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The transient dynamics of a wake vortex, modelled as a strong swirling g-vortex, is
investigated with a focus on optimal transient growth driven by continuous eigenmodes
associated with continuous spectra. The pivotal contribution of viscous critical-layer
eigenmodes (Lee and Marcus, J. Fluid Mech. vol. 967, 2023, p. A2) amongst the entire
eigenmode families to optimal perturbations is numerically confirmed, using a spectral
collocation method for a radially unbounded domain that ensures correct analyticity and
far-field behaviour. The consistency of the numerical method across different sensitivity
tests supports the reliability of the results and provides flexibility for tuning. Both
axisymmetric and helical perturbations with axial wavenumbers of order unity or less are
examined through linearised theory and nonlinear simulations, yielding results that align
with existing literature on energy growth curves and optimal perturbation structures. The
initiation process of transient growth is also explored, highlighting its practical relevance.
Inspired by ice crystals in contrails, the backward influence of inertial particles on the
vortex flow, particularly through particle drag, is emphasised. In the pursuit of optimal
transient growth, particles are initially distributed at the periphery of the vortex core
to disturb the flow. Two-way coupled vortex—particle simulations reveal clear evidence
of optimal transient growth during ongoing vortex—particle interactions, reinforcing the
robustness and significance of transient growth in the original nonlinear vortex system
over finite time periods.
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1. Introduction

Wake vortex following an aircraft is widely recognised for its long-lived presence over
time, which has made it a significant focus of aerodynamic research. It holds importance,
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particularly in comprehending the mechanisms behind its decay process. Rapid destruction
of the wake vortices is deemed beneficial in several aspects, including enhancing air traffic
safety by mitigating wake-related hazards and improving airport operation efficiency
by reducing intervals between aircraft during take-off and landing on the same runway
(Spalart 1998; Hallock & Holzdpfel 2018). Additionally, wake vortices contribute to
the development of condensation trails (or contrails), whose impact on climate change
via radiative forcing has been actively assessed (e.g. Schumann 2005; Naiman, Lele &
Jacobson 2011; Lee et al. 2021), by capturing the jet exhaust particles around the low-
pressure vortex core, facilitating the formation of ice crystals. The early demise of wake
vortices may impede early contrail development and, as a result, potentially influence its
subsequent climate impact.

There are several factors influencing the decay process of the wake vortex, including
stratification (Sarpkaya 1983), ground effect (Proctor, Hamilton & Han 2000) and various
surrounding conditions (see Hallock & Holzipfel 2018, p. 30). Among these, the activation
of wake vortex instability generally provides the most effective pathway for vortex
breakup. Classical wake vortex instability mechanisms have been studied in the context
of the typical counter-rotating vortex pair configuration for aircraft trailing vortices (Crow
1970; Moore & Saffman 1975; Tsai & Widnall 1976), where one vortex is disturbed by
the strain induced by the other. If an infinitesimal perturbation (or eigenmode) of the base
vortex profile exhibits a positive real growth rate (or eigenvalue), it can be triggered by
atmospheric turbulence (e.g. Crow & Bate 1976) and grow exponentially until nonlinear
dynamics takes over, ultimately leading to the linkage of the two vortices. In this context,
growth is evidenced by the presence of an unstable eigenmode, which serves as a solution
to the Navier—Stokes or Euler equations linearised around the base vortex profile, a process
commonly referred to as linear instability analysis.

However, for an undisturbed wake vortex — such as one not influenced by nearby vortices
and typically modelled as the Batchelor vortex (Batchelor 1964) — linear instability analy-
sis generally shows that a strong swirling vortex remains stable. In most inviscid cases, the
vortex is linearly neutrally stable unless accompanied by a strong axial velocity component
(Leibovich & Stewartson 1983; Stewartson & Brown 1985; Heaton 2007a). Several
experiments suggest that the axial velocity of realistic wake vortices is generally not strong
enough to make the system linearly unstable (e.g. Leibovich 1978; Fabre & Jacquin 2004).
With the inclusion of viscosity, Fabre & Jacquin (2004) demonstrated that centre-mode
instabilities can occur even with moderate axial velocity, where the instability is primarily
concentrated near the vortex core. However, this instability remains weak (Heaton 20075,
p- 496), and its practical relevance is uncertain. In general, viscosity has been observed to
exert a predominantly stabilising effect on eigenmodes (see Khorrami 1991, p. 198).

To unravel the early development of a single vortex, several approaches have been
employed with varying degrees of success. One such approach is the analysis of resonant
triad instability (RTI), which examines instability arising from the resonance of two
secondary modes, induced by the primary mode acting as a disturbance to the vortex
(e.g. Mahalov 1993; Wang, Lee & Marcus 2024). In the context of vortex stability, the RTI
mechanism represents a generalised version of the elliptical instability (Moore & Saffman
1975; Tsai & Widnall 1976), where the primary disturbance is the strain generated by a
neighbouring vortex.

Another approach is transient growth analysis, which investigates an optimal initial
perturbation (typically represented as a sum of eigenmodes) that can exhibit significant
energy growth over finite times, even as it decays asymptotically as time approaches
infinity (e.g. Schmid & Henningson 1994; Heaton 2007bh; Mao & Sherwin 2012;

1014 A16-2


https://doi.org/10.1017/jfm.2025.253

https://doi.org/10.1017/jfm.2025.253 Published online by Cambridge University Press

Journal of Fluid Mechanics

Navrose et al. 2018). This behaviour results from the non-normality of the linearised
Euler or Navier—Stokes operators, producing families of continuously varying eigenmodes
(Mao & Sherwin 2011; Lee & Marcus 2023), in addition to discrete ones. Several studies
have applied transient growth analysis to vortices with axial flows (Heaton & Peake 2007;
Mao & Sherwin 2012) and, similarly, to jets with swirling flows (Muthiah & Samanta
2018), highlighting the significance of continuous eigenmodes.

In this paper, we investigate transient growth in wake vortices under physically relevant
conditions (i.e. with non-zero viscosity), building on earlier studies that examined the role
of continuous eigenmodes in driving transiently growing perturbations. In the presence of
viscosity, continuous eigenmodes can be categorised into multiple distinct families. This
leads to an important question: which family contributes most significantly to optimal per-
turbations for transient growth — the potential family (Mao & Sherwin 2011), the viscous
critical-layer family (Lee & Marcus 2023) or both? This study primarily aims to identify
the dominant eigenmode family, enabling a more focused analysis of optimal transient
growth by excluding less influential families. For readers seeking further information on
potential and viscous critical-layer eigenmodes, discussions are presented in § 3.1, along
with an illustration in figure 2; additional details can be found from Lee & Marcus (2023).

