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Abstract

We study an important class of Finsler metrics, namely, Randers metrics. We classify Randers metrics
of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains
all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag
curvature.
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1. Introduction

In Finsler geometry, there are several important geometric quantities. In this paper,
our main focus is on the flag curvature, the S-curvature and their interaction.

For a Finsler manifold (M, F), the flag curvature K at a point x is a function of
tangent planes P ⊆ Tx M and nonzero vectors y ∈ P . This quantity tells us how curved
the space is. When F is Riemannian, K depends only on the tangent plane P ⊆ Tx M
and is just the sectional curvature in Riemannian geometry. Thus the flag curvature
is the analogue of sectional curvature in Riemannian geometry (see [4, 6]). A Finsler
metric F is said to be of scalar flag curvature if the flag curvature K at a point x is
independent of the tangent plane P ⊆ Tx M , that is, the flag curvature K is a scalar
function on the slit tangent bundle T M\{0}. Throughout this paper we denote a point
in M by x and a point in T M by (x, y), where y ∈ Tx M . A Finsler metric F is said to
be of almost isotropic flag curvature if, in local coordinates,

K=
3cm ym

F
+ σ, (1.1)
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where σ and c are scalar functions on M , and cm denotes the partial derivative ∂c/∂xm .
If K= σ , we say that F is of isotropic flag curvature. In this case, σ is constant if
the dimension n ≥ 3, by Schur’s lemma. One of the important problems in Finsler
geometry is to study and characterize Finsler metrics of scalar, almost isotropic, and
constant flag curvature [6, 9].

There is another important quantity closely related to the flag curvature, the so-
called S-curvature S. The S-curvature, a scalar function on T M , was introduced by
the second author to study volume comparison in Riemann–Finsler geometry [12, 13].
The Finsler metric F is said to be of isotropic S-curvature if S= (n + 1)cF , where c
is a scalar function on M . Further, if c is a constant, then F is said to be of constant
S-curvature. It is proved that for a Finsler metric F of scalar flag curvature, if it is
of isotropic S-curvature, then F must be of almost isotropic flag curvature with flag
curvature in the form (1.1) (see [4]). Thus the flag curvature and the S-curvature are
closely related.

Randers metrics were introduced by the physicist Randers in 1941 in the context of
general relativity. These metrics were used in the theory of the electron microscope
in 1957 by Ingarden, who first named them Randers metrics. Randers metrics form
an important and ubiquitous class of Finsler metrics with a strong presence in both
the theory and applications of Finsler geometry, and studying Randers metrics is
an important step in understanding general Finsler metrics. A Randers metric on a
manifold M is a Finsler metric that can be expressed in the following special form:

F = α + β,

where α is a Riemannian metric and β is a 1-form on M such that the norm of β

with respect to α satisfies ‖β‖α < 1; in local coordinates, α =
√

ai j yi y j and β = bi yi .
Randers metrics also arise naturally from the navigation problem on a manifold M
with a Riemannian metric h under the influence of an external force field W (in local

coordinates, h =
√

hi j yi y j and W =W i∂/∂x i ). The least time path from one point to
another is a geodesic of the Randers metric F defined by

F =

√
λh2 +W 2

0

λ
−

W0

λ
, (1.2)

where
W0 :=Wi yi , Wi := hi j W

j , λ := 1−Wi W
i .

See [3, 14, 18]. It is easy to see that every Randers metric can be expressed in the
form (1.2). The pair (h, W ) is called the navigation data of F .

Our main result concerns Randers metrics of scalar flag curvature with isotropic
S-curvature.

THEOREM 1.1. Let F be a Randers metric on an n-dimensional manifold M given
by (1.2) with navigation data (h, W ). Assume that n ≥ 3. Then F is of scalar flag
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curvature and isotropic S-curvature (that is, K= K (x, y) and S= (n + 1)c(x)F) if
and only if at every point, there is a local coordinate system in which h, c and W are
given by

h =

√
|y|2 + µ(|x |2|y|2 − 〈x, y〉2)

1+ µ|x |2
(1.3)

c =
δ + 〈a, x〉√
1+ µ|x |2

(1.4)

W =−2
((
δ

√
1+ µ|x |2 + 〈a, x〉

)
x −

|x |2a√
1+ µ|x |2 + 1

)
+ x Q + b + µ〈b, x〉x, (1.5)

where δ and µ are constants, Q is a fixed antisymmetric matrix, and a and b in Rn are
constant vectors. In this case, the flag curvature is given by

K=
3cm ym

F
+ σ, (1.6)

where σ = µ− c2
− 2cm W m .

