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ASYMPTOTICS OF MARKOV KERNELS
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Abstract

An asymptotic model for the extreme behavior of certain Markov chains is the ‘tail
chain’. Generally taking the form of a multiplicative random walk, it is useful in deriving
extremal characteristics, such as point process limits. We place this model in a more
general context, formulated in terms of extreme value theory for transition kernels, and
extend it by formalizing the distinction between extreme and nonextreme states. We make
the link between the update function and transition kernel forms considered in previous
work, and we show that the tail chain model leads to a multivariate regular variation
property of the finite-dimensional distributions under assumptions on the marginal tails
alone.
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1. Introduction

A method of approximating the extremal behavior of discrete-time Markov chains is to use
an asymptotic process called the tail chain under an asymptotic assumption on the transition
kernel of the chain. Loosely speaking, if the distribution of the next state converges under
some normalization as the current state becomes extreme, then the Markov chain behaves
approximately as a multiplicative random walk upon leaving a large initial state. This approach
leads to intuitive extremal models in such cases as autoregressive processes with random
coefficients, which include a class of ARCH models. The focus on Markov kernels was
introduced by Smith [23]. Perfekt [17], [18] extended the approach to higher dimensions,
and Segers [22] rephrased the conditions in terms of update functions. Further extensions were
discussed in [6], [7], [24], [25], and [26].

Though not restrictive in practice, the previous approach tends to mask aspects of the
processes’ extremal behavior. Markov chains that admit the tail chain approximation fall into
one of two categories. Starting from an extreme state, the chain either remains extreme over
any finite time horizon, or will drop to a ‘nonextreme’ state of lower order after a finite amount
of time. The latter case is problematic in that the tail chain model is not sensitive to possible
subsequent jumps from a nonextreme state to an extreme one. Previous developments handle
this by ruling out the class of processes exhibiting this behavior via a technical condition, which
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Asymptotics of Markov kernels 187

we refer to as the regularity condition. Also, most previous work has assumed stationarity, since
interest focused on computing the extremal index or deriving limits for the exceedance point
processes, drawing on the theory established for stationary processes with mixing by Leadbetter
et al. [16] and its extensions [10], [14]. However, stationarity is not fundamental in determining
the extremal behavior of the finite-dimensional distributions (FDDs).

We place the tail chain approximation in the context of an extreme value theory for Markovian
transition kernels, which a priori does not necessitate any such restrictions on the class of
processes to which it may be applied. Although distributional convergence results are more
naturally phrased in terms of transition kernels, we treat the equivalent update function forms
as an integral component to interfacing with applications, and we phrase relevant assumptions
in terms of both. While not making explicit a complete tail chain model for the class of chains
excluded previously, we demonstrate the extent to which previous models may be viewed as a
partial approximation within our framework. This is accomplished by formalizing the division
between extreme and nonextreme states as a level we term the extremal boundary. We show
that, in general, the tail chain approximates the extremal component, the portion of the original
chain having yet to cross below this boundary. Phrased in these terms, the regularity condition
requires that the distinction between the original chain and its extremal component disappears
asymptotically.

After introducing our extreme value theory for transition kernels, along with a representation
in terms of update functions, we derive limits of FDDs conditional on the initial state, as it
becomes extreme. We then examine the effect of the regularity condition on these results.
Finally, adding the assumption of marginal regularly varying tails leads to convergence results
for the unconditional distributions akin to regular variation.

1.1. Notation and conventions

We review notation and relevant concepts. If not explicitly specified, assume that any space
S under discussion is a topological space paired with its Borel σ -field, B(S), generated by
open sets. Denote by K(S) the collection of its compact sets; by C(S) the space of real-
valued continuous, bounded functions on S; and by C+

K(S) the space of nonnegative continuous
functions with compact support. Weak convergence of probability measures is denoted by ‘⇒’.

For a space E which is locally compact with countable base (for example, a subset of
[−∞,∞]d ), M+(E) is the space of nonnegative Radon measures on B(E); point measures
consisting of single point masses at x will be written as εx(·). A sequence of measures {µn} ⊂
M+(E) converges vaguely toµ ∈ M+(E) (writtenµn

v−→ µ) if
∫

E
f dµn → ∫

E
f dµ asn → ∞

for any f ∈ C+
K(E). The shorthandµ(f ) = ∫

f dµ is handy. That the distribution of a random
vectorX is regularly varying on a cone E ⊂ [−∞,∞]d\{0}means that t P[X/b(t) ∈ ·] v−→µ∗(·)
in M+(E) as t → ∞ for some nondegenerate limit measure µ∗ ∈ M+(E) and scaling function
b(t) → ∞. The limit µ∗ is necessarily homogeneous in the sense that µ∗(c·) = c−αµ∗(·) for
some α > 0. For further details on vague convergence and regular variation, see [15] or [19].

If X = (X0, X1, X2, . . . ) is a (homogeneous) Markov chain and K is a Markov transition
kernel, we write X ∼ K to mean that the dependence structure of X is specified by K , i.e.

P[Xn+1 ∈ · | Xn = x] = K(x, ·), n = 0, 1, . . . .

We adopt the standard shorthand Px[(X1, . . . , Xm) ∈ ·] = P[(X1, . . . , Xm) ∈ · | X0 = x].
Some useful technical results are assembled in Section A.
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188 S. I. RESNICK AND D. ZEBER

2. Extremal theory for Markov kernels

We begin by focusing on the Markov transition kernels rather than the stochastic processes
they determine, and introduce a class of kernels we term ‘tail kernels’, which we will view as
scaling limits of certain kernels. Antecedents include Segers’ [22] definition of ‘back-and-forth
tail chains’ that approximate certain Markov chains started from an extreme value.

For a Markov chain X ∼ K on [0,∞), it is reasonable to expect that the extremal behavior
of X is determined by pairs (Xn,Xn+1), and one way to control such pairs is to assume that
(Xn,Xn+1) belongs to a bivariate domain of attraction (cf. [5] and [23]). In the context of
regular variation, writing

t P

[
Xn

b(t)
∈ A0,

Xn+1

b(t)
∈ A1

]
=

∫
A0

K(b(t)u, b(t)A1)t P

[
Xn

b(t)
∈ du

]
(2.1)

suggests combining the marginal regular variation of Xn with a scaling kernel limit to derive
extremal properties of the FDDs [17], [18], [22], and this is the direction we take. We first
discuss the kernel scaling operation.

For simplicity, we assume that the state space of the Markov chain is [0,∞), although with
suitable modifications, it is relatively straightforward to extend the results to R

d . Henceforth,
G will denote a general probability distribution on [0,∞).

2.1. Tail kernels

Definition 2.1. The tail kernel associated with G is given by

K∗(y,A) =
{
G(y−1A), y > 0,

ε0(A), y = 0,
(2.2)

for measurable A.

Recall that ε0 is the probability measure assigning unit mass to {0}. Thus, the class of
tail kernels on [0,∞) is parameterized by probability distributions G. Such kernels are
characterized by a scaling property.

Proposition 2.1. A Markov transition kernelK is a tail kernel associated with some distribution
G if and only if it satisfies the relation

K(uy,A) = K(y, u−1A) (2.3)

with measurable A and y ≥ 0 for any u > 0, in which case G(·) = K(1, ·).
Proof. Fix u > 0. If K is a tail kernel, (2.3) follows directly from the definition, using the

fact that ε0(A) = ε0(u
−1A) in the case y = 0. Conversely, assuming that (2.3) holds, for y > 0,

we can write K(y,A) = K(1, y−1A), satisfying the first case of (2.2) with G(·) = K(1, ·).
For the case y = 0, write H(·) = K(0, ·). We must show that H(·) = H(u−1·) implies that
H = ε0. Indeed, H(0,∞) = limn→∞H(n−1,∞) = H(1,∞), so H(0, 1] = 0. A similar
argument shows that H(1,∞) = 0 as well.

We call the Markov chain T ∼ K∗ the tail chain associated with G. Such a chain can be
represented as

Tn = ξn Tn−1 = T0ξ1 · · · ξn, n = 1, 2, . . . , (2.4)

where the ξn are independent and identically distributed (i.i.d.) copies of ξ ∼ G and independent
of T0. Thus, T is a multiplicative random walk with step distribution G and absorbing barrier
at {0}.
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2.2. Convergence to tail kernels

The tail chain approximates the behavior of a Markov chain X ∼ K in extreme states.
Asymptotic results require that the normalized distribution ofX1 be well approximated by some
distribution G when X0 is large, and we interpret this requirement as a domain of attraction
condition for kernels.

Definition 2.2. A Markov transition kernel K : [0,∞) × B[0,∞) → [0, 1] is in the domain
of attraction of G, written K ∈ D(G), if, as t → ∞,

K(t, t ·) ⇒ G(·) on [0,∞]. (2.5)

Note thatD(G) contains at least the tail kernel associated withG. A simple scaling argument
extends (2.5) to

K(tu, t ·) ⇒ G(u−1·) = K∗(u, ·), u > 0, (2.6)

where K∗ is the tail kernel associated with G; this is the form appearing in (2.1). Thus, tail
kernels are scaling limits for kernels in a domain of attraction. In fact, tail kernels are the only
possible limits.

Proposition 2.2. Let K be a transition kernel on [0,∞). If, for each u > 0, there exists
a distribution Gu such that K(tu, t ·) ⇒ Gu(·) as t → ∞ then the function K̂ defined on
[0,∞)× B[0,∞) as

K̂(u,A) :=
{
Gu(A), u > 0,

ε0(A), u = 0,

is the tail kernel associated with G1.

Proof. It suffices to show that Gu(·) = G1(u
−1·) for any u > 0. But this follows directly

from the uniqueness of weak limits, since (2.6) shows that K(tu, t ·) ⇒ G1(u
−1·).

A version of (2.6) uniform in u is needed to derive the convergence of FDDs.

Proposition 2.3. Suppose that K ∈ D(G) and that K∗ is the tail kernel associated with G.
Then, for any u > 0 and any nonnegative function ut = u(t) such that ut → u as t → ∞, we
have

K(tut , t ·) ⇒ K∗(u, ·) as t → ∞. (2.7)

Proof. Suppose that ut → u > 0. Observe that K(tut , t ·) = K(tut , (tut ) u
−1
t ·), and put

ht (x) = utx, h(x) = ux. Writing Pt(·) = K(tut , tut ·), we have

K(tut , t ·) = Pt ◦ h−1
t ⇒ G ◦ h−1 = G(u−1·) = K∗(u, ·)

by [2, Theorem 5.5, p. 34].