Subsequently, another crucial aspect to consider is that the numerically resolvable
portion of continuous eigenmodes depends on the discretisation scheme of the method
used. Addressing the aforementioned question also provides insights into the appropriate
methodology for tackling this type of problem. In the literature, Chebyshev spectral
collocation methods have been commonly employed for wake vortex stability analysis
(e.g. Ash & Khorrami 1995, pp. 354-357). In contrast, Lee & Marcus (2023) proposed
the mapped Legendre spectral collocation method, successfully distinguishing the viscous
critical-layer family for the first time, despite its resemblance to the potential family. In this
study, we extend the application of the mapped Legendre spectral collocation method to
the transient growth analysis of wake vortices, highlighting its effectiveness, particularly
for radially unbounded swirling flow problems.

Finally, we consider ice particles as a potential source for initiating optimal perturbations
during the early stages of vortex development, leading to transient growth. Computational
fluid dynamics (CFD) studies have explored the interaction between jet exhaust and vor-
tices in the context of contrail formation, typically involving ice microphysics (Lewellen &
Lewellen 2001; Paoli & Garnier 2005; Shirgaonkar 2007; Naiman et al. 2011). However,
to the best of our knowledge, the role of drag momentum exchange from jet exhaust (or ice
particles) in influencing short-term wake vortex development remains unclear, despite its
potential importance. We anticipate that particle drag can significantly displace the vortex
over a short period if particles cluster around the vortex core during jet entrainment, trig-
gering temporarily large-growing perturbations at the vortex core’s periphery (e.g. Mao &
Sherwin 2012, p. 43). In the early stages of jet exhaust, individual particles can grow to
only a few microns, but total particle number density is reported to be high (10° to 10'!
per cubic metre) (Paoli, Hélie & Poinsot 2004; Paoli & Garnier 2005), making their bulk
effect on momentum exchange non-negligible. This study is the first step to investigate the
role of particle concentration near the vortex in the initiation of transient growth.

The remainder of the paper is structured as follows. In § 2, the essence of the linear
stability analysis of wake vortices (Lee & Marcus 2023) is revisited and then incorporated
into a transient growth analysis. In § 3, the optimal perturbation structures obtained from
this analysis are presented, identifying the continuous eigenmode family that makes the
dominant contribution. In § 4, the initiation of optimal perturbations via inertial particles
near the vortex is examined. In § 5, the overall findings are summarised and concluded.
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2. Transient growth formalism
2.1. Formulation

We briefly revisit the gist of the linear stability analysis of wake vortices by Lee & Marcus
(2023) and then incorporate it into a transient growth analysis. Unless specified otherwise,
we use a cylindrical coordinate system (7, ¢, 7). All variables are non-dimensionalised
with respect to the characteristic radial length scale, Ry, the characteristic azimuthal
velocity scale, Up, and the fluid density p. Detailed definitions of Ry and Uy can be found
from Lessen et al. (1974, p. 755). The base velocity profile U, represented as the Batchelor
vortex (Batchelor 1964), or the g-vortex in its non-dimensional form, is given by

2
_ 1—e 7\ . I _2\.
U(r) = <f) e¢ + (56 ) e, (21)

where ¢ is the swirl parameter that determines the relative strength of the swirling motion.
The vortex core region is defined as the radial location where the azimuthal velocity
component is maximised, which is r < 1.12.

The governing equations of fluid motion assume a Newtonian fluid with constant
density, p, and constant kinematic viscosity, v. In terms of the total velocity, u = u,e, +
upeéqp + uze,, and the total specific energy, ¢ = (u - u)/2 + p, where p denotes the total
pressure (non-dimensionalised by pUg), they are expressed as

ou 1 2 .

—=—-Vop+uxw+—V-u withV.-u=0, 2.2)

ot Re
where @ =V X u is the total vorticity and Re = UpRp/v is the Reynolds number. The
equations are linearised around the base flow profile by decomposing u and p into base
terms (indicated by overbars *) and perturbations (indicated by primes %). Using the
toroidal-poloidal decomposition with €, as a reference vector, the resulting form becomes

b (‘”/> =P(U(r) x &) —P(@(r) x u') + Lo (‘”/) (2.3)
ar \x') Re \Xx')’ '
where ¥'(r, ¢, z, 1) and x'(r, ¢, z, t) are the toroidal and poloidal streamfunctions of
u'(r, ¢, z, t), respectively. The operator P decomposes a smooth vector field into its
toroidal and poloidal scalar components. If the input vector field is solenoidal, PP is
invertible; in other words, if V-u’=0 and P(u') = (', x’), then u’ can be uniquely
reconstructed from (v, x’) (for further details, see Lee & Marcus 2023, pp. 9-11).
Thus, (2.3) only involves two state variables: ¥ and x’. This reduced form facilitates
the imposition of the analyticity constraint at r =0, as each state variable is treated
independently of one another without coupling.

If we introduce the Fourier ansatz (indicated with tildes %) for the azimuthal and axial
wavenumbers m € Z, k € R\ {0}, to represent perturbations of finite axial wavelengths,

ie.
U\ _ (VDY impten
(x’ =\ien)¢ : @4
(2.3) further reduces to a spatially one-dimensional form expressed as
0§ -
=L (). 25)

where p(r, t) = (x/}(r, t), x(r,t)) represents the toroidal-poloidal streamfunction set
(equivalent to its corresponding velocity Fourier ansatz, i(r, 1)e'?+%2)) Here, L, s
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the linear operator with respect to g, representing the right-hand side of (2.3) with the
inclusion of (2.4). Note that the operator varies with the wavenumbers m and « and the
Reynolds number Re, as indicated by the subscript and superscript.

To obtain physically meaningful solutions to (2.5) in an unbounded domain
(0 < r < 00), the analyticity at the origin and rapid decay as r — oo are necessary. The
most prevalent discretisation schemes for computing these solutions have been Chebyshev
spectral collocation methods (e.g. Ash & Khorrami 1995; Antkowiak & Brancher 2004;
Fontane, Brancher & Fabre 2008; Mao & Sherwin 2011; Muthiah & Samanta 2018), which
use a bounded domain requiring two closed ends and therefore demands approximations
of the above constraints. In contrast, the mapped Legendre spectral collocation method,
described by Lee & Marcus (2023), is specifically designed for unbounded domains while
accurately satisfying these conditions without additional treatments. When the problem is
discretised using either method, we obtain

96
T =Lhe. 2.6)

where 0(¢) is the discretised version of @ (r, ¢) in spectral space, consisting of the spectral
coefficients of ¥ and ¥ in order, and LY, is the matrix expression of L7, .