Locally projectively flat Randers metrics are always of scalar flag curvature, hence
Theorem 1.1 generalizes [4, Theorem 1.3], which classifies locally projectively flat
Randers metrics of isotropic S-curvature. Furthermore, since every Einstein–Randers
metric F must be of constant S-curvature [1, 2], the class of Randers metrics of scalar
flag curvature with isotropic S-curvature contains all Randers metrics of constant flag
curvature. Therefore, Theorem 1.1 also generalizes the classification theorem on
Randers metrics of constant flag curvature [3].

Let us consider a special example. In (1.3)–(1.5), take µ= 0, δ = 0, Q = 0 and
b = 0. Then

h = |y|, c = 〈a, x〉, W =−2〈a, x〉x + |x |2a.

With the above navigation data (h, W ), the Randers metric in (1.2) is given by

F =

√
(1− |a|2|x |4)|y|2 + (|x |2〈a, y〉 − 2〈a, x〉〈x, y〉)2

1− |a|2|x |4

−
|x |2〈a, y〉 − 2〈a, x〉〈x, y〉

1− |a|2|x |4
.

By direct computation, one can easily verify that F is of isotropic S-curvature and
scalar flag curvature, and, more precisely,

S= (n + 1)cF, K=
3cm ym

F
+ σ,

where c = 〈a, x〉 and σ = 3〈a, x〉2 − 2|a|2|x |2. This example was constructed by the
second author in [15].
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2. Preliminaries

Consider a Randers metric F on a manifold M . We can express it in the form (1.2),

F =

√
λh2 +W 2

0

λ
−

W0

λ
,

where h is a Riemannian metric and W is a vector field on M . The geodesics of F are
characterized locally by a system of second order ordinary differential equations [6]:

d2x i

dt2 + 2Gi
(

x,
dx

dt

)
= 0,

where
Gi
=

1
4 gil
{[F2
]xm yl ym

− [F2
]x l }.

The Gi are called the spray coefficients of F .
Let ∇W =Wi; j dx i

⊗ dx j denote the covariant derivative of W with respect to h.
Let

Ri j :=
1
2 (Wi; j +W j;i ), Si j :=

1
2 (Wi; j −W j;i ),

R j :=W i Ri j , R :=W j R j , S j :=W i Si j .

Denote by Ḡi the spray coefficients of h. Then

Gi
= Ḡi

−
1
2

F2(S i
+Ri )− F S i

0 +
1

2F
(yi
− FW i )(2R0 F −R00 −R F2),

(2.1)
where

S i
:= hi j S j , Ri

:= hi j R j , S i
j := hil Sl j ,

S i
0 := S i

j y j , R0 :=Ri yi and R00 :=Ri j yi y j .

Formula (2.1) may be found in [11].
Denote by dVF the volume form σF dx1

· · · dxn of a Finsler metric F , where

σF :=
Vol(Bn(1))

Vol{y | F(x, y) < 1}
.

Here Vol denotes the Euclidean volume and Bn(1) denotes the unit ball in Rn . Then
the S-curvature S of F is given by

S=
∂Gm

∂ym − ym ∂

∂xm (log σF ); (2.2)

see [5, 6, 13]. The S-curvature S measures the average rate of change of (Tx M, Fx ) in
the direction y ∈ Tx M . It is known that S= 0 for Berwald metrics [12, 13].
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LEMMA 2.1 [17]. Let F be a Randers metric given by (1.2) with navigation data
(h, W ) and c be a scalar function on an n-dimensional manifold. Then S= (n + 1)cF
if and only if

R00 =−2ch2. (2.3)

Assume that F has isotropic S-curvature, that is, S= (n + 1)cF . By Lemma 2.1,
W satisfies (2.3). Then the spray coefficients Gi of F in (2.1) reduce to the expression

Gi
= Ḡi

− F S i
0 −

1
2 F2S i

+ cFyi . (2.4)

It is known that a Randers metric F given in the form (1.2) is of constant flag
curvature (equal to σ ) if and only if h has constant sectional curvature (equal to µ) and
W is homothetic, that is, it satisfies (2.3) for a constant c. In this case, σ = µ− c2.
Moreover, c = 0 if µ 6= 0. This leads to the classification of Randers metrics of
constant flag curvature [3]. See also [1, 2, 8] for some early work on Randers metrics
of constant flag curvature. Thus a Randers metric of constant flag curvature must have
constant S-curvature.