The measure G controls X upon leaving an extreme state via (2.5). However, (2.5) is
uninformative once X has reached a ‘nonextreme’ state; indeed, (2.7) may fail if u = 0—see
Example 6.2 below. The requirement K∗(0, ·) = ε0 reflects an assumption that a transition
from nonextreme back to extreme is (asymptotically) impossible. The implications of such an
assumption cannot be ignored if 0 is an accessible point of the state space, i.e. if G({0}) =
K∗(y, {0}) > 0.

One could conceivably extend this model to accommodate more general behavior upon
leaving a nonextreme state by allowing K∗(0, A) = H(A) in (2.2), where H is a general
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190 S. I. RESNICK AND D. ZEBER

probability distribution. The appropriate choice ofH would then be determined via an asymp-
totic assumption analogous to (2.7); for example, K(tut , t ·) ⇒ H(·) whenever ut → 0. In
Section 4 we show that the ‘regularity condition’ imposed by previous authors does in fact
justify the choice H = ε0 in this manner (see (4.3) below). We will not pursue this direction
here. Instead, we proceed without assuming the regularity condition, viewing the prescription
H = ε0 as ‘uninformative’, in a sense to be made precise in Section 3.

Alternative formulations of (2.5) include replacing K(t, t ·) with K(t, a(t)·) or else
K(t, a(t) · +b(t)) with appropriate functions a(t) > 0 and b(t), in analogy with the usual
domains of attraction conditions in extreme value theory. The second choice coincides with
the presentation by Perfekt [17], and relates to the conditional extreme value model [8], [12],
[13]. For clarity, and to maintain ties with regular variation, we retain the standard choice
a(t) = t, b(t) = 0.

2.3. Representation

How do we characterize kernels belonging to D(G)? From (2.4), for chains transitioning
according to a tail kernel, the next state is a random multiple of the previous one, provided
the prior state is nonzero. We expect that chains transitioning according to K ∈ D(G) behave
approximately like this upon leaving a large state, and this is best expressed in terms of a
function describing how a new state depends on the prior one.

Given a kernelK , we can always find a sample space E, a measurable functionψ : [0,∞)×
E → [0,∞), and an E-valued random element V such that ψ(y, V )

d= K(y, ·) for y ≥ 0.
Given a random variable X0, if we define the process X = (X0, X1, X2, . . . ) recursively as

Xn+1 = ψ(Xn, Vn+1), n ≥ 0,

where {Vn} is an i.i.d. sequence equal in distribution to V and independent of X0, then X is a
Markov chain with transition kernel K . Call the function ψ an update function corresponding
to K . If, in addition, K ∈ D(G), the domain of attraction condition (2.5) becomes

t−1ψ(t, V ) ⇒ ξ,

where ξ ∼ G. Applying the probability integral transform or the Skorokhod representation
theorems [3, Theorem 3.2, p. 6], [4, Theorem 6.7, p. 70], we get the following result.

Proposition 2.4. IfK is a transition kernel,K ∈ D(G) if and only if there exists a measurable
function ψ∗ : [0,∞) × [0, 1] → [0,∞) and a random variable ξ∗ ∼ G on the uniform
probability space ([0, 1],B, λ) such that

t−1ψ∗(t, u) → ξ∗(u) for all u ∈ [0, 1] (2.8)

as t → ∞, and ψ∗ is an update function corresponding to K in the sense that

λ[ψ∗(y, ·) ∈ A] = K(y,A)

for measurable sets A.

Think of the update function as ψ∗(y, U), where U(u) = u is a uniform random variable
on [0, 1].

Proof of Proposition 2.4. If there exist such ψ∗ and ξ∗ satisfying (2.8), clearlyK ∈ D(G).
Conversely, assume that K ∈ D(G), and let ψ(·, V ) be an update function corresponding
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to K . According to Skorokhod’s representation theorem (cf. [4, p. 70], with the necessary
modifications to allow for an uncountable index set), there exists a random variable ξ∗ and a
stochastic process {Y ∗

t ; t ≥ 0} defined on the uniform probability space ([0, 1],B, λ), taking
values in [0,∞), such that

ξ∗ ∼ G, Y ∗
0

d= ψ(0, V ), Y ∗
t

d= t−1ψ(t, V ) for t > 0,

andY ∗
t (u) → ξ∗(u) as t → ∞ for everyu ∈ [0, 1]. Now, defineψ∗ : [0,∞)×[0, 1] → [0,∞)

as
ψ∗(0, u) = Y ∗

0 (u) and ψ∗(t, u) = tY ∗
t (u), t > 0,

for all u ∈ [0, 1]. It is evident that λ[ψ∗(y, ·) ∈ A] = P[ψ(y, V ) ∈ A] for y ∈ [0,∞), so ψ∗
is indeed an update function corresponding to K , and ψ∗ satisfies (2.8) by construction.

Update functions corresponding toK are not unique, and some of them may fail to converge
pointwise as in (2.8). However, (2.8) is convenient, and Proposition 2.4 shows that Segers’ [22]
Condition 2.2 in terms of update functions is equivalent to our weak convergence formulation
K ∈ D(G).

Pointwise convergence in (2.8) gives an intuitive representation of kernels in a domain of
attraction.

Corollary 2.1. K ∈ D(G) if and only if there exists a random variable ξ ∼ G defined on
the uniform probability space, and a measurable function φ : [0,∞) × [0, 1] 
→ (−∞,∞)

satisfying t−1φ(t, u) → 0 for all u ∈ [0, 1] such that

ψ(y, u) := ξ(u)y + φ(y, u)

is an update function corresponding to K .

Proof. If such ξ and φ exist, then t−1ψ(t, u) = ξ(u)+ t−1φ(t, u) → ξ(u) for all u, so ψ
satisfies (2.8). The converse follows from (2.8).

Many Markov chains such asARCH, GARCH, and autoregressive processes are specified by
structured recursions that allow quick recognition of update functions corresponding to kernels
in a domain of attraction. A common example is the update functionψ(y, (Z,W)) = Zy+W ,
which behaves like ψ ′(y, Z) = Zy when y is large—compare ψ ′ to the form (2.4) discussed
for tail kernels. In general, if K has an update function ψ of the form

ψ(y, (Z,W)) = Zy + φ(y,W) (2.9)

for a random variable Z ≥ 0 and a random element W , where t−1φ(t, w) → 0 whenever
w ∈ C for which P[W ∈ C] = 1, then K ∈ D(G) with G = P[Z ∈ ·]. We will refer to update
functions satisfying (2.9) as being in canonical form.

3. Finite-dimensional convergence and the extremal component

Given a Markov chain X ∼ K ∈ D(G), we show that the FDDs of X, started from an
extreme state, converge to those of the tail chain T defined in (2.4).

We distinguish between two cases which represent substantially different types of behavior.
IfG({0}) = 0, observe that P[T eventually hits {0}] = 0. On the other hand, if G({0}) > 0, T

hits {0} in finite time with probability 1. In this case, the tail chain model is appropriate only up
until the first hitting time of {0}. For example, consider the trajectory of (X1, . . . , Xm), started
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fromX0 = t , through the region (t,∞)m−2 ×[0, δ]×(t,∞), where t is a high level. We would
expect the tail chain to model this as a path through (1,∞)m−2 × {0} × (1,∞). However, the
probability of T taking paths through this set is 0, because {0} is an absorbing state. Of course,
if G({0}) = 0, this restriction is moot.

This raises the question of how to interpret the first hitting time of {0} for T in terms of the
original Markov chain X. Such hitting times are important in the study of Markov chain point
process models of exceedance clusters based on the tail chain. Intuitively, a transition to {0}
by T represents a transition from an extreme state to a nonextreme state by X. We make this
notion precise in Section 3.2 by viewing such transitions as downcrossings of a certain level
we term the ‘extremal boundary’.

Henceforth, X is a Markov chain on [0,∞) with transition kernel K ∈ D(G), K∗ is the
tail kernel associated with G, and T is a Markov chain on [0,∞) with kernel K∗. Write
xm = (x1, . . . , xm), and similarly for Xm and Tm. The FDDs of X, conditional on X0 = y,
are given by

Py[(X1, . . . , Xm) ∈ dxm] = K(y, dx1)K(x1, dx2) · · ·K(xm−1, dxm),

and analogously for T .

3.1. FDDs conditional on the initial state

Define the conditional distributions

π(t)m (u, ·) = Ptu

[
Xm

t
∈ ·

]
and πm(u, ·) = Pu[Tm ∈ ·], m ≥ 1, (3.1)

on [0,∞)×B[0,∞]m. We consider when π(t)m ⇒ πm on [0,∞]m pointwise in u. IfG({0}) =
0, this is a direct consequence of the domain of attraction condition (2.5), but, if G({0}) > 0,
more thought is required. We begin by restricting the convergence to the smaller space E

′
m :=

(0,∞]m−1×[0,∞]. Relatively compact sets in E
′
m are contained in rectangles [a,∞]×[0,∞],

where a ∈ (0,∞)m−1.

Theorem 3.1. Suppose that X ∼ K and T ∼ K∗ are Markov chains, where K ∈ D(G) and
K∗ is the tail kernel associated with G, and recall the conditional distributions π(t)m and πm
defined in (3.1). Let ut = u(t) be a nonnegative function such that ut → u > 0 as t → ∞.

(a) The restrictions to E
′
m,

µ(t)m (u, ·) := π(t)m (u, · ∩ E
′
m) and µm(u, ·) := πm(u, · ∩ E

′
m), (3.2)

satisfy

µ(t)m (ut , ·) v−→ µm(u, ·) in M+(E′
m) as t → ∞. (3.3)

(b) If G({0}) = 0, we have

π(t)m (ut , ·) ⇒ πm(u, ·) on [0,∞]m as t → ∞. (3.4)

Proof. The Markov structure suggests an induction argument facilitated by Lemma A.2 in
Appendix A. Consider (a) first. If m = 1 then (3.3) reduces to (2.7). Assume that m ≥ 2, and
let f ∈ C+

K(E
′
m). Writing E

′
m = (0,∞] × E

′
m−1, we can find a > 0 and B ∈ K(E′

m−1) such
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that f is supported on [a,∞] × B. Now, observe that

µ(t)m (ut , ·)(f ) =
∫
(0,∞]

K(tut , t dx1)

∫
E

′
m−1

K(tx1, t dx2) · · ·K(txm−1, t dxm)f (xm)

=
∫
(0,∞]

K(tut , t dx1)

∫
E

′
m−1

µ
(t)
m−1(x1, d(x2, . . . , xm))f (xm).