Similarly, we define the discretised version of #(r, ¢) in physical space as v(¢), which
consists of the collocated values of i, ity and i, in order. The conversion between @ and
¥ can be achieved through the matrix expression of P, denoted as P. The construction of P
based on the mapped Legendre spectral collocation method is described by Matsushima &
Marcus (1997, pp. 330-333). We use the following notation: @ = P'® and ¥ = Pp. Under
the solenoidal velocity assumption, both PTP and PP' can be treated as identity maps.
Now we define the ‘energy’ E of a velocity of the form i (r, 1)e' "¢ +%2) a5

o.¢]
E@)= / (ﬁ;"ﬁ, + gty + ﬁ;‘;ﬂz) rdr. 2.7)
0

A similar usage can be found from Mao & Sherwin (2012). Using numerical integration,
e.g. a quadrature rule, E (@) is expressed as

E(@t) = o* Mo = §* P*MPg, (2.8)

where Mrepresents the numerical integration form of (2.7). A specific example of Musing
the Gauss—Legendre quadrature rule is given in Appendix A.

At last, we apply the transient growth formalism (Schmid & Henningson 2001; Mao
& Sherwin 2012; Muthiah & Samanta 2018) to complete our formulation. Consider
a set of eigenmodes of L) = containing p elements {él, 03,5 0 p}, corresponding
to eigenvalues {01, 02, ..., ap} C C, respectively. Assuming that ¢ belongs to the
eigenspace spanned by these p eigenmodes, i.e.

p
a(t) =Y &gy, (2.9)

k=1

We use a new vector 50 = (51, 52, R ép) € C? to represent ¢. For instance, at time
t =1, 0(7) is expressed as exp(rS)&(, where S=diag(oy, 0, ..., 0,). Focusing on
the transient growth process, the chosen eigenmodes are assumed to be asymptotically
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stable in time (Re(oy) < 0), which mostly holds for strong swirling g-vortices. By defining
V=(e1ie i | ép), (2.9) at time ¢t = T becomes
&(v) = Vexp(r )&y, (2.10)
and applying this to (2.8) leads to the energy formula using the following £2 norm:
E(u(r)) = é;exp(r SV P* MPVexp(t S)EO
= | Fexp(z )

where the matrix Fis defined such that F*F = V*P*MPV. The maximum energy growth,
G, which determines the optimal perturbations under the transient growth formalism, at
time ¢t = 7 is given by

) @.11)
2?

i z 2
G(r)= sup M=su w
a0 E@(0)) By 20 ||Ff§0||2 (2.12)
= |Fexp(rS)F!|.

Using the fact that the L> norm of an arbitrary matrix is the same as its largest singular
value, we finally reach the following. For the largest singular value ¢; (assumed to be
non-zero) of F exp(tS)F_1 and its associated right and left singular vectors r{ and 11, i.e.

FexptS)F 'ri = cily, (2.13)

which can result from the singular value decomposition (SVD), we get
G(t) =g}, (2.14)

and the optimal perturbation velocity input and output at time t = 7 are
Dopr(0) = PVF~'ry and (1) = 1 PVF ;. (2.15)

2.2. Numerical parameters

Discretisation is essential for the current problem formulation, and care must be taken to
minimise non-physical errors arising from numerical parameters. In this study, we employ
the mapped Legendre spectral collocation method, which is well-suited for analysing
rotating flows in unbounded domains. The key numerical parameters in this scheme
include the number of spectral basis elements M, the number of radial collocation points
N and the map parameter L —defined in (A2). Detailed procedures for accurately resolving
the eigenmodes are discussed by Lee & Marcus (2023), which interested readers are
encouraged to read. In our set-up, we keep M + |m| = N to ensure N > M, and we vary
L to explore both potential and viscous critical-layer eigenmode families by adjusting the
scheme’s characteristic numerical resolution.

For comparison, we secondarily consider the Chebyshev spectral collocation method
with domain truncation at r = R. The domain of the Chebyshev polynomials is linearly
mapped from [—1, 1] to [0, Rx], as favoured in previous studies (e.g. Khorrami, Malik
& Ash 1989; Mao & Sherwin 2011), where the primitive variables & and p are taken as
state variables. However, the use of this scheme in the present study is solely restricted to
investigating how sensitively the domain truncation affects the transient growth analysis
outcome, in comparison to the mapped Legendre spectral collocation method developed
for radially unbounded domains (Matsushima & Marcus 1997; Lee & Marcus 2023),
serving as a significant drawback despite its constructional convenience for computation.
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2.3. Physical parameters

There are five physical parameters that influence the nature of the problem: 7, g, Re, m
and «. Below, we clarify the range or value of each parameter that will be the focus of this
study.

The maximum energy growth G is explicitly dependent on the total time of growth
7, indicating the duration over which we allow linear transient dynamics of the wake
vortex to develop. In the context of aircraft trailing vortices, an upper limit on 7 is
identifiable due to the dominance of the Crow instability mechanism after several hundred
time units (=Ro/ Up). For example, Matsushima & Marcus (1997, pp. 341-343) reported
the prevalence of long-wavelength instability around ¢ =200 in simulations of a counter-
rotating vortex pair configuration. Under proper rescaling of units, the trailing vortex
simulation by Han et al. (2000, pp. 295-297, also see figure 10) exhibited vortex linkage at
t =229.12 under moderate ambient turbulence. Based on these findings, we concentrate
on the region where T < O (10%). Our typical attention to the transient growth is in the time
range of 10 < T < 100, where relatively fast transient growth is expected (Mao & Sherwin
2012). However, we note that a longer range may be explored in case it is needed to verify
long-term characteristics of transient growth.

Additionally, the analysis outcomes are also subject to physical parameters such as the
swirl parameter g, the Reynolds number Re, and the azimuthal and axial wavenumbers
m and «. For this study, we fix the first two parameters and, unless specified otherwise,
use ¢ =4 and Re = 10°. These values represent conditions where the swirling motion
is sufficiently strong to exclude significant linear instabilities (e.g. g > 2.31, see Heaton
2007a), and where viscous diffusion is small enough to treat the base vortex profile as
quasi-steady. It is remarked that, according to experiment-based estimation by Fabre and
Jacquin (2004, p. 259), this set-up aligns with the condition of actual trailing vortices
behind large transport aircraft. As for the perturbation wavenumbers, we turn attention to
axisymmetric or helical cases (m = 0 or 1) with small axial wavenumbers of order unity or
less. This choice is driven not only by their prevalence in vortex transient growth literature
(e.g. Antkowiak & Brancher 2004; Pradeep & Hussain 2006; Mao & Sherwin 2012;
Navrose et al. 2018), but also by the anticipation that such low-frequency perturbations
better account for the principal perturbation structure that we later aim to initiate via
particles near the vortex.