As we know, every Riemannian metric of constant sectional curvature µ is locally
isometric to the following metric on the open ball Bn(rµ) in Rn:

h =

√
|y|2 + µ(|x |2|y|2 − 〈x, y〉2)

1+ µ|x |2
. (2.5)

Here

rµ :=

{
+∞ if µ≥ 0

1/
√
−µ if µ < 0.

For each point x ∈ Bn(rµ), we can identify the tangent vector W i∂/∂x i
|x in Tx Rn with

the vector (W i ) ∈ Rn in a canonical way.
The following lemma is important for the proof of Theorem 1.1.

LEMMA 2.2 [16]. Let h be the Riemannian metric in (2.5) and W be a vector field on
the open ball Bn(rµ) in Rn . Let F be the Randers metric on Bn(rµ) given by (1.2) with
navigation data (h, W ). Assume that n ≥ 3. Then F has isotropic S-curvature, that is,
S= (n + 1)cF for some scalar function c, if and only if

c =
δ + 〈a, x〉√
1+ µ|x |2

(2.6)

and W satisfying (2.3) is given by

W = −2
{(
δ

√
1+ µ|x |2 + 〈a, x〉

)
x −

|x |2a√
1+ µ|x |2 + 1

}
+ x Q + b + µ〈b, x〉x,

(2.7)

where δ is a constant, Q is a fixed antisymmetric matrix and a and b in Rn are constant
vectors.

https://doi.org/10.1017/S1446788709000408 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000408


364 X. Cheng and Z. Shen [6]

3. The Riemann curvature

Let F be a Finsler metric on a manifold M with spray coefficients Gi . The Riemann
curvature R (in local coordinates Ri

k∂/∂x i
⊗ dxk) is defined by

Ri
k = 2

∂Gi

∂xk −
∂2Gi

∂xm∂yk ym
+ 2Gm ∂2Gi

∂ym∂yk −
∂Gi

∂ym

∂Gm

∂yk . (3.1)

It is known [6] that F is of scalar flag curvature if and only if, in a standard local
coordinate system,

Ri
k = K (x, y){F2δi

k − F Fyk yi
}. (3.2)

From now on, we always assume that F is a Randers metric given by (1.2) with
isotropic S-curvature, that is, S= (n + 1)cF . We will use (2.4) to express the Riemann
curvature in terms of h and W .

Rewrite (2.4) as
Gi
= Ḡi

+ Qi ,

where
Qi
:= −F S i

0 −
1
2 F2S i

+ cFyi .

Then

Ri
k = R̄i

k + 2Qi
;k − [Q

i
;m]yk ym

+ 2Qm
[Qi
]ym yk − [Qi

]ym [Qm
]yk , (3.3)

where R̄ = R̄i
k∂/∂x i

⊗ dxk denotes the Riemann curvature of h, and the semicolon
denotes horizontal covariant differentiation with respect to h (see [6]). We first
compute the horizontal and vertical derivatives of Qi and express them in terms of
h, W and the covariant derivatives of W with respect to h. Since W satisfies (2.3),

Wi; j;k = 2(ci h jk − c j hik − ckhi j )− R̄kpi j W
p, (3.4)

where R̄ = R̄kpi j dxk
⊗ dx p

⊗ dx i
⊗ dx j is the Riemann curvature tensor of h in

a standard form. In fact, (2.3) was studied a long time ago [7]. Equation (3.4) is
straightforward by the Ricci identity; see in [7, Equation (69.2)].

By (3.4) and the Bianchi identities for the Riemann curvature tensor R̄ of h,

S i
k;0 = 2(himcm yk − ck yi )− R̄ i

k mq W m yq ,

S i
0;k = 2(himcm yk − cm ymδi

k)+ R̄ i
p kq y pW q ,

S i
;k = 2cS i

k − S i
m S m

k + 2(cm W mδi
k − himcm Wk)− R̄ i

p kq W pW q ,

S i
;0 = 2cSi

0 − S i
m S m

0 + 2(cm W m yi
− himcm W0)− R̄ i

p mq W pW q ym,

S i
0;0 = 2(himcmh2

− c;0 yi )− R̄ i
p mq y p yq W m .
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Define A :=
√
λh2 +W 2

0 . Then A = λF +W0 from (1.2). It is easy to verify that

h2
− 2FW0 = λF2.