Defining

ht (v) =
∫

E
′
m−1

µ
(t)
m−1(v, dxm−1)f (v, xm−1)

and

h(v) =
∫

E
′
m−1

µm−1(v, dxm−1)f (v, xm−1),

the previous expression becomes

µ(t)m (ut , ·)(f ) =
∫
(0,∞]

K(tut , t dv)ht (v).

Now, suppose that vt → v > 0: we verify that

ht (vt ) → h(v). (3.5)

By continuity, we have f (vt , xtm−1) → f (v, xm−1) whenever xtm−1 → xm−1, and the induc-

tion hypothesis provides µ(t)m−1(vt , ·)
v−→ µm−1(v, ·). Also, f (x, ·) has compact support B

(without loss of generality, µm−1(v, ∂B) = 0). Combining these facts, (3.5) follows from
Lemma A.2(b). Next, since the ht and h have common compact support [a,∞], and recalling
from Proposition 2.3 that K(tut , t ·) ⇒ K∗(u, ·), Lemma A.2(a) yields

µ(t)m (ut , ·)(f ) →
∫
(0,∞]

K∗(u, dv)h(v) = µm(u, ·)(f ).

Implication (b) follows from essentially the same argument. For m ≥ 2, suppose that
f ∈ C[0,∞]m. Replacing µ by π and E

′
m−1 by [0,∞]m−1 in the definitions of ht and h, we

have

π(t)m (ut , ·)(f ) =
∫

[0,∞]
K(tut , t dv)ht (v).

This time LemmaA.2(a) shows thatht (vt ) → h(v) if vt → v > 0, and sinceK∗(u, (0,∞])=1,
resorting to Lemma A.2(a) once more yields

π(t)m (ut , ·)(f ) →
∫

[0,∞]
K∗(u, dv)h(v) = πm(u, ·)(f ).

This completes the proof.

If G({0}) > 0 then K∗(u, (0,∞]) = 1 − G({0}) < 1, and, for (3.4) to hold, we would
require knowing the behavior of ht (vt )when vt → 0 as well. Previous work handled this using
the regularity condition discussed in Section 4.
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3.2. The extremal boundary

The normalization employed in the domain of attraction condition (2.5) suggests that, starting
from a large state t , the extreme states are approximately scalar multiples of t . For example,
we would consider a transition from t into (t/3, 2t] to remain extreme. Thus, we think of
states that can be made smaller than tδ for any δ, if t is large enough, as nonextreme. In this
context, the set [0,√t] would consist of nonextreme states. Asymptotically, a tail chain path
through (0,∞) models the original chain X as it travels among extreme states, and all of the
nonextreme states are compacted into the state {0} in the state space of T . Since a transition
of X from extreme to nonextreme is very unlikely ifG({0}) = 0, the tail chain captures all the
relevant extremal behavior of X (Theorem 3.1(b)).

Drawing upon this interpretation, we develop a rigorous formulation of the distinction
between extreme and nonextreme states, and we recast Theorem 3.1 as convergence on the
unrestricted space [0,∞]m of the conditional FDDs, given that X has not yet reached a
nonextreme state.

Definition 3.1. Suppose that K ∈ D(G). An extremal boundary for K is a nonnegative
function y(t) defined on [0,∞), satisfying limt→∞ y(t) = 0 and

K(t, t [0, y(t)]) → G({0}) as t → ∞. (3.6)

Such a function is guaranteed to exist by Lemma A.5 in Appendix A.
If G({0}) = 0 then y(t) ≡ 0 is a trivial choice. For any function 0 ≤ y(t) → 0, we have

lim supt→∞K(t, t [0, y(t)]) ≤ G({0}), so (3.6) is equivalent to

lim inf
t→∞ K(t, t[0, y(t)]) ≥ G({0}).

If y(t) is an extremal boundary, it follows that any function 0 ≤ ỹ(t) → 0 with ỹ(t) ≥ y(t) for
t ≥ t0 is also an extremal boundary for K . Taking ỹ(t) = ∨

s≥t y(s) shows that, without loss
of generality, we can assume y(t) to be nonincreasing.

The extremal boundary has a natural formulation in terms of the update function. As in
(2.9), let ψ(y, (Z,W)) = Zy + φ(y,W) be an update function in canonical form, where y is
extreme. If Z > 0 then the next state is approximately Zy, another extreme state. Otherwise,
if Z = 0, the next state is φ(y,W), and a transition from an extreme to a nonextreme state
has taken place. This suggests choosing an extremal boundary whose order is between t and
φ(t, w).

Proposition 3.1. Suppose that ψ(y, (Z,W)) is an update function in canonical form as in
(2.9). If ζ(t) > 0 is a function on [0,∞) such that

φ(t, w)/ζ(t) → 0

as t → ∞ whenever w ∈ B for which P[W ∈ B] = 1, then lim inf t→∞K(t, [0, ζ(t)]) ≥
G({0}). Provided limt→∞ ζ(t)/t = 0, an extremal boundary is given by y(t) := ζ(t)/t .

Thus, if φ(t, w) = o(ζ(t)) and ζ(t) = o(t), then ζ(t)/t is an extremal boundary. For
example, if ψ(y, (Z,W)) = Zy + W , so that φ(t, w) = w, then choosing ζ(t) to be any
function ζ(t) → ∞ such that ζ(t) = o(t) makes ζ(t)/t an extremal boundary. Choosing
ζ(t) = √

t , we find that y(t) = 1/
√
t is an extremal boundary.
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Proof of Proposition 3.1. Since

P[ψ(t, (Z,W)) ≤ ζ(t), Z = 0] = P[φ(t,W) ≤ ζ(t), Z = 0]
≥ P[|φ(t,W)| ≤ ζ(t), Z = 0]
≥ P[Z = 0] − P

[ |φ(t,W)|
ζ(t)

> 1

]
→ P[Z = 0],

we have

lim inf
t→∞ K(t, [0, ζ(t)]) = lim inf

t→∞ P[ψ(t, (Z,W)) ≤ ζ(t)] ≥ P[Z = 0].

We will need an extremal boundary for which (3.6) still holds upon replacing the initial state
t with tut , where ut → u > 0. Compare the following extension with Proposition 2.3.

Proposition 3.2. If K ∈ D(G) then there exists an extremal boundary y∗(t) such that

K(tut , t[0, y∗(t)]) → G({0}) as t → ∞ (3.7)

for any nonnegative function ut = u(t) → u > 0.

We will refer to y∗ as a uniform extremal boundary.

Proof of Proposition 3.2. Let y(t) be an extremal boundary forK . As a first step, fix u0 > 1,
and suppose that u−1

0 < u < u0. Define ỹ(t) = u0 y(tu
−1
0 ). Now, if ut → u then y{u}(t) :=

ut y(tut ) satisfies (3.7), since

K(tut , t[0, y{u}(t)]) = K(tut , tut [0, y(tut )]) → G({0}).
Here y{u} depends on the choice of function ut . However, since we eventually have u−1

0 <

ut < u0 for large enough t , it follows that ỹ(t) > y{u}(t) for such t . Hence, ỹ(t) satisfies (3.7)
for any ut → u with u−1

0 < u < u0.
Next, we remove the restriction in u0 via a diagonalization argument. For k = 2, 3, . . . ,

let yk(t) be extremal boundaries such that K(tut , t [0, yk(t)]) → G({0}) whenever ut → u

for u ∈ (k−1, k), and put y0 = y1 = y. Next, define the sequence {(sk, xk) : k = 0, 1, . . . }
inductively as follows. Setting s0 = 0 and x0 = y0(1), choose sk ≥ sk−1 + 1 such that yj (t) ≤
k−1 ∧ xk−1 for all j = 0, . . . , k whenever t ≥ sk , and put xk = max{yj (sk) : j = 0, . . . , k}.
Note that xk ≤ k−1 ∧ xk−1, so xk ↓ 0 and sk ↑ ∞. Finally, set

y∗(t) =
∞∑
k=0

xk 1[sk,sk+1)(t).

Observe that 0 ≤ y∗(t) ↓ 0, and suppose that ut → u > 0. Then u ∈ (k−1
0 , k0) for some k0,

so K(tut , t [0, yk0(t)]) → G({0}), and, for k ≥ k0, our construction ensures that, whenever
sk ≤ t < sk+1, we have yk0(t) ≤ yk0(sk) ≤ xk = y∗(t). Therefore, y∗(t) ≥ yk0(t) for t ≥ sk0 ,
so y∗ satisfies (3.7).

Henceforth, we assume that anyK ∈ D(G) is accompanied by a uniform extremal boundary
denoted by y(t), and we consider extreme states on the order of t to be (ty(t),∞]. IfG({0}) = 0
then all positive states are extreme states. We now use the extremal boundary to reformulate the
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convergence of Theorem 3.1 on the larger space [0,∞]m. Put E
′
m(t) = (y(t),∞]m−1 ×[0,∞],

so that E
′
m(t) ↑ E

′
m = (0,∞]m−1 × [0,∞]. Recall the notation µ(t)m and µ∗

m from (3.1) and
(3.2).

Theorem 3.2. Let ut = u(t) be a nonnegative function such that ut → u > 0 as t → ∞.
Taking

µ̃(t)m (u, ·) = π(t)m (u, · ∩ E
′
m(t)),

we have
µ̃(t)m (ut , ·) v−→ µm(u, ·) in M+[0,∞]m as t → ∞.