3. Optimal perturbations
3.1. Numerical sensitivity and proper discretisation

We construct optimal perturbations by combining the eigenmodes of the wake vortex.
To obtain accurate results, the chosen computation scheme should reliably capture each
physically relevant eigenmode family in a well-resolved manner, while maintaining
insensitivity to variations in numerical parameters. We evaluate the numerical sensitivity
of the mapped Legendre spectral collocation method and the Chebyshev spectral
collocation method to determine which is more appropriate for the present analysis.
When considering viscous eigenmodes that are regular across the entire radial domain,
including their asymptotic behaviours near the origin and as r approaches infinity, there
are three important eigenmode families: the discrete family, the potential family and the
viscous critical-layer family (Lee & Marcus 2023). The first family, as its name suggests,
is associated with discrete spectra (i.e. sets of eigenvalues) and each eigenmode’s spatial
structure is uniquely characterised by the number of ‘wiggles’ clustered in or around
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Figure 1. Numerical spectra of the g-vortex with (m, «, g, Re) = (1, 1.0, 4.0, 105) using the Chebyshev
spectral collocation method (grey squares) and the mapped Legendre spectral collocation method (black dots).
The consistent discrete spectrum demonstrates the robustness of both methods. The free stream and spurious
spectra (shown in the left panel) are associated with either singular or non-physical eigenmodes, making them
irrelevant to this study, with most generated by the Chebyshev method. The discrete, potential and viscous
critical-layer spectra (shown in the right panel) are associated with regular eigenmodes, with the mapped
Legendre method providing a clearer distinction of the viscous critical-layer spectrum.

the vortex core. The other two families comprise continuous eigenmodes, whose spatial
structures vary continuously and are associated with continuous spectra.

Figure 1 shows the numerically resolved spectra of the g-vortex using the following
physical parameters: (m, k, g, Re) = (1, 1.0, 4.0, 105), envisioning the families of
eigenmodes. Both the Chebyshev spectral collocation method (with M = 800) and the
mapped Legendre spectral collocation method (with M =400) were employed for this
analysis. To illustrate the continuous spectra, we collected all numerical eigenvalues
obtained by varying the domain truncation radius R, ranging from 12 to 13 for the
Chebyshev spectral method, and by adjusting the map parameter L, spanning from 3 to
3.1 for the mapped Legendre spectral method. These variations in Ry or L introduce
small shifts in the numerically resolved continuous eigenvalues, making it possible to trace
continuous spectra (see Lee & Marcus 2023, § 6.4.2).

Given perfect resolution, the free stream and potential spectra are expected to stretch
out to Re(0) - —oo. In figure 1, the spectra are shown in two panels with different
aspect ratios. The left panel extends to large |Re(o)|, showcasing both the free stream
and spurious spectra. The eigenmodes related to the free stream spectrum and the spurious
spectrum exhibit non-regular characteristics: the free stream eigenmodes are singular since
they do not decay to zero as r — oo (Mao & Sherwin 2011), and the spurious eigenmodes
are non-physical, characterised by irregular oscillations near the origin (Lee & Marcus
2023). The right panel displays the discrete, potential and viscous critical-layer spectra,
which correspond to the regular eigenmode families discussed earlier.

A few issues arise when using the Chebyshev spectral method instead of the mapped
Legendre spectral method for resolving the eigenmodes. As depicted in the left panel of
figure 1, a significant portion of the numerically resolved spectra accounts for eigenmode
families that are either singular or non-physical, making them irrelevant to the present
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problem. This issue likely arises from approximating the asymptotic constraints through
subordinate boundary conditions at both ends of the computational domain. For the
Chebyshev spectral method, as for m = 1, the boundary conditions implemented are

ditr ity G 520 atr=0 3.1)
= — = = = a = .
dr dr Hz="p d
and
Up=ilyg =u;,=p=0 atr =Ry, (3.2)

which are proxies for analyticity at the origin and rapid decay as r — 00, respectively (see
Ash & Khorrami 1995). While (3.1) and (3.2) may serve as necessary conditions for what
they are supposed to mimic, they cannot be considered formally equivalent. For instance,
(3.2) does not prohibit solutions from oscillating in the far field as long as the oscillation
is momentarily zeroed out at r = R, which explains the emergence of the free stream
spectrum.

The second issue comes from the unclear distinction between the viscous critical-layer
spectrum and the potential spectrum. As noted by Lee & Marcus (2023, pp. 41-42), the
Chebyshev spectral method produces scattered traces of the viscous critical-layer spectrum
curves, making it challenging to distinguish these curves from the surrounding continuous
region. This scattering can be attributed to the high sensitivity of continuous spectra
to minor errors. In the Chebyshev spectral method, domain truncation removes spatial
information far from the origin, which, albeit diminutive, holds physical significance.
Figure 2 illustrates the difference between the viscous critical-layer eigenmodes and the
potential ones. Despite their structural resemblance on a large scale, the viscous critical-
layer eigenmodes retain the structure of their inviscid counterparts beyond the region
where viscosity effects dominate locally, scaled of the order of Re~!/3 (Lin 1955). In
contrast, the potential eigenmodes turns into null outside this region, epitomising their
‘wave packet’” form (Mao & Sherwin 2011), which conforms to the twist condition
presented by Trefethen & Embree (2005, pp. 98—114). Further details of their comparison
are omitted in this article; they are elucidated by Lee & Marcus (2023).

A numerical sensitivity test evaluating the maximum energy growth G at 7 =10
for the entire eigenspace, using both methods, is presented in figure 3. The remaining
physical parameters are kept the same: (m, k, ¢, Re) = (1, 1.0, 4.0, 105). As expected,
increasing the number of spectral elements M reduces sensitivity to changes in numerical
parameters for both methods. At a fixed M, the map parameter L acts as a resolution-
tuning parameter in the mapped Legendre spectral collocation method, while the domain
truncation radius Ry serves this role in the Chebyshev spectral collocation method.
The parameter test ranges shown in figure 3 are based on the typical usage found
by Mao & Sherwin (2011) and Lee & Marcus (2023). Changes in L have minimal
impact on G(tr =10) within the mapped Legendre spectral collocation method’s test
range (1 < L < 10), therefore allowing for arbitrary selection of L within this interval.
In contrast, G(t = 10) is notably influenced by variations in Ry, within the Chebyshev
spectral collocation method’s test range (10 < Roo < 20), especially as R, increases. This
presents a challenge, as using a large R, should be preferred to preserve the unbounded
nature of the radial domain. We found that manually excluding the sub-eigenspace spanned
by free stream eigenmodes mitigates this issue, which is, in fact, a step that is proactively
taken in the mapped Legendre spectral collocation method. Exclusion of these eigenmodes
is reasonable from a physical standpoint, as their non-decaying behaviour implies that they
analytically possess infinite energy. This, in turn, renders them formally inapplicable in the
current transient growth analysis context.
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Figure 2. Schematic comparison between viscous critical-layer and potential eigenmodes, illustrating a
velocity component. Both exhibit a similar large-scale structure within the region where viscosity effects are
locally dominant, corresponding to a singularity at r =r. in the inviscid limit (for details of this inviscid
singularity, see Lee & Marcus 2023). The width of this large-scale structure scales as O(Re™1/3) (see Lin
1955) for the viscous critical-layer eigenmode. In contrast, the width of the potential eigenmode can vary even
at the same Re, forming a ‘wave packet’ in compliance with the pseudomode analysis (see Trefethen & Embree
2005). Aside from the location r = r,, the viscous critical-layer eigenmode retains the structure of its inviscid
counterpart, while the potential eigenmode simply turns into null.