It follows that
h2
− FW0 − AF = 0. (3.5)

Further, by (2.3) and (3.5),

F;k =
2cF(yk − FWk)+ F(F Sk + Sk0)

A
,

F;0 = 2cF2
+

F2

A
S0,

(Fyk );0 =

(
h2

A3 S0 + 2c
F

A

)
{yk − FWk} −

F2

A2 S0Wk −
F

A
Sk0.

By (3.3) and the above identities,

Ri
k = R̄ i

p kq y p yq
− F R̄ i

p kq W p yq
− F R̄ i

p kq y pW q
+ F2 R̄ i

p kq W pW q

− Fyk R̄ i
p mq y p yq W m

+ F Fyk R̄ i
p mq yq W pW m (3.6)

+

(
3cm ym

F
− c2
− 2cm W m

)
{F2δi

k − F Fyk yi
}.

Here we use Maple to do the computation of Ri
k . It is surprising that none of the

terms with S i or S i
k occur in (3.6).

Observe that

R̄ i
p kq(y

p
− FW p)(yq

− FW q)

= R̄ i
p kq y p yq

− F R̄ i
p kq y pW q

− F R̄ i
p kq W p yq

+ F2 R̄ i
p kq W pW q

and

R̄ i
p mq(y

p
− FW p)(yq

− FW q)W m

= R̄ i
p mq y p yq W m

− F R̄ i
p mq W p yq W m

− F R̄ i
p mq y pW q W m

+ F2 R̄ i
p mq W pW q W m

= R̄ i
p mq y p yq W m

− F R̄ i
p mq W p yq W m .

Substituting these into (3.6), we deduce that

Ri
k = R̄ i

p kq(y
p
− FW p)(yq

− FW q)

− Fyk R̄ i
p mq(y

p
− FW p)(yq

− FW q)W m

+

(
3cm ym

F
− c2
− 2cm W m

)
{F2δi

k − F Fyk yi
}.

(3.7)
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Let
ξ i
:= yi

− F(x, y)W i , ξk := hikξ
i , W̃0 :=Wiξ

i

and

h̃ := h(x, ξ)=
√

h pqξ pξq =

√
ξkξ k .

Then

h̃2
= h pq(y

p
− FW p)(yq

− FW q)= h2
− 2FW0 + F2h(x, W )2 = F2.

Thus
yi
= ξ i
+ h̃W i .

Observe that

λh̃ = λF = A −W0 = A −Wi (ξ
i
+ h̃W i )= A − W̃0 − h̃(1− λ).

This gives
A = h̃ + W̃0.

From the above identities,

Fyk =
1
A
(yk − FWk)=

ξk

h̃ + W̃0
,

F2δi
k − F Fyk yi

= h̃2δi
k − ξkξ

i
−

1

h̃ + W̃0
ξk(h̃

2δi
p − ξpξ

i )W p,

where yk := hik yi . Let
R̃i

k := R̄ i
p kqξ

pξq .

The following lemma follows from (3.7).

LEMMA 3.1. Let F be a Randers metric given by (1.2) with navigation data (h, W ).
Suppose that F has isotropic S-curvature, that is, S= (n + 1)cF. Then for any scalar
function µ on M,

Ri
k −

(
3cm ym

F
+ µ− c2

− 2cm W m
)
{F2δi

k − F Fyk yi
}

= R̃i
k − µ(h̃

2δi
k − ξkξ

i )−
ξk

h̃ + W̃0
{R̃i

p − µ(h̃
2δi

p − ξpξ
i )}W p.

(3.8)

4. The Ricci curvature

In this section we study the Ricci curvature of a Randers metric F with isotropic
S-curvature. Express F by (1.2) with navigation data (h, W ). Let Ric and Ric denote
the Ricci curvature of F and h, respectively. They are defined by

Ric := Rm
m, Ric := R̄m

m .
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Let

R̃ic := R̃m
m = R̄ m

p mqξ
pξq .

Clearly, Ric= (n − 1)µh2 if and only if R̃ic= (n − 1)µh̃2.
First we have the following lemma.