Proof. Note that we can just as well write µ̃(t)m (u, ·) = µ
(t)
m (u, · ∩ E

′
m(t)). Suppose that

m ≥ 2, and let f ∈ C+
K [0,∞]m. For δ > 0, define Aδ = (δ,∞]m−1 × [0,∞], and choose δ

such that µm(u, ∂Aδ) = 0. On the one hand, for large t, we have

µ̃(t)m (ut , ·)(f ) =
∫

[0,∞]m
f (x) 1E′

m(t)
(x)µ(t)m (ut , dx)

≥
∫

E′
m

f (x) 1Aδ (x)µ
(t)
m (ut , dx)

→
∫

E′
m

f (x) 1Aδ (x)µm(u, dx)

as t → ∞ by Lemma A.3 in Appendix A. Letting δ ↓ 0 yields

lim inf
t→∞ µ̃(t)m (ut , ·)(f ) ≥ µm(u, ·)(f ) (3.8)

by monotone convergence. On the other hand, fixing δ, we can decompose the space according
to the first downcrossing of δ, i.e.

µ̃(t)m (ut , ·)(f ) =
∫

[0,∞]m
f (x) 1Aδ (x)µ̃

(t)
m (ut , dx)+

m−1∑
k=1

∫
[0,∞]m

f (x) 1Akδ
(x)µ̃(t)m (ut , dx),

(3.9)
where Akδ = (δ,∞]k−1 × [0, δ] × [0,∞]m−k . On the subsets Akδ we appeal to the bound on
f , say M , to obtain ∫

[0,∞]m
f (x) 1Akδ

(x)µ̃(t)m (ut , dx) ≤ Mµ̃(t)m (ut , A
k
δ).

Now,

µ̃(t)m (ut , A
k
δ) ≤ µ

(t)
k (ut , (δ,∞]k−1 × (y(t), δ])

= µ
(t)
k (ut , (δ,∞]k−1 × [0, δ])− µ

(t)
k (ut , (δ,∞]k−1 × [0, y(t)]). (3.10)

Considering the second term, we have

µ
(t)
k (ut , (δ,∞]k−1 × [0, y(t)])

=
∫

[0,∞]
K(tut , t dx1) 1(δ,∞](x1)× · · ·

×
∫

[0,∞]
K(txk−2, t dxk−1) 1(δ,∞](xk−1)K(txk−1, t[0, y(t)])

=
∫

E
′
k−1

µ
(t)
k−1(ut , dxk−1)ht (xk−1),
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where
ht (xk−1) = K(txk−1, t [0, y(t)]) 1(δ,∞]k−1(xk−1).

Moreover, if xtk−1 → xk−1 ∈ (δ,∞]k−1 then

ht (x
t
k−1) = K(txtk−1, t[0, y(t)]) 1(δ,∞]k−1(xtk−1) → G({0}) 1(δ,∞]k−1(xk−1),

using the fact that y(t) is a uniform extremal boundary. Since µk−1(u, ∂(δ,∞]k−1) = 0,
without loss of generality by the choice of δ, we conclude that

µ
(t)
k (ut , (δ,∞]k−1 × [0, y(t)]) → G({0})µk−1(u, (δ,∞]k−1) = µk(u, (δ,∞]k−1 × {0})

as t → ∞. Now, let us return to (3.10). Given any ε > 0, by choosing small enough δ, we can
make

µ
(t)
k (ut , (δ,∞]k−1 × (y(t), δ])

→ µk(u, (δ,∞]k−1 × [0, δ])− µk(u, (δ,∞]k−1 × {0})
≤ µk(u, (0,∞]k−1 × [0, δ])− µk(u, (δ,∞]k−1 × {0})
< µk(u, (0,∞]k−1 × {0})+ ε

2
−

(
µk(u, (0,∞]k−1 × {0})− ε

2

)
= ε,

i.e.
lim sup
t→∞

µ̃(t)m (ut , A
k
δ) < ε

for k = 1, . . . , m− 1. Therefore, (3.9) implies that, given ε′ > 0,

lim sup
t→∞

µ̃(t)m (ut , ·)(f ) ≤
∫

[0,∞]m
f (x) 1Aδ (x)µm(u, dx)

+M

m−1∑
k=1

lim sup
t→∞

µ̃(t)m (ut , A
k
δ)

< µm(u, ·)(f )+ ε′

for small enough δ. Combining this with (3.8) yields the result.

3.3. The extremal component

Having thus formalized the distinction between extreme and nonextreme states, we return
to the question of phrasing a general FDD limit result for X. The extremal boundary allows
us to interpret the first hitting time of {0} by the tail chain as approximating the time of the
first transition from extreme down to nonextreme. In this terminology, Theorem 3.2 provides
a result, given that such a transition has yet to occur.

Define
τ(t) = inf{n ≥ 0 : Xn ≤ ty(t)}

to be the first hitting time of a nonextreme state. For a Markov chain started from tut , where
ut → u > 0, we have tut > ty(t) for large t , so τ(t) is the first downcrossing of the extremal
boundary.
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For the tail chain T = {T0ξ1 · · · ξn : n = 0, 1, . . . }, put τ ∗ = inf{n ≥ 0 : Tn = 0}. Given
T0 > 0, τ ∗ = inf{n ≥ 1 : ξn = 0}, i.e. τ ∗ follows a geometric distribution with parameter
p = G({0}). Thus, P[τ ∗ = m] = p(1 − p)m−1 for m ≥ 1 if p > 0, and P[τ ∗ = ∞] = 1 if
p = 0. Theorem 3.2 becomes

Ptut [t−1Xm ∈ ·, τ (t) ≥ m] v−→ Pu[Tm ∈ ·, τ ∗ ≥ m], (3.11)

implying that τ ∗ approximates τ(t):

Ptut [τ(t) ∈ ·] ⇒ P[τ ∗ ∈ ·] as t → ∞ and ut → u > 0. (3.12)

So, if G({0}) > 0, X takes an average of approximately G({0})−1 steps to return to a
nonextreme state. However, if G({0}) = 0, Ptut [τ1 ≤ m] → 0 for any m ≥ 1; in other words,
starting from a larger and larger initial state, it will take longer and longer for X to downcross
to a nonextreme state.

We now restate (3.11) in terms of a process derived from X, called the extremal component
of X, whose unrestricted FDDs converge weakly to those of T .

Definition 3.2. The extremal component of X relative to t is the process X(t) defined for t > 0
as

X(t)n = Xn 1(n<τ(t)), n = 0, 1, . . . .

Observe that X(t) is a Markov chain on [0,∞) with transition kernel

K(t)(x, A) =
{
K(x,A ∩ (ty(t),∞])+ ε0(A)K(x, [0, ty(t)]), x > ty(t),

ε0(A), x ≤ ty(t).

It follows that K(t)(t, t ·) ⇒ G as t → ∞, and, additionally, that K(t)(t, {0}) → G({0}). The
relation between X(t) and X is

Ptut [t−1X(t)
m ∈ · | τ(t) > m] = Ptut [t−1Xm ∈ · | τ(t) > m].

Theorem 3.3. Let ut = u(t) ≥ 0 satisfy ut → u > 0 as t → ∞. Then, on [0,∞]m,

π̃ (t)m (ut , ·) := Ptut

[(
X
(t)
1

t
, . . . ,

X
(t)
m

t

)
∈ ·

]
⇒ Pu[(T1, . . . , Tm) ∈ ·] as t → ∞.

Proof. Suppose thatm ≥ 2 and f ∈ C[0,∞]m. Without loss of generality, f ∈ C+
K [0,∞]m

as well, since the space is compact. Recall the notation introduced in Theorem 3.2. Conditioning
on τ(t), we can write

π̃ (t)m (ut , ·)(f ) =
∫
(0,∞]m

f (xm)π̃
(t)
m (ut , dxm)+

m∑
k=1

∫
(0,∞]k−1×{0}m−k+1

f (xm)π̃
(t)
m (ut , dxm)

=
∫
(0,∞]m

f (xm)π̃
(t)
m (ut , dxm)

+
m∑
k=1

∫
(0,∞]k−1×{0}

f (xk, 0, . . . , 0)π̃ (t)k (ut , dxk)
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by the Markov property. Since

π̃ (t)m (ut , · ∩ (0,∞]m) = Ptut [t−1X(t)
m ∈ ·, τ (t) > m]

= Ptut [t−1Xm ∈ · ∩ (y(t),∞]m]
= µ̃

(t)
m+1(ut , · × [0,∞]),

the first term becomes

µ̃
(t)
m+1(ut , · × [0,∞])(f ) → µm+1(u, · × [0,∞])(f )

=
∫
(0,∞]m

f (xm)πm(u, dxm)

=
∫
(0,∞]m

f (xm)Pu[Tm ∈ dxm]

as t → ∞. Next, for any measurable A ⊂ [0,∞]k , write A0 = {xk−1 : (xk−1, 0) ∈ A} ⊂
[0,∞]k−1, and observe that

π̃
(t)
k (ut , A ∩ (0,∞]k−1 × {0}) = Ptut [t−1X

(t)
k−1 ∈ A0 ∩ (0,∞]k−1, X

(t)
k = 0]

= Ptut [t−1Xk−1 ∈ A0 ∩ (y(t),∞]k−1, t−1Xk ≤ y(t)]
= µ̃

(t)
k (ut , A0 × [0,∞])− µ̃

(t)
k+1(ut , A0 × [0,∞]2).

Applying this reasoning to the terms in the summation yields∫
[0,∞]k

f (xk−1, 0, . . . , 0)µ̃(t)k (ut , dxk)−
∫

[0,∞]k+1
f (xk−1, 0, . . . , 0)µ̃(t)k+1(ut , dxk+1)

→
∫

[0,∞]k
f (xk−1, 0, . . . , 0)µk(u, dxk)

−
∫

[0,∞]k+1
f (xk−1, 0, . . . , 0)µk+1(u, dxk+1)

=
∫
(0,∞]k−1×{0}

f (xk, 0, . . . , 0)πk(u, dxk)

=
∫
(0,∞]k−1×{0}m−k+1

f (xm)Pu[Tm ∈ dxm].

Combining these limits shows that Etut f (t
−1X

(t)
m ) → Eu f (Tm) as t → ∞.