(a) Legendre spectral method (b) Chebyshev spectral method
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Figure 3. Numerical sensitivity test evaluating G(r =10) for the entire eigenspace associated with
(m, k, q, Re)=(1, 1.0, 4.0, 10°) using (a) the mapped Legendre spectral collocation method with varying
L and (b) the Chebyshev spectral collocation method with varying R, for M =400, 600 and 800. The test
ranges reflect typical parameter usage. L can be arbitrarily adjusted without impacting domain unboundedness.
In contrast, setting a finite Ry, compromises the unbounded nature of the problem, and therefore, larger values
of R should be preferred. However, increasing R, leads to undesirable numerical sensitivity.

To recapitulate, when it comes to resolving the eigenmodes of the g-vortex in a
radially unbounded domain, the Chebyshev spectral collocation method with domain
truncation faces several challenges, which unfavourably influence numerical sensitivity in
transient growth evaluation. In contrast, the mapped Legendre spectral collocation method
effectively mitigates these numerical limitations, making it a more suitable choice for the
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Figure 4. Maximum energy growth as a function of total growth time: (a) for m = 0 (axisymmetric) and (b) for
m =1 (helical). The values of G are evaluated from the entire eigenspace, incorporating the discrete, potential
and viscous critical-layer families as basis elements. Here, ¢ =4 and Re = 10°.

present problem. Therefore, we adopt the mapped Legendre spectral collocation method
for examining the transient growth of the wake vortex.

3.2. Maximum energy growth

Mao & Sherwin (2012) demonstrated that transient growth primarily results from the non-
normality of continuous eigenmodes, while discrete eigenmodes play a less significant
role. In their analysis, they used the term ‘continuous eigenmodes’ as a compilation of
potential and free stream eigenmodes. However, as we pointed out earlier, free stream
eigenmodes are unsuitable for evaluating maximum energy growth because their energy
reaches infinity. Thus, the term ‘continuous eigenmodes’ in their argument should more
specifically refer to potential eigenmodes. Not only that, but their argument also requires
further refinement, as it did not account for viscous critical-layer eigenmodes. This
eigenmode family was not distinguished from the potential family, presumably due to
spectral overlap between the two (see Mao & Sherwin 2011, p. 8) and their large-scale
structural similarity, as shown in figure 2.

Accordingly, we believe that the argument put forth by Mao & Sherwin (2012)
still necessitates clarification about which continuous eigenmode family predominantly
contributes to optimal perturbations that maximise energy growth: the potential family
or the viscous critical-layer family. To that end, we first evaluate G(7) across the entire
eigenspace and then compare the results with those from different sub-eigenspaces, each
spanned by a distinct eigenmode family.

Figure 4 presents the numerically evaluated values of G () from the entire eigenspace
at various wavenumbers « for the m =0 and m =1 cases. In the m = 0 cases, as shown
in figure 4(a), where perturbations are two-dimensional (i.e. functions of r and z only),
the dependence of the G curves on « is clear; in the short run, growth is stronger with
larger «, while in the long run, the largest G is achieved with smaller x. One may check in
figure 4(a) that the upper envelope of the curves sequentially corresponds to decreasing
k as t increases. This trend aligns with previous observations in the literature (Pradeep &
Hussain 2006; Mao & Sherwin 2012), supporting the validity of our evaluation.

In the m =1 cases, depicted in figure 4(b), involving three-dimensional perturbations,
the «-dependence of the G curves becomes complex, as previously noted by Antkowiak &
Brancher (2004) and Pradeep & Hussain (2006). To further clarify this trend, figure 5(a)
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Figure 5. (a) Maximum energy growth as a function of axial wavenumber for m =1, at specified growth

periods of T =31.6, 50, 75 and 100; and (b) local maximum of G across growth time around 7 = 100 and
corresponding growth time. As in figure 4, the values of G are evaluated from the entire eigenspace. Here,
g =4and Re = 10°.

presents supplementary slices of G as a function of axial wavenumber « for m =1 at four
growth periods within the time range of interest: T = 31.6, 50, 75 and 100. As 7 increases,
a local energy growth peak becomes more pronounced, especially at T = 100, where the
local peak around x = 2.0 nearly stands at the largest G at k =0.1. This peak feature in
the G—« curves aligns with the findings of Antkowiak & Brancher (2004, p. L3), who
ascribed the intricate (stretching and tilting) nature of three-dimensional perturbations to
such irregularities.

In figure 5(b), the local maximum of G around 7 =100, denoted Gy, is plotted
alongside its growth time, 7,4y, as a function of «, provided this maximum is identifiable
(e.g. see the x =1.0 or 2.0 cases in figure 4b). This approach follows Antkowiak &
Brancher (2004) and Pradeep & Hussain (2006), who used G4, to examine local energy
growth features. Similar to the G—k curve at T = 100, the local energy growth peak is
observed , as 1,4y consistently appears near T = 100. Note that we avoid using the ‘global’
maximum of G over the entire range of 7, as suggested in the literature. Due to the higher
order of magnitude of Re(= 10%) in the present study compared with that in the literature
(<10%), the global maximum of G occurs at a much larger growth time, 7 ~ O (103 —10%).
This time range far exceeds the intervals considered both in the literature and our study
(t < 10%), thus placing it outside the current scope of analysis.

When comparing the m =1 cases with the m = 0 cases, focusing on relatively short-
term growth, we find that the largest G for m =1 generally exceeds that for m = 0. For
example, at T = 102, the largest G among the evaluated values is 7.2 x 10% for k¥ = 0.1 at
m = 1, whereas it is 2.8 x 102 for x = 5.0 at m = 0.

