpotent with nilpotency
class less or equal to 3. Moreover, if G has no elements of order 3, then the nilpotency
class is at most 2.

Proof. (We replaced the additive notation by multiplicative one in Neumann’s
proof.) The splitting property of the automorphism ϕ is equivalent to

xxϕ = (x−1)ϕ
2

(3)

for all x ∈ G. We use (3) for several values of x. Let g, h be arbitrary in G. Then, by (3)
with x = h−1g and x = g,

(h−1g)(h−1g)ϕ = ((h−1g)−1)ϕ
2

= (g−1)ϕ
2
hϕ2

= ggϕhϕ2
.
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Now, multiply on the left by g−1 and on the right by ((h−1g)ϕ)−1h:

g−1[(h−1g)(h−1g)ϕ ]((h−1g)ϕ)−1h = g−1
[
ggϕhϕ2]

((h−1g)ϕ)−1h

g−1h−1gh = gϕhϕ2
(gϕ)−1hϕh.

Next use (3) with x = h:

g−1h−1gh = gϕhϕ2
(g−1)ϕ(h−1)ϕ

2

[g, h] = [
(g−1)ϕ, (h−1)ϕ

2]
.

This last identity is used three times, giving

[g, h] = [
(g−1)ϕ, (h−1)ϕ

2]

= [
gϕ2

, hϕ
]

= [
(g−1)ϕ

3
, (h−1)ϕ

3]

= [g−1, h−1];

that is, (hg)−1gh = (gh)(hg)−1. This says gh commutes with (hg)−1 and so also with
hg. Therefore [hg, gh] = 1. Now set h = y−1 and g = xy to find [y−1xy, x] = 1 for any
x, y ∈ G. Since this is equivalent to the identity [x, [x, y]] = 1, we obtain the statement
on the nilpotency class of G from Levi’s Theorem [5, Satz 6.5].

4. Moufang loops and splitting automorphisms of order 3. In this section, we make
two applications of the above results. On the one hand, we classify those Moufang loops
which correspond to groups with triality of type II. On the other hand, we show that
the multiplication group of arbitrary proper simple Moufang loops is simple.

THEOREM 4.1. Let L be a Moufang loop and let us assume that the associated group
with triality G has type II. Then L is centrally nilpotent of class at most 3. If L has no
element of order 3, then L is a group of nilpotency class at most 2.

Proof. Since G is of type II, we can put G = A2 and denote by ϕ the splitting
automorphism of order 3 of A. By Theorem 3.2, A is nilpotent of class c ≤ 3, hence so
does G. G/Z(G) is a group with triality of type II with respect to the automorphism
induced by ϕ on A/Z(G). Moreover, G/Z(G) has class c − 1, thus, using induction, we
obtain that L is nilpotent of class at most c.

Observe that the power of the elements of A are equal in the group A and in the loop
L = (A, ◦). Therefore, the assumption that L has no element of order 3 is equivalent with
the assumption that the group A has no such element. By Theorem 3.2, the nilpotency
class c of A and G is at most 2 in this case. Lemma 2.4 implies N(A, ◦) = Z2(A) = A,
which means that L is a group.

REMARK 4.2. The last theorem is related to the following result of T. Hsu [6,
Theorem 3.8]. Let L be a nilpotent Moufang loop of class 2 and assume that L does
not contains elements of order 2 or 3. Then L is a group.

THEOREM 4.3. Let L be a nonassociative simple Moufang loop. Then the multi-
plication group Mlt(L) is a simple group.
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Proof. It is known that for a simple L, G = Mlt(L) is a group with triality. See
[3, Theorem 1]. Moreover, G must be S-simple. Since L is nonassociative, G is either
simple or of type II. Assume G is of type II. Hence G = A × A for some simple group
A. Furthermore, A has a splitting automorphism of order 3. By Theorem 3.2, A is
nilpotent, so that A is an abelian group of prime order p. This gives a contradiction
and so G is a simple group.

COROLLARY 4.4. Let L be a simple Moufang loop with associated group with triality
G. We have the following possibilities.

(i) If L is a group of prime order p 	= 3, then G = �2
p.

(ii) If L is a group of prime order p = 3, then G = �3.
(iii) If L is a noncommutative simple group, then G = A3.
(iv) If L is a nonassociative simple Moufang loop, then G = Mlt(L) is a simple group.

Proof. The case of a nonassociative simple L follows from Theorem 4.3. Assume
L is associative. If L is commutative, then it is finite, and we obtain (i) and (ii) by
[3, Proposition 1]. If L is not commutative, then calculation gives L ∼= A.

COROLLARY 4.5. Let L be a locally finite nonassociative simple Moufang loop. Then
the multiplication group Mlt(L) is a locally finite simple group with triality.

Proof. By Theorem 4.3, we only have to show that Mlt(L) is locally finite. A
finite number of elements of Mlt(L) is the product of the left and right translations
{λx, ρx | x ∈ S} for some finite subset S of L. S generates a finite subloop K of L. Doro
proved in [3, Corollary 3 of Theorem 2] that the associated group with triality of a
finite Moufang loop is finite. This implies the finiteness of 〈λx, ρx | x ∈ K〉 and hence
that Mlt(L) is locally finite.
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