4. The regularity condition

Previous work on the tail chain has addressed FDD convergence of X to T under a single
assumption analogous to our domain of attraction condition (2.5). As observed in Section 3.1,
whenG({0}) = 0, FDD convergence of {t−1X} follows directly, but, whenG({0}) > 0, it was
common to assume an additional technical condition that made (2.5) imply FDD convergence
to T as well. This condition, which we refer to as the ‘regularity condition’, controls X

upon leaving a nonextreme state. We consider equivalences between different forms appearing
in the literature, in terms of both kernels and update functions, and show that, under the
regularity condition, the extremal behavior of X is asymptotically the same as that of its extremal
component X(t).
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In the cases where G({0}) > 0, Perfekt [17], [18] required that

lim
δ↓0

lim sup
t→∞

sup
u∈[0,δ]

K(tu, (t,∞]) = 0, (4.1)

while Segers [22] stipulated that the chosen update function corresponding to K must be of at
most linear order in the initial state:

lim sup
t→∞

sup
0≤y≤t

t−1ψ(y, v) < ∞, v ∈ B0, P[V ∈ B0] = 1. (4.2)

Smith [23] used a variant of (4.1). We deem a formulation in terms of distributional convergence
to be instructive in our context.

Definition 4.1. A Markov transition kernel K ∈ D(G) satisfies the regularity condition if

K(tut , t ·) ⇒ ε0(·) (4.3)

on [0,∞] as t → ∞ for any nonnegative function ut = u(t) → 0.

Thus, the regularity condition complements the domain of attraction condition expressed in
the form (2.7), with the effect that the extremal behavior of K is completely described by the
tail kernel K∗.

We now consider the relationships between (4.1), (4.2), and (4.3), and propose an intuitive
equivalent for update functions in canonical form.

Proposition 4.1. Suppose thatK ∈ D(G), and let ψ(·, V ) be an update function correspond-
ing to K such that

t−1ψ(t, v) → ξ(v) (4.4)

whenever v ∈ B for which P[V ∈ B] = 1 and ξ ◦ V ∼ G. Then the following statements
hold.

(a) Condition (4.1) is necessary and sufficient forK to satisfy the regularity condition (4.3).

(b) Condition (4.2) is sufficient for K to satisfy the regularity condition (4.3).

(c) If ψ is in canonical form, i.e.

ψ(y, (Z,W)) = Zy + φ(y,W),

then ψ satisfies (4.2) if and only if φ(·, w) is bounded on any neighborhood of 0 for
each w ∈ C, a set for which P[W ∈ C] = 1.

Proof. (a) Assume that (4.1) holds, and suppose that ut → 0. We show that K(tut ,
t (x,∞]) → 0 for any x > 0. Write

ω(t, δ) = sup
u∈[0,δ]

K(tu, (t,∞]).

Let ε > 0 be given, and choose δ small enough that lim supt→∞ ω(t, δ) < ε/2. Then, for t
large enough that both ut < δx and ω(tx, δ)− lim supt→∞ ω(t, δ) < ε/2, we have

K(tut , t (x,∞]) ≤ sup
u∈[0,δx]

K(tu, t (x,∞]) = ω(tx, δ) < lim sup
t→∞

ω(t, δ)+ ε

2
.

Our choice of δ implies that K(tut , t (x,∞]) < ε.
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Conversely, assume that K satisfies (4.3) but that (4.1) fails. Choose ε > 0 and a sequence
δn ↓ 0 such that lim supt→∞ ω(t, δn) ≥ ε for n = 1, 2, . . .. Then, for each n, we can
find a sequence tnk → ∞ as k → ∞ such that ω(tnk , δn) ≥ ε for each k. Diagonalize to find
k1 < k2 < · · · such that sn = tnkn → ∞ and ω(sn, δn) ≥ ε for all n. Finally, for n = 1, 2, . . . ,
choose un ∈ [0, δn] such that

K(snun, (sn,∞]) > ω(sn, δn)− ε

2
,

and put u(t) = ∑
n un 1[sn,sn+1)(t). Clearly, u(t) → 0, but K(snu(sn), (sn,∞]) ≥ ε/2 for all

n, contradicting (4.3).
(b) Write M(v) = lim supt→∞ sup0≤y≤t t−1ψ(y, v). Since

sup
0≤y≤t

t−1ψ(y, v) = sup
0≤y≤δ

ψ(tδ−1y, v)

tδ−1 δ−1

for δ > 0, we have
lim sup
t→∞

sup
0≤y≤δ

t−1ψ(ty, v) = δM(v).

Now, suppose that ut → 0. Given any δ > 0 we have

t−1ψ(tut , v) ≤ sup
0≤y≤δ

t−1ψ(ty, v),

provided t is large enough, so lim supt→∞ t−1ψ(tut , v) ≤ δM(v). Consequently,

lim sup
t→∞

t−1ψ(tut , v) = 0

for every v such that M(v) < ∞. Under (4.2), this means that P[t−1ψ(tut , V ) → 0] = 1,
implying (4.3).

(c) Suppose first that χw(a) = sup0≤y≤a φ(y,w) < ∞ for all a > 0, whenever w ∈ C.
Fixing w ∈ C and z ≥ 0, note that

sup
0≤y≤t

t−1ψ(y, (z,w)) ≤ z+ sup
0≤y≤t

t−1φ(y,w),

and observe for any a > 0 that

sup
0≤y≤t

t−1φ(y,w) ≤
(

sup
0≤y≤a

t−1φ(y,w)
)

∨
(

sup
a≤y≤t

y−1φ(y,w)
)

≤ t−1χw(a) ∨
(

sup
a≤y

y−1φ(y,w)
)
.

Choosing a large enough that supa≤y y−1φ(y,w) ≤ 1, say, it follows that

lim sup
t→∞

sup
0≤y≤t

t−1ψ(y, (z,w)) ≤ z+ 1,

so v = (z, w) ∈ B0. Therefore, P[(Z,W) ∈ B0] ≥ P[Z ≥ 0, W ∈ C] = 1.
Conversely, suppose that there is a set D with P[W ∈ D] > 0 such that w ∈ D implies

that χw(a) = ∞ for some 0 < a < ∞. Since sup0≤y≤t t−1ψ(y, (z,w)) ≥ t−1χw(t), we have
[0,∞)×D ⊂ Bc

0, contradicting (4.2).
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The exclusion of necessity from part (b) results from the fact that a kernelK does not uniquely
specify an update function ψ . Even when K satisfies the regularity condition (4.3), it may be
possible to choose a nasty update function ψ which satisfies (4.4), but not (4.2). However,
in such cases there may exist a different update function ψ ′ corresponding to K which does
satisfy (4.2).

We now give an example of such a situation. We exhibit an update function ψ for which
(i) (4.4) holds; (ii) (4.2) fails because condition (c) of Proposition 4.1 fails; but yet (iii) the
corresponding kernel satisfies the regularity condition (4.3). Furthermore, we present a different
choice of update function corresponding to the same kernel that satisfies (4.2). Defineψ(y, V =
(Z,W)) = Zy + φ(y,W), where

φ(y,w) =
∞∑
k=1

k 1(yw=1/k)

andW ∼ U(0, 1). (i) Sinceφ(t, w) = 0 for t > 1/w, it is clear thatψ satisfies (4.4) with ξ = Z.
(ii) Observe that, for any w ∈ (0, 1), φ(·, w) is unbounded on the interval [0, 1]. Therefore,
by part (c) of Proposition 4.1, (4.2) cannot hold for ψ . (iii) However, the corresponding kernel
does satisfy the regularity condition (4.3). Suppose that ut → 0 and a > 0 is arbitrarily large.
Write

P[t−1ψ(tut , (Z,W)) > x] = P[Zut + t−1φ(tut ,W) > x]
≤ P[t−1φ(tut ,W) > x′] + P[Z > a],

choosing 0 < x′ < x − aut . Since, for any t , {w : φ(tut , w) > tx′} ⊂ {(tut k)−1 : k =
1, 2, . . .}, a set of measure 0 with respect to P[W ∈ ·], (4.3) follows by letting a → ∞. On the
other hand, the update function ψ ′(y, Z) = Zy does satisfy (4.2), and, for any y,

P[ψ ′(y, Z) �= ψ(y, (Z,W))] = P[W ∈ {(yk)−1 : k = 1, 2, . . .}] = 0,

so ψ ′ does indeed correspond to K .
The regularity condition (4.3) restricts attention to Markov chains for which the probability

of returning to an extreme state in the nextm steps after falling below the extremal boundary is
asymptotically negligible. For such chains, as well as those for which y(t) ≡ 0 is an extremal
boundary for K , X has the same asymptotic behavior as its extremal component, as described
next.

Theorem 4.1. Suppose that X ∼ K withK ∈ D(G), and let ρ be a metric on R
m. If y(t) ≡ 0

is an extremal boundary for K , or if K satisfies the regularity condition (4.3), then, for any
ε > 0, we have

Ptut

[
ρ

(
X
(t)
m

t
,
Xm

t

)
> ε

]
→ 0 as t → ∞ and ut → u > 0. (4.5)

Consequently,

Ptut

[(
X1

t
, . . . ,

Xm

t

)
∈ ·

]
⇒ Pu[(T1, . . . , Tm) ∈ ·] as t → ∞ and ut → u > 0. (4.6)

First let us extend the regularity condition to higher-order transition kernels.
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Lemma 4.1. If K satisfies (4.3) then so do the m-step transition kernels Km.

Proof. This is established by induction. Let ut → 0 and f ∈ C[0,∞]. Form ≥ 2, we have

Km(tut , ·)(f ) =
∫

[0,∞]
Km−1(tut , t dv)

∫
[0,∞]

K(tv, t dx)f (x).

Assume that Km−1(tut , t ·) ⇒ ε0; (4.3) implies that
∫
K(tvt , t dx)f (x) → f (0) whenever

vt → 0. Therefore, by Lemma A.2(a), we conclude that

Km(tut , ·)(f ) → f (0) = ε0(f ).

Proof of Theorem 4.1. Suppose that ε > 0 and ut → u > 0. Write

Ptut [ρ(t−1X(t)
m , t

−1Xm) > ε] =
m∑
k=1

Ptut [ρ(t−1X(t)
m , t

−1Xm) > ε, τ(t) = k].