The maximum energy growth curves, evaluated from the entire eigenspace and
compared with those from sub-eigenspaces respectively spanned by the discrete family,
the viscous critical-layer family and the potential family, are presented in figure 6. It is
evident that the curves derived from the entire eigenspace are primarily reproduced by
those obtained from the sub-eigenspace of the viscous critical-layer family, highlighting
its dominant contribution. However, the values of G(t) from the rest of the continuous
sub-eigenspace, for which the potential eigenmodes account, are of a similar magnitude to
those from the discrete sub-eigenspace. Thus, the contribution of the potential family to
transient growth is as minor as that of the discrete family.
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Figure 6. Comparison of the curves of G(r) evaluated from different sub-eigenspaces, each spanned
by a distinct eigenmode family: (a) (m, ) = (0, 0.1); (b) (m, k) =(0, 5.0); (¢) (m, k)=(1, 0.1) and
(d) (m, k)=(1, 5.0). Here, g =4 and Re = 105. The maximum energy growth curves from the entire
eigenspace, identical to those plotted in figure 4, are nearly reproduced by those from the sub-eigenspace
spanned by the viscous critical-layer family.

There are two minor exceptions worth noting. For m = 0, the discrete family contributes
as significantly as the viscous critical-layer family to short-term optimal growth,
particularly when « is small. We believe that this is relevant to the fact that, in the limit
of k¥ — 0, critical layers vanish and so do the derived continuous eigenmodes, while the
discrete ones persist. Additionally, for m = 1, the potential family’s contribution to optimal
growth slightly supersedes that of the viscous critical-layer family during a brief period
(tr < 10), accounting for the presence of a quirk in the G curves around t = 5.6. However,
the exception clears quickly beyond this period, and the maximum G attainable during
this period never exceeds 10, thus not overturning the general dominance of the viscous
critical-layer family in transient growth.

Based on these observations, we revisit the demonstration provided by Mao & Sherwin
(2012) with the following clarification; the non-normality of the continuous eigenmodes
induces significant transient growth, and it is specifically the viscous critical-layer family
that predominantly contributes to this growth, rather than the potential family. The
distinction is important, as it addresses the ‘true’ origin of transient growth of the wake
vortex as critical layers. The potential eigenmodes have their theoretical root in the wave
packet pseudomode analysis (Trefethen & Embree 2005). As showcased in figure 2,
they omit the asymptotic information of critical layers, making their birth irrelevant to
phenomena that require asymptotic matching or equivalently, critical layer analysis (Lin
1955; Le Dizes 2004). Although the wave packet pseudomode analysis is a powerful
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tool for exploring all possible forms of continually varying eigensolutions, it can divert
attention too much from the genuine gems more worthy of our focus. Furthermore, this
clarification better aligns with the argument made by Heaton (2007b), who suggested
that inviscid continuous spectrum (CS) transients dominate growth over short time
intervals. The viscous critical-layer family in our classfication corresponds to the viscous
regularisation of the inviscid CS, which we denoted as the inviscid critical-layer spectrum
(Lee & Marcus 2023), when Re < 00.

3.3. Perturbation structures

The effects of changing m and « on the perturbation structures that lead to optimal
transient growth have been widely investigated and are well-established in the context
of linear vortex dynamics (Antkowiak & Brancher 2004; Pradeep & Hussain 2006; Mao
& Sherwin 2012). In this section, we examine whether our transient growth calculation
complies with these established findings and then conduct a comparative analysis of the
perturbation structures across different values of m and « for further consideration.

Pradeep & Hussain (2006) reported that axisymmetric perturbations (m = 0) generally
produce the largest energy growth, as illustrated in figure 4. However, as the largest G
increases, the total duration of perturbation growth also lengthens (i.e. the t needed
to achieve G increases), as the spatial structure shifts further from the vortex core,
necessitating longer time for interactions to occur. For helical perturbations (m = 1),
a common spatial structure emerges, with the main motion concentrated around a
specific radius near the vortex core. In these cases, the growth can potentially trigger
fluctuations within the vortex core, even though the initial perturbation originates outside
it. This mechanism has occasionally been identified as a cause of erratic long-wavelength
displacements in experimental vortices (e.g. Edstrand ez al. 2016; Bolle et al. 2023), often
termed ‘vortex meandering’ (see Antkowiak & Brancher 2004, p. L4). Mao & Sherwin
(2012) affirmed that the vortex meandering phenomenon can be driven by the transient
response of the vortex to an out-of-core perturbation.

As mentioned in § 2.3, our focus is on the relatively short time period of 10 <7 <
100 to study the transient growth process. In longer periods, classical linear instability
mechanisms like the Crow instability may dominate under real conditions. Within this
time range, the largest values of G attained from our considerations (see figure 4) occur at
k& = 5.0 for the m = 0 cases and at « = 0.1 for the m = 1 cases. We consider these cases as
representative. In figure 7, we depict the optimal perturbation velocity inputs and outputs
for T =31.6 and t = 100, all of which are visualised by the absolute velocity components.
For clearer visualisation, we portray their corresponding three-dimensional structures
alongside, represented by the iso-surface at 50 % of the maximum specific energy
in physical space, i.e. |(@t (r)e'™M9+€2) 4 ¢.c)|?/2, where c.c. stands for the complex
conjugate of the antecedent term. Dark and light surfaces express counterclockwise and
clockwise swirling directions, respectively.

In all cases, the following characteristics are consistently observed. First, azimuthal
velocity components are initially dominant in all optimal perturbations, while the other
velocity components evolve significantly towards the end of the growth period. This clearly
indicates that the azimuthal velocity component should be prioritised when inducing these
optimal perturbations from an unperturbed state. Second, the most energetic part of the
optimal perturbation inputs, coinciding with the peak of the absolute azimuthal velocity
component, tends to be distant from the vortex core as 7 increases. This tendency is found
to be more evident in panels (c¢) and (d), where the major perturbation structure overlaps
the core region at T = 31.6 but moves out of the core at t = 100.
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Figure 7. Optimal perturbation inputs with unit energy E (as defined in (2.7)) and their amplified outputs at r =
7, shown through absolute velocity components alongside their corresponding three-dimensional structures.
Each structure is represented by the isosurface at 50 % of the maximum specific energy in space. Dark and light
colours indicate counterclockwise and clockwise swirling of the flow, respectively. Here, four representative
cases with the largest value of G from figure 4 are displayed: (a, b) the axisymmetric cases (m, k) = (0, 5.0)
for T =31.6 and T = 100, respectively; and (¢, d) the helical cases (m, k) = (1, 1.0) for r =31.6 and T = 100,
respectively. The initial dominance of azimuthal velocity components is found in all cases, while for m =1,
energy is transferred into the core region r < 1.12 (shaded in each plot).