LEMMA 4.1. Let F be the Randers metric given by (1.2) with navigation data (h, W ).
Suppose that F has isotropic S-curvature, that is, S= (n + 1)cF. Then for any scalar
function µ on M,

Ric− (n − 1)
(

3cm ym

F
+ σ

)
F2
= R̃ic− (n − 1)µh̃2, (4.1)

where σ := µ− c2
− 2cm W m .

PROOF. Observe that

ξm R̃m
p = ξm R̄ m

i pjξ
iξ j
= ξm R̄impjξ

iξ j
= 0

and

ξm(h̃
2δm

p − ξpξ
m)= h̃2ξp − ξp h̃2

= 0.

Then (4.1) follows from (3.8). 2

From Lemma 4.1 we immediately obtain the following result.

THEOREM 4.2. Let F be a Randers metric on an n-dimensional manifold M given
by (1.2) with navigation data (h, W ), and let c and µ be scalar functions on M.
Suppose that S= (n + 1)cF. Then Ric= (n − 1)µh2 if and only if

Ric= (n − 1)
(

3cm ym

F
+ σ

)
F2. (4.2)

where σ := µ− c2
− 2cm W m .

COROLLARY 4.3. Let F be a Randers metric given by (1.2) with navigation data
(h, W ). If W is an infinitesimal homothety of h (or equivalently, if S= (n + 1)cF
for some constant c), and µ is a scalar function, then Ric= (n − 1)µh2 if and only if
Ric= (n − 1)(µ− c2)F2.

Corollary 4.3 was proved in [2, Theorem 9]; see also [10]. In fact, Bao and
Robles prove that, for a Randers metric F given by (1.2), F is Einstein (that is, Ric=
(n − 1)σ F2) if and only if S= (n + 1)cF for some constant c and Ric= (n − 1)µh2

with σ = µ− c2.
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5. Proof of Theorem 1.1

In order to prove Theorem 1.1, we must prove the following theorem.

THEOREM 5.1. Let F be a Randers metric on an n-dimensional manifold M given
by (1.2) with navigation data (h, W ). Suppose that the S-curvature is isotropic, that is,
S= (n + 1)cF, where c is a scalar function on M. Then F is of scalar flag curvature
if and only if the sectional curvature K̄ of h is a scalar, µ (µ is constant when n ≥ 3).
In this case, the flag curvature of F is given by

K=
3cm ym

F
+ σ, (5.1)

where σ := µ− c2
− 2cm W m .

PROOF. Assume that F is of scalar flag curvature. Then by [4, Theorem 1.1], the flag
curvature is given by

K=
3cm ym

F
+ σ,

where σ is a scalar function on M . That is,

Ri
k =

(
3cm ym

F
+ σ

)
{F2δi

k − F Fyk yi
}.

Let
µ := σ + c2

+ 2cm W m .

It suffices to show that the sectional curvature K̄ of h is equal toµ. It follows from (3.8)
that

R̃i
k − µ(h̃

2δi
k − ξkξ

i )−
1

h̃ + W̃0
ξk{R̃

i
p − µ(h̃

2δi
p − ξpξ

i )}W p
= 0.

Clearly,
R̃i

k = µ(h̃
2δi

k − ξkξ
i ). (5.2)

Thus h has sectional curvature equal to µ. By Schur’s lemma, µ is constant when
n ≥ 3.

Conversely, if the sectional curvature K̄ of h is equal to µ, then (5.2) holds. By (3.8)
again,

Ri
k =

(
3cm ym

F
+ σ

)
{F2δi

k − F Fyk yi
}, (5.3)

where σ = µ− c2
− 2cm W m . Thus F is of scalar flag curvature. 2

PROOF OF THEOREM 1.1. By assumption, the dimension of M is at least 3. First we
assume that F is of isotropic S-curvature and of scalar flag curvature. By Theorem 5.1,
the flag curvature of F is given by (5.1) and h has constant sectional curvature. At any
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point, there is a local coordinate system in which h is given by (1.3). By Lemma 2.2, if
S= (n + 1)cF , then c and W are given by (1.4) and (1.5) in the same local coordinate
system.

Conversely, assume that there is a local coordinate system in which h, c and W
are given by (1.3), (1.4) and (1.5), respectively. Then S= (n + 1)cF by Lemma 2.2.
Since h has constant sectional curvature, F is of scalar curvature with flag curvature
given by (5.1) by Theorem 5.1. 2
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