Since Xj = X
(t)
j while j < τ(t), for the kth summand to converge to 0, it is sufficient that

Ptut

[∣∣∣∣X(t)jt − Xj

t

∣∣∣∣ > δ, τ(t) = k

]
= Ptut

[
Xj

t
> δ, τ(t) = k

]
→ 0

for j = k, . . . , m and any δ > 0. If j = k, we have

Ptut

[
Xj

t
> δ, τ(t) = k

]
≤ Ptut

[
Xk

t
> δ,

Xk

t
≤ y(t)

]
= 0

for large t . For j > k, recalling the notation of Theorem 3.2,

Ptut

[
Xj

t
> δ, τ(t) = k

]
=

∫
E

′
k(t)

1[0,y(t)](xk)Ptut

[
Xj

t
> δ

∣∣∣∣ Xk

t
= xk

]
Ptut

[
Xk

t
∈ dxk

]
=

∫
[0,∞]k

Ptxk [Xj−k > tδ] 1[0,y(t)](xk)µ̃(t)k (ut , dxk)

using the Markov property. We claim that this integral tends to 0 as t → ∞. If y(t) ≡ 0,
this follows directly. Otherwise, recall that µ̃(t)k (ut , ·)

v−→ µk(u, ·), and consider ht (xk) =
Ptxk [Xj−k > tδ] 1[0,y(t)](xk). Suppose that x(t) → x ∈ [0,∞]k . If xk > 0 then ht (x(t)) = 0
for large t because y(t) → 0. Otherwise, if xk = 0, we have ht (x(t)) → 0 since Lemma 4.1
implies that P

tx
(t)
k

[Xj−k > tδ] → 0 as t → ∞. Lemma A.2(b) establishes (4.5); (4.6) follows

by Slutsky’s theorem applied to the result of Theorem 3.3.

Therefore, X converges to T in FDDs under (a)G({0}) = 0, (b)G({0}) > 0 combined with
(4.3), or (c)G({0}) > 0 combined with the extremal boundary y(t) ≡ 0. In any of these cases,
we will be able to replace the extremal component X(t) with the complete chain X in the results
given below in Sections 5.1 and 5.2. However, that y(t) ≡ 0 is an extremal boundary, and
consequently that (4.6) holds, does not imply that the regularity condition holds, regardless of
G({0}); in particular, a kernel for which G({0}) = 0 need not satisfy (4.3). This is illustrated
in Example 6.3 below.
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5. Convergence of the unconditional FDDs

5.1. Effect of a regularly varying initial distribution

So far our convergence results required that the initial state become large, and the only
distributional assumption was that the transition kernel K determining X be attracted to some
distributionG. To obtain a result for the unconditional distribution of (X0, . . . , Xm), we require
an additional assumption about how likely the initial observation X0 is to be large. Using
Lemma A.4 in Appendix A, the results of the previous sections extend to multivariate regular
variation on the cone Em = (0,∞] × [0,∞]m when the distribution of X0 has a regularly
varying tail. This cone is smaller than the cone [0,∞]m+1 \ {0} traditionally employed in
extreme value theory because the kernel domain of attraction condition (2.5) is uninformative
when the initial state is not extreme. This is analogous to the setting of the conditional extreme
value model considered in [8] and [12].

Proposition 5.1. Assume that X ∼ K with K ∈ D(G), and that X0 ∼ F , where F is a
distribution on [0,∞) with a regularly varying tail (denoted by 1 − F ∈ RV−α). This means
that, as t → ∞, for some scaling function b(t) → ∞,

tF (b(t)·) v−→ να(·) in M+(0,∞],
where να(x,∞] = x−α and α > 0. Define the measure ν∗ on Em = (0,∞] × [0,∞]m by

ν∗(dx0, dxm) = να(dx0)Px0 [(T1, . . . , Tm) ∈ dxm].
Then, for m = 1, 2, . . ., the following convergences take place as t → ∞.

(a) In M+((0,∞]m × [0,∞]),

t P[b(t)−1(X0, X1, . . . , Xm) ∈ · ∩ (0,∞]m × [0,∞]] v−→ ν∗(· ∩ (0,∞]m × [0,∞]).
(b) In M+(Em),

t P[b(t)−1(X
(b(t))
0 , X

(b(t))
1 , . . . , X(b(t))m ) ∈ ·] v−→ ν∗(·).

(c) If either G({0}) = 0, y(t) ≡ 0 is an extremal boundary, or K satisfies the regularity
condition (4.3), then, in M+(Em),

t P[b(t)−1(X0, X1, . . . , Xm) ∈ ·] v−→ ν∗(·).
(d) In M+(0,∞],

t P

[
X0

b(t)
∈ dx0, τ (b(t)) ≥ m

]
v−→ (1 −G({0}))m−1να(dx0).

Remark. The convergence statements in Proposition 5.1 may be reformulated equivalently as,
say,

P[b(t)−1(X0, X1, . . . , Xm) ∈ · | X0 > b(t)] ⇒ P[(T0, T1, . . . , Tm) ∈ ·],
where T0 ∼ Pareto(α). This is the form considered by Segers [22].

Proof of Proposition 5.1. Apply Lemma A.4 in Appendix A to the results of Theorems 3.1,
3.3, and 4.1, and (3.12).
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In the casem = 1,E1 is a rotated version of E� used in the conditional extreme value model
in [8] and [9], and the limit can be expressed as

ν∗((x0,∞] × [0, x1]) =
∫ ∞

x0

να(du)P

[
ξ ≤ x1

u

]
= x−α

0 P

[
ξ ≤ x1

x0

]
− x−α

1 E ξα 1{ξ≤x1/x0}

for (x0, x1) ∈ (0,∞] × [0,∞], where ξ ∼ G (with E ξα ≤ ∞). Since

ν∗((x0,∞] × {0}) = x−α
0 P[ξ = 0] and ν∗((0,∞] × (x1,∞]) = x−α

1 E ξα,

sets on the x0-axis incur mass proportional toG({0}), and sets bounded away from this axis are
weighted according to E ξα . A consequence of the second observation is that

lim inf
t→∞ t P

[
X1

b(t)
> x

]
≥ E ξα · x−α.

Thus, knowledge concerning the tail behavior of X1 imposes a restriction on the distributions
G to which K can be attracted via the αth moment. For example, if t P[X1/b(t) ∈ ·] v−→ να
then we must have E ξα ≤ 1; this property will be examined further in the next section and
appears in various forms in [1] and [22], in the stationary setting.

5.2. Joint tail convergence

What additional assumptions are necessary for convergences (b) and (c) of Proposition 5.1
to take place on the larger cone E

∗
m = [0,∞]m+1 \ {0}? This was considered by Basrak and

Segers [1] and Segers [22] for stationary Markov chains. In (b), the dependence on the extremal
threshold and, hence, on t , means that we are in the context of a triangular array and not, strictly
speaking, in the setting of joint regular variation. However, the result is still useful; for example,
to derive a point process convergence via the Poisson transform [20, p. 183].

As a first step, we characterize convergence on the larger cone by decomposing it into
smaller, more familiar cones. This is similar to Theorem 6.1 of [22] and one of the implications
of Theorem 2.1 of [1]. As a convention in what follows, set [0,∞]0 ×A = A. Also, recall the
notation Em = (0,∞] × [0,∞]m.

Proposition 5.2. Suppose that Yt = (Yt,0, Yt,1, . . . , Yt,m) is a random vector on [0,∞]m+1

for each t > 0. Then there exists a nonnull Radon measure µ∗ on E
∗
m = [0,∞]m+1 \ {0} such

that
t P[(Yt,0, Yt,1, . . . , Yt,m) ∈ ·] v−→ µ∗(·) in M+(E∗

m) as t → ∞ (5.1)

if and only if, for j = 0, . . . , m, there exist Radon measures µj on Ej = (0,∞] × [0,∞]j ,
not all null, such that

t P[(Yt,j , . . . , Yt,m) ∈ ·] v−→ µm−j (·) in M+(Em−j ). (5.2)

The relation between the limit measures is

µm−j (·) = µ∗([0,∞]j × ·) on Em−j
for j = 0, . . . , m, and

µ∗([0, x]c) =
m∑
j=0

µm−j ((xj ,∞] × [0, xj+1] × · · · × [0, xm]) for x ∈ E
∗
m.

Furthermore, given j ∈ {0, . . . , m− 1}, if A ⊂ [0,∞]m−j \ {0}m−j is relatively compact then
µm−j ((0,∞] × A) < ∞.
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Proof. Assume first that (5.1) holds. Fixing j ∈ {0, . . . , m}, define

µm−j (·) := µ∗([0,∞]j × ·)
(i.e. µm = µ∗). Let A ⊂ Em−j be relatively compact with µm−j (∂A) = 0. Then A∗ =
[0,∞]j × A is relatively compact in E

∗
m, and ∂E∗

m
A∗ = [0,∞]j × ∂Em−j A, so µ∗(∂E∗

m
A∗) =

µm−j (∂A) = 0. Therefore,

t P[(Yt,j , . . . , Yt,m) ∈ A] = t P[(Yt,0, . . . , Yt,m) ∈ A∗] → µ∗(A∗) = µm−j (A),
establishing (5.2).

Conversely, suppose that (5.2) holds for j = 0, . . . , m. For x ∈ (0,∞]m+1, define

h(x) =
m∑
j=0

µm−j ((xj ,∞] × [0, xj+1] × · · · × [0, xm]).

Decompose [0, x]c as a disjoint union

[0, x]c =
m⋃
j=0

[0,∞]j × (xj ,∞] × [0, xj+1] × · · · × [0, xm], (5.3)

and observe that at points of continuity of the limit

t P[Yt ∈ [0, x]c] =
m∑
j=0

t P[(Yt,j , . . . , Yt,m) ∈ (xj ,∞] × [0, xj+1] × · · · × [0, xm]] → h(x).

(5.4)
Hence, (5.1) holds with the limit measure µ∗ defined by µ∗([0, x]c) = h(x). Indeed, given
f ∈ C+

K(E
∗
m), we can find δ > 0 such that xδ = (δ, . . . , δ) is a continuity point of h, and f is

supported on [0, xδ]c. Therefore,

t E f (Yt ) ≤ sup
x∈E∗

m

f (x) · sup
t>0

t P[Yt ∈ [0, xδ]c] < ∞,

implying that the set {t P[Yt ∈ ·]; t > 0} is relatively compact in M+(E∗
m) (see [20, p. 51]).

Furthermore, if tk P[Ytk ∈ ·] → µ and sk P[Ysk ∈ ·] → µ′ as k → ∞, then µ = µ′ = µ∗ on
sets [0, x]c which are continuity sets of µ∗ by (5.4). This extends to measurable rectangles in
E

∗
m bounded away from 0 whose vertices are continuity points of h, leading us to the conclusion

that µ = µ′ = µ∗ on E
∗
m.