For panels (a) and (b), where (m, x) = (0, 5.0), the input perturbations generally form
aring structure owing to their azimuthal symmetry. As the perturbation evolves, the radius
of the ring remain largely unchanged. This tendency for local confinement of the optimal
perturbation structures becomes more pronounced with increasing «. This indicates that
perturbations with shorter axial wavelengths have a more localised influence around the
initially perturbed region.

For panels (c) and (d), where (m, «) = (1, 0.1), a spiral structure develops in the most
energetic region of the input perturbation due to alternating layers of oppositely swirling
fluid motions at the periphery of the vortex core. Unlike the axisymmetric cases, the
perturbation structure undergoes a drastic transformation from its input to output states.
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Notably, the most energetic region of the perturbation, initially located outside the vortex
core, eventually penetrates into the vortex core. During this process, the transverse velocity
(u, and u») becomes maximal at the vortex centre. In other words, the principal response
of the vortex to optimal perturbations with m = 1 is characterised by the transverse motion
of the vortex core, which is likely linked to the vortex meandering phenomenon (Edstrand
et al. 2016; Bolle 2021).

It is important to clarify that the induction of vortex meandering by optimal helical
perturbations with an axially long wavelength was formerly given by Mao & Sherwin
(2012). They employed mesh-based direct numerical simulations rather than the matrix-
based analysis (corresponding to (2.6)—(2.15) in our formulation), even though they used
a matrix-based approach when m = 0. In a way, this choice seems to have been made to
address challenges related to analyticity at the origin, which depends on the value of m (see
Lee & Marcus 2023, pp. 51-52). In contrast, our approach, using the mapped Legendre
spectral collocation method, is fundamentally designed to be robust for any value of m.
Therefore, our contribution here lies in confirming the same phenomenon linked to m = 1
perturbations using a computationally fast and formally consistent matrix-based transient
growth analysis.

3.4. Nonlinear impacts on an optimally perturbed vortex

Given an optimally perturbed vortex, the linearised theory (see § 2.1) predicts that the
perturbation will gradually amplify as time approaches ¢ =7, after which it decays
in the absence of extrinsic factors capable of triggering secondary instabilities from
the most perturbed state. This section is dedicated to verifying whether such transient
behaviour remains significant in the original nonlinear system, governed by (2.2), despite
the influence of higher-order energy transfer across different wavenumbers and other
nonlinear effects, which could potentially cause early vortex growth to deviate from the
linear prediction.

Although the optimal perturbation structures vary with the selection of m, « and t,
our primary aim here is to investigate their general trend of evolution over time, as
anticipated by the linearised theory. We focus on a specific case of optimal perturbation
where (m,«x)=(1,0.1) and the optimal growth time is t =50. The z-component of
the perturbation vorticity input, /(t =0), on the z =0 plane is illustrated in figure 8.
This case was chosen because the substantial shift of the most energetic portion of the
perturbation from the periphery to the vortex core, as shown in figure 7(c, d), offers a
clear illustration of vortex growth. However, we emphasise that this particular behaviour
at m = 1 (potentially related to vortex meandering) is not the primary focus of this study.
For readers interested in vortex meandering, we suggest referring to Edstrand et al. (2016)
and Bolle (2021).

According to the linearised theory, the optimal perturbation velocity input, expressed as
Vopi (0) = PVF~'r| asin (2.15), evolves at r = 1 as

Dopr(n) = PVexp(nS)F'ry. (3.3)

One may check the consistency of the above equation when n =7, with v,,/(7) given
in (2.15). We label this prediction from the linearised theory as ‘linear’. The ‘linear’
prediction, however, may be ideal as it strips off all higher-order interactions coming from
the nonlinear convection term, i.e. # X w in (2.2), which facilitates energy transfer from
the perturbation wavenumbers (m, k) to their multiples (e.g. (2m, 2«), (3m, 3k), ...)
or vice versa. We denote the growth of the optimal perturbation, accounting for higher-
order interactions, as ‘nonlinear’. The extent of this nonlinearity substantially depends
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Figure 8. Axial perturbation vorticity contour on the z =0 plane of the optimal input for the case where
(m, k)= (1, 0.1) with the optimal growth time t = 50. Solid contour lines represent positive levels (67 % and
33 % of the absolute maximum) and dashed lines indicate negative levels (-33 % and —67 % of the absolute
maximum).

on the initial perturbation’s energy level. If the perturbation energy approaches zero

(or the perturbation is infinitesimal), the ‘nonlinear’ evolution should follow the ‘linear’

prediction. We set aside the numerical details of our nonlinear simulations in Appendix B.
In the nonlinear simulations, the initial velocity field u (¢ = 0) is defined as

u(r,¢,z,t=0; &) =U(r) + il op (r)e' ™) 4 cc., (3.4)

where ¢ determines how intense the initial perturbation is, adjusting the perturbation
energy input. The base term representing the unperturbed g-vortex, U (r), was assumed
to be unchanging in time in the linear analysis, as its radial viscous diffusion is negligible
due to the high Re in this problem set-up. In contrast, the nonlinear simulations take this
small viscous diffusion of the base g-vortex into account for enhanced accuracy. That is
to say, even the unperturbed flow changes slowly over time, which can be calculated with
e =0. As a result, the perturbation velocity field at r =1 is assessed as the difference
between two time-varying fields, i.e.

W, ¢, z,n; e)=u(r,¢d,z,n; &) —u(r,n; 0). (3.5)

The perturbation energy at t = 1, denoted E(n), is evaluated as the volume integration of
u' - u' divided by 27 times the axial wavelength (=27 - 27 /), for consistency with the
energy definition in (2.7).

In figure 9, three energy growth curves are plotted together for comparison. First, the
energy growth curve in the linear evolution case peaks at t =t = 50 with a maximum
energy growth of G =3 x 10%. This curve serves as an index of the linear process’
prevalence during the early transient growth of vortices. Next, the energy growth curve
in the nonlinear evolution case with E(0) = 108 aligns with the ‘linear index’ curve. In
this scenario, nonlinear effects arise but remain minimal, showing a slight debilitation of
maximum energy growth at r = v = 50. However, it is unlikely that this change is entirely
due to the nonlinearity introduced to the system because, in comparison with Mao &
Sherwin (2012, p. 55), such a drop in energy growth at the peak may also be attributed
to viscous diffusion of the base flow over time. Lastly, the energy growth curve in the
nonlinear evolution case with E(0) = 1073 exhibits more pronounced debilitation at the
peak. Compared with the previous case, this relatively high energy case demonstrates more
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Figure 9. Comparison of transient energy growth curves for the ‘linear’ evolution case, calculated via (3.3),
and for the ‘nonlinear’ evolution cases with initial perturbation energies of 10~3 and of 1073, obtained from
three-dimensional nonlinear simulations. The initial perturbation is depicted in figure 8.

intensification of the nonlinearity, represented by a secondary energy hump around ¢ = 80
that is unpredicted by the linear case. Nevertheless, the general trend of the curve does not
drift away from the linear prediction. Overall, the coherence in trend holds particularly
well up to the maximum vortex growth period (f < v =50), which suggests that the
linearised transient growth framework remains effective in describing the early evolution
of the original nonlinear system. Beyond this period, the nonlinearity intensifies, but the
trend of decay remains persistent.