Moreover, since we can decompose [0, x]c for any x ∈ E
∗
m as in (5.3), it is clear that µ∗ is

nonnull if and only if not all of the µj are null.
Finally, for 1 ≤ j ≤ m − 1, if A ⊂ [0,∞]m−j \ {0}m−j is relatively compact then it is

contained in [(0, . . . , 0), (xj+1, . . . , xm)]c for some (xj+1, . . . , xm) ∈ (0,∞]m−j . Applying
(5.3) once again, we find that

µm−j ((0,∞] × A) = µ∗([0,∞]j × (0,∞] × A)

≤
m∑

k=j+1

µ∗([0,∞]j+1 × [0,∞]k−j−1 × (xk,∞] × [0, xk+1]

× · · · × [0, xm])
=

m∑
k=j+1

µm−k((xk,∞] × [0, xk+1] × · · · × [0, xm])

< ∞.
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Consequently, the extension of the convergences in Proposition 5.1 to the larger cone E
∗
m

follows from regular variation of the marginal tails.

Theorem 5.1. Suppose that X ∼ K ∈ D(G), and let b(t) → ∞ be a scaling function and
α > 0. Let ξ ∼ G. Then

t P[b(t)−1(X
(b(t))
0 , X

(b(t))
1 , . . . , X(b(t))m ) ∈ ·] v−→ µ∗(·) in M+(E∗

m) as t → ∞, (5.5)

where µ∗ is a Radon measure on E
∗
m given by

µ∗|Em(dx0, dxm) = να(dx0)Px0 [(T1, . . . , Tm) ∈ dxm] and µ∗(E∗
m \ Em) = 0,

if and only if E ξα < ∞ and

t P

[
X
(b(t))
j

b(t)
∈ ·

]
v−→ (E ξα)j να(·) in M+(0,∞], j = 0, . . . , m. (5.6)

Proof. Assume first that (5.5) holds, and let x > 0. Then, for j = 0,

t P[X(b(t))0 > b(t)x] → µ∗((x,∞] × [0,∞]m) = x−α.
For j ≥ 1, (5.5) implies that

t P[X(b(t))j > b(t)x] → µ∗([0,∞]j × (x,∞] × [0,∞]m−j )

=
∫
(0,∞]

να(du)P[ξ1 · · · ξj > xu−1]
= x−α E(ξ1 · · · ξj )α
= x−α(E ξα)j

< ∞
since the set [0,∞]j × (x,∞]×[0,∞]m−j is relatively compact in E

∗
m. In particular, we have

E ξα < ∞.
Conversely, suppose that (5.6) holds. LemmaA.4 inAppendixA implies that, in M+(Em−j ),

t P[b(t)−1(X
(b(t))
j , . . . , X(b(t))m ) ∈ (dx0, dx)]

v−→ (E ξα)j να(dx0)Px0 [(T1, . . . , Tm−j ) ∈ dx]
=: µm−j ((dx0, dx))

by the Markov property, and Proposition 5.2 yields (5.5) with µ∗|Em(·) = µm(·). It remains
to verify that µ∗(E∗

m \ Em) = 0. Writing Aj(xm) = [0,∞]j−1 × (xj ,∞] × [0,∞]m−j , note
that

µ∗({0} × [0, xm]c) ≤
m∑
j=1

µ∗({0} × Aj(xm)),

and
µ∗({0} × Aj(xm)) = µm−j ((xj ,∞] × [0,∞]m−j )− µm((0,∞] × Aj(xm))

= (E ξα)j x−α
j − lim

x0↓0

∫
[x0,∞]

να(du)P[ξ1 · · · ξj > xju
−1]

= (E ξα)j x−α
j − (E ξα)j x−α

j

= 0.

Since E
∗
m \ Em = {0} × E

∗
m−1, it follows that µ∗(E∗

m \ Em) = 0.
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At the end of Section 4, cases were outlined in which we could replace X(b(t))j by Xj .
Theorem 5.1 is most striking for these since it shows that, for a Markov chain whose kernel is
in a domain of attraction, to obtain joint regular variation of the FDDs, it is enough to know that
the marginal tails are regularly varying. In particular, if X has a regularly varying stationary
distribution then the FDDs are jointly regularly varying. This result was presented by Segers
[22], and Basrak and Segers [1] showed that, for a general stationary process, joint regular
variation of FDDs is equivalent to the existence of a ‘tail process’ which reduces to the tail
chain in the case of Markov chains. However, what Proposition 5.1 emphasizes is that it is the
marginal tail behavior alone, rather than stationarity, which provides the link with joint regular
variation.

Theorem 5.1 also extends the observation made in Section 5.1 that knowledge of the marginal
tail behavior for a Markov chain whose kernel is in a domain of attraction constrains the class
of possible limit distributions G via its moments. If a particular choice of regularly varying
initial distribution leads to t P[Xj > b(t)·] v−→ aj να(·) then we have E ξα≤ a

1/j
j . In particular,

if X admits a stationary distribution whose tail is RV−α then E ξα ≤ 1.

6. Examples

Our first example illustrates the main results.

Example 6.1. Let V = (Z, η) be any random vector on [0,∞) × R. Consider the update
function ψ(y, V ) = (Zy + η)+ and its canonical form (with W = (Z, η))

ψ(y, V ) = Zy + φ(y,W) = Zy + (η 1{η>−Zy} −Zy 1{η≤−Zy}).

For y > 0 and x ≥ 0, the transition kernel has the formK(y, (x,∞)) = P[Zy+η > x]. Since
t−1ψ(t, V ) = (Z+ t−1η)+ → Z almost surely (a.s.), we haveK ∈ D(G)withG = P[Z ∈ ·].
Furthermore, using Proposition 3.1, the function γ (t) ≡ √

t is of larger order than φ(t, w),
so y(t) = 1/

√
t is an extremal boundary. Since φ(·, w) is bounded on neighborhoods of 0,

Proposition 4.1(c) implies that K satisfies the regularity condition (4.3). Consequently, from
Theorem 4.1, we obtain FDD convergence of t−1X to T as in (4.6).

IfK does not satisfy the regularity condition (4.3), Theorem 4.1 may fail to hold, and starting
from tu, t−1X may fail to converge to T started from u.

Example 6.2. Let V = (Z,W,W ′) be any nondegenerate random vector on [0,∞)3, and
consider the Markov chain determined by the update function

ψ(y, V ) = Zy +Wy−1 1{y>0} +W ′ 1{y=0} .

For y > 0 and x ≥ 0, the transition kernel is K(y, (x,∞)) = P[Zy +Wy−1 > x], and, since
t−1ψ(t, V ) = Z +Wt−2 → Z a.s., we have K ∈ D(G) with G = P[Z ∈ ·]. Furthermore,
using Proposition 3.1, the function γ (t) ≡ 1 is of larger order than φ(t, w), so y(t) = 1/t is
an extremal boundary.

However, note that φ(y, (W,W ′)) = Wy−1 1{y>0} +W ′ 1{y=0} is unbounded near 0, imply-
ing that Segers’ boundedness condition (4.2) does not hold. In fact, our form of the regularity
condition (4.3) fails for K . Indeed,

K(tut , t (x,∞)) = P

[
Ztut + W

tut
> tx

]
= P

[
Zut + W

t2ut
> x

]
.
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Choosing ut = t−2 yields K(tut , t (x,∞)) → P[W > x]. For appropriate x, this shows that
(4.3) fails.

Not only does (4.3) fail but so does Theorem 4.1, since the asymptotic behavior of X is not
the same as that of X(t). We show directly that the conditional FDDs of t−1X fail to converge to
those of T . The idea is that, if Xk < y(t) = t−1, there is a positive probability that Xk+1 > t .
We illustrate this form = 2. Takef ∈ C[0,∞]2 andu > 0. Observe that, ifX0 = tu > 0, from
the definition ofψ ,X1 = Z1tu+W1/(tu) andX2 = Z2X1 + (W2/X1) 1{X1>0} +W ′

2 1{X1=0} .
Furthermore, on {Z1 > 0}, we have X1 > 0 and X2 = Z2X1 +W2/X1. On {Z1 = 0,
W1 > 0}, X1 > 0 and X2 = Z2X1 + W2/X1. On {Z1 = 0, W1 = 0}, we have X1 = 0
and X2 = W ′

2. Therefore,

Etu f

(
X1

t
,
X2

t

)
= Etu f

(
X1

t
,
X2

t

)
1{Z1>0} + Etu f

(
X1

t
,
X2

t

)
1{Z1=0,W1>0}

+ Etu f

(
X1

t
,
X2

t

)
1{Z1=0,W1=0}

= A+ B + C.

For A, as t → ∞, we have

A = E f

(
Z1u+ W1

t2u
,Z2

[
Z1u+ W1

t2u

]
+ W2

Z1t2u+W1u−1

)
1{Z1>0}

→ E f (Z1u,Z1Z2u) 1{Z1>0},

while for B we obtain, for t → ∞,

B = E f

(
W1

t2u
,
Z2W1

t2u
+ W2u

W1

)
1{Z1=0,W1>0} → E f

(
0,
uW2

W1

)
1{Z1=0,W1>0}.

Finally, for C,

C = E f

(
0,
W ′

2

t

)
1{Z1=0,W1=0}

= P[Z1 = 0, W1 = 0] E f

(
0,
W ′

2

t

)
→ P[Z1 = 0, W1 = 0]f (0, 0).

Observe that limt→∞[A+ B + C] �= Eu f (T1, T2) = E f (uZ1, uZ1Z2).

In the final example, the conditional distributions of t−1X converge to those of the tail
chain T , even though the regularity condition does not hold. This includes cases for which
G({0}) = 0 and G({0}) > 0 with extremal boundary y(t) ≡ 0.

Example 6.3. Let {(ξj , ηj ), j ≥ 1} be i.i.d. copies of the nondegenerate random vector (ξ, η)
on [0,∞)2. Taking V = (ξ, η), consider a Markov chain that transitions according to the
update function

ψ(y, V ) = ξ(y + y−1) 1{y>0} +η 1{y=0} = ξy + (ξy−1 1{y>0} +η 1{y=0}),

where the last expression is the canonical form (with Z = ξ and W = (ξ, η)). For y > 0 and
x ≥ 0, the transition kernel is

K(y, [0, x]) = P[ξ(y + y−1) ≤ x] = P

[
ξ ≤ x

y + y−1

]
.
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For t > 0, t−1ψ(t, V ) = ξ(1 + t−2) → ξ a.s., so K ∈ D(G) with G = P[ξ ∈ ·]. Note that
φ(y,W) = ξy−1 1{y>0} +η 1{y=0} is unbounded near 0, implying that Segers’ boundedness
condition (4.2) does not hold. Also, our regularity condition (4.3) fails forK . To see this, write

K(tut , t (x,∞)) = P

[
ξ >

x

ut + (t2ut )−1

]
.

Fix x so that P[ξ > x] > 0, and choose ut = t−2. This yields ut + (t2ut )
−1 = 1 + t−2,

implying that

K(tut , t (x,∞)) = P

[
ξ >

x

1 + t−2

]
≥ P[ξ > x] > 0,

so (4.3) fails for K . However, since K(t, {0}) = P[ξ = 0] = G({0}), the choice y(t) ≡ 0
satisfies the definition of an extremal boundary (3.6), even if G({0}) > 0. This leads to FDD
convergence of Ptu[t−1X ∈ ·] to Pu[T ∈ ·], and, thus, we learn that conclusion (4.6) of
Theorem 4.1 may hold without (4.3) being true.

7. Concluding remarks

We have thus placed the traditional tail chain model for the extremes of a Markov chain in a
more general context through the introduction of the extremal boundary. A common application
of the tail chain model is in deriving the weak limits of exceedance point processes for X [1],
[17], [21]. We will shortly use our results to develop a detailed description of the clustering
properties of extremes of Markov chains by means of such point processes. Furthermore, as we
have not employed stationarity in our finite-dimensional results, we propose to substitute the
inherent regenerative structure of a Harris recurrent Markov chain for the traditional assumption
of stationarity.

Appendix A. Technical lemmas

This section collects lemmas needed to prove convergence of integrals of the form
∫
fn dµn,

assuming that fn → f and µn → µ in their respective spaces. An example is the second
continuous mapping theorem [2, Theorem 5.5, p. 34].

Lemma A.1. Assume that E and E
′ are complete separable (c.s.) metric spaces, and, for

n ≥ 0, hn : E → E
′ are measurable. Put A = {x ∈ E : hn(xn) → h0(x) whenever xn → x}.

If the Pn, n ≥ 0, are probability measures on E with Pn ⇒ P0, and hn → h0 almost uniformly
in the sense that P0(A) = 1, then Pn ◦ h−1

n ⇒ P0 ◦ h−1
0 in E

′.

The result provides a way to handle the convergence of a family of integrals.

Lemma A.2. In addition to the assumptions of Lemma A.1, require that E
′ = R and {hn,

n ≥ 0} is uniformly bounded, so supn≥0 supx∈E |hn(x)| < ∞.

(a) We have ∫
E

hn dPn →
∫

E

h0 dP0.

(b) Suppose additionally that E is locally compact with a countable base (l.c.c.b.), and that
µn

v−→ µ0 is in M+(E) with µ0(A
c) = 0. If there exists a compact set B ∈ K(E) with
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µ0(∂B) = 0 such that hn(x) = 0, n ≥ 0, whenever x �∈ B (i.e. B is a common compact
support of each hn), then ∫

E

hn dµn →
∫

E

h0 dµ0.

Proof. (a) If Xn ∼ Pn for n ≥ 0 then hn(Xn) ⇒ h0(X0). The uniform boundedness of the
hn guarantees that E hn(Xn) → E h0(X0).

(b) ViewB as a compact subspace of E inheriting the relative topology. Then, assuming that
µ0(B) > 0 to rule out a trivial case, define probabilities on B by Pn(·) = µn(· ∩ B)/µn(B),
n ≥ 0. Since µn(· ∩ B) v−→ µ0(· ∩ B) by Proposition 3.3 of [11], and B is compact, we get
Pn ⇒ P0. Denote by h′

n, n ≥ 0, the restriction of hn to B. Observe that, for any x ∈ A ∩ B,
we have h′

n(xn) → h′
0(x) whenever xn → x in B, and P0(A

c ∩ B) ≤ µ0(A
c)/µ0(B) = 0.

Therefore, apply part (a) to obtain∫
E

hn dµn =
∫

E

hn 1B dµn = µn(B)

∫
B

h′
n dPn → µ0(B)

∫
B

h′
0 dP0 =

∫
E

h0 dµ0.

A convenient specialization of Lemma A.2(b) is the following.

Lemma A.3. Suppose that E is l.c.c.b. and that µn
v−→ µ is in M+(E). If f : E → R is

continuous and bounded, and B ∈ E is relatively compact with µ(∂B) = 0, then∫
B

f dµn →
∫
B

f dµ.

Take hn = f 1B for n ≥ 0. Since f 1B is continuous except possibly on ∂B, we have
µ(Ac) ≤ µ(∂B) = 0.

The next result is used to extend convergence of substochastic transition functions to multi-
variate regular variation on a larger space.

Lemma A.4. Let E ⊂ [0,∞]m and E
′ ⊂ [0,∞]m′

be two nice (l.c.c.b.) spaces. Suppose that
for t ≥ 0, {p(t)(·, ·)}t≥0 are substochastic transition functions on E × B(E′). This means that
p(t)(·, B) is a measurable function for any fixed B ∈ B(E′), p(t)(x, ·) is a measure for any
x ∈ E, and supt≥0 supu∈E p

(t)(u,E′) ≤ 1. Assume that there is a set A ⊂ E such that

p(t)(ut , ·) v−→ p(0)(u, ·) in M+(E′) as t → ∞
whenever ut → u in E and u ∈ A. Suppose also that {ν(t)}t≥0 are measures on E such that
ν(0)(Ac) = 0, and that ν(t)

v−→ ν(0) is in M+(E). Then, defining measures µ(t) for t ≥ 0 on
E × E

′ as
µ(t)(du, dx) = ν(t)(du)p(t)(u, dx),

we have
µ(t)

v−→ µ(0) in M+(E × E
′) as t → ∞.

Proof. Let f ∈ C+
K(E × E

′); without loss of generality, assume that f is supported on
K ×K ′, where K ∈ K(E) and K ′ ∈ K(E′). We have∫

E×E′
µ(t)(du, dx)f (u, x) =

∫
E

ν(t)(du)
∫

E′
p(t)(u, dx)f (u, x).

For t ≥ 0, write

ϕt (u) =
∫

E′
p(t)(u, dx)f (u, x),
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and suppose that ut → u0 with u0 ∈ A; we verify that ϕt (ut ) → ϕ0(u0). Writing gt (x) =
f (ut , x), t ≥ 0, we have gt (xt ) → g0(x0) whenever xt → x0 ∈ E

′ by the continuity of f .
Also, the gt are uniformly bounded by the bound on f and gt (x) = 0 for all t whenever x /∈ K ′.
Furthermore, without loss of generality, we can assume that p(0)(u0, ∂K

′) = 0. Now apply
Lemma A.2(b) to obtain

ϕt (ut ) =
∫

E′
p(t)(ut , dx)gt (x) →

∫
E′
p(0)(u0, dx)g0(x) = ϕ0(u0).

Since the p(t) are substochastic, and ϕt (u) = 0 for all t whenever u /∈ K , the ϕt are uniformly
bounded by the bound on f . Assume similarly that ν(0)(∂K) = 0, and recall that ν(0)(Ac) = 0.
Apply Lemma A.2(b) once more to conclude that, as t → ∞,∫

E×E′
µ(t)(du, dx)f (u, x) =

∫
E

ν(t)(du)ϕt (u)

→
∫

E

ν(0)(du)ϕ0(u)

=
∫

E×E′
µ(0)(du, x)f (u, x).

We conclude this section with a result used to verify the existence of the extremal boundary.

Lemma A.5. Suppose that the Pt , t ≥ 0, are probability measures on a c.s. metric space E

such that Pt ⇒ P0, and let A ⊂ E be measurable. Then there exists a sequence of sets At ↓ A
such that Pt(At ) → P0(A).

Remark. Note that if P0(∂A) = 0 then we can take At = A. In the case of distribution
functions Ft ⇒ F on R

m, taking A = (−∞, x] and metric ρ = ρ∞ shows that, for any
x ∈ R

m, there exists xt ↓ x such that Ft(xt ) → F(x).

Proof of Lemma A.5. Let ρ be a metric on E, and consider sets Aδ = {x : ρ(x,A) ≤ δ}.
Recall that P0(∂Aδ) = 0 for all but a countable number of choices of δ, since F(δ) =
P0(Aδ) − P0(A) is a distribution function. First choose {δk : k = 1, 2, . . . } such that 0 <

δk+1 ≤ δk ∧ 1/(k + 1) and P0(∂Aδk ) = 0 for all k. Next, let s0 = 0 and take sk ≥
sk−1 + 1, k = 1, 2, . . . , such that Pt(Aδk ) > P0(A)− 1/k whenever t ≥ sk; this is possible
since Pt(Aδk ) → P0(Aδk ) ≥ P0(A) for all k. Finally, for t > 0, set

A(t) = Aδ1 1(0,s1)(t)+
∞∑
k=1

Aδk 1[sk,sk+1)(t).

We claim that A(t) ↓ A and that Pt(A(t)) → P0(A) as t → ∞. It is clear that A(t) ⊃ A(t ′)
for t ≤ t ′, and

⋂
t A(t) = ⋂

k Aδk = A. On the one hand, for large t, we have A(t) ⊂ Aδk for
any k, so

lim sup
t→∞

Pt(A(t)) ≤ lim sup
t→∞

Pt(Aδk ) ≤ P0(Aδk ).

Letting k → ∞ shows that lim supt→∞ Pt(A(t)) ≤ P0(A). On the other hand, if k(t) denotes
the value of k for which sk ≤ t < sk+1, then

Pt(A(t)) = Pt(Aδk(t) ) > P0(A)− 1

k(t)
,

so lim inf t Pt (A(t)) ≥ P0(A). Combining these two inequalities shows that Pt(A(t)) →
P0(A).
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