The prevalence of the linear process in the early-stage vortex growth becomes more
evident when examining the evolution of the perturbation structure, as shown in figure 10.
Using the same contour style across the three cases discussed above, we present three
snapshots of axial vorticity perturbation contours on the z =0 plane at r =25, t =50
and ¢ =100 for each case. The structural coherence in vorticity perturbation between
the linear and nonlinear cases is apparent at ¢t =25, representing the stage of rapid
perturbation growth. At = 50, the optimal growth time, the perturbation structures remain
largely coherent. However, in the nonlinear evolution case with E(0) = 1073, a weak
breakdown from the m = 1 symmetry becomes observable, indicating that other azimuthal
wavenumbers rather than m = 1 begin to gain non-negligible energy through higher-order
energy transfer across different wavenumbers. By ¢ = 100, corresponding to the stage of
asymptotic stabilisation, the perturbation structures no longer show strong resemblance.
This is another indication of the nonlinearity intensification resulting from prolonged
vortex growth over time.

Last but not least, we note that the simulation with initial perturbation energy of
1073 results in substantial displacement of the vortex core, as shown in figure 11,
notwithstanding the seemingly small initial energy level. The A;-isosurface at 1o = —0.05
is used to detect the vortex core (see Jeong & Hussain 1995). The maximum displacement
of the vortex centre in the simulation is nearly equal to the core radius, coinciding
with experimentally observed meandering amplitudes of similar scale (see Devenport,
Zsoldos & Vogel 1997; Bolle 2021). Based on the rough figures for a large transport aircraft
from Fabre & Jacquin (2004, p. 259), the characteristic scales in our formulation are
Uop~27ms~! and Ry~ 0.5 m. Using the density of air p & 1 kg m~3, the ‘dimensionless’
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Figure 10. Axial vorticity perturbation contours of the optimally perturbed vortex (refer to figure 8 for the
initial perturbation) on the z =0 plane at t =25, t =50 and ¢ = 100: (a) the ‘linear’ evolution case where
maximum energy growth is known to occur at t =7 =50; (b) the ‘nonlinear’ evolution case with initial
perturbation energy of 1078; (¢) the ‘nonlinear’ evolution case with initial perturbation energy of 10~3. The
same contour style as figure 8 is used for all plots. Despite the presence and intensification of nonlinearity with
increasing perturbation energy over time, the ‘linear’ process largely prevails the overall dynamics during early
vortex growth in the original nonlinear system.

energy of 1073 translates to an ‘actual’ kinetic energy of (1073) x 27rp(U§/2)R§ ~
0.6 Jm~! (‘per metre’ stands for axial unit length), which appears to be not exorbitant
in practice. We believe this strengthens the practicability of the optimal transient growth
process under consideration, along with the radially concentrated nature of the optimal
perturbation structures (see figure 8).
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Figure 11. Three-dimensional illustration of the g-vortex with a helical perturbation (see figure 8), initiated
with an energy level of 1073: () the initial core structure at r =0, and (b) the most excited core structure at
t =1 =50. To detect the vortex core, the Az-isosurface at A, = —0.05 is depicted (see Jeong & Hussain 1995).
The maximum displacement of the vortex centre comes up to the order of the core radius, comparable with
experimental observations of vortex meandering amplitude (see Devenport et al. 1997; Bolle 2021).

4. Initiation of optimal transient growth
4.1. On a means of initiating optimal transient growth

The transient evolution of the optimally perturbed g-vortex, as analysed in the previous
section, unveils a promising way for significantly disturbing the vortex, even when the base
vortex is known to be linearly stable. For this growth process to hold practical significance,
an important question remains: by what means can such perturbations be initiated? In our
analyses and simulations so far, the presence of perturbations has been presumed to be
initially present along with the vortex supposedly in an undisturbed state. However, from
a practical standpoint, there should be g-vortex, which by itself is quasi-steady. Without a
plausible initiation process, the optimal transient vortex growth process may remain purely
theoretical.

Ambient turbulence might seem a compelling means of initiation, as often addressed
in linear instability contexts (e.g. Crow & Bate 1976; Han et al. 2000). However, unlike
linear instability mechanisms — where perturbations are destined to be predominant in the
limit of # — oo due to the most unstable eigenmode’s exponential growth — the transient
growth process generally necessitates a specific (optimal) form of perturbation as input.
Whether such a specific perturbation can spontaneously emerge from ambient turbulence,
which is fundamentally stochastic and uncontrolled, has led to recurrent criticisms of
optimal transient growth (see Fontane et al. 2008, p. 235). In the work by Fontane et al.
(2008), where the transient dynamics of vortices with stochastic forcing was examined,
optimal perturbations were shown to be activated by noise-like forcing that is random in
both space and time. This mitigates the aforementioned criticisms of optimal transient
growth. Nonetheless, as the authors stated, it remains questionable whether such random
isotropic forcing effectively represents turbulence in real conditions. The absence of clear
universality in modelling turbulence poses a significant challenge in integrating ambient
turbulence into this current problem.

Instead, we take an initiative in considering a different, non-stochastic means of
initiating optimal transient growth: ice crystals (or particles). The presence of such
particles in real-world scenarios is ascertained through contrail observations. Contrail
formation primarily starts with jet exhaust plumes produced by aircraft engines, which
contain particulate matter that eventually acts as condensation nuclei (Kircher 2018).
However, our interest does not lie in this very initial contrail stage during jet plume
development, when the vortex roll-up process is still ongoing. According to early
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experimental findings by El-Ramly & Rainbird (1977), there is no appreciable influence of
the engine exhaust on altering the rolled-up structure at this stage. As a matter of course,
our attention is directed towards the later stage involving a fully formed wake vortex, where
interactions between the vortex and ice crystals become manifest.

During the stage when ice crystals interact with the wake vortex, individual particle sizes
reach a few microns, or approximately 1-5 microns (Kércher et al. 1996; Paoli & Garnier
2005; Naiman et al. 2011; Voigt et al. 2011; Kércher 2018). It is noted that, according to
Voigt et al. (2011), actual contrail samples exhibited particle sizes ranging from 0.39 to
17.7 microns, with an effective radius of 2.9 microns. Given the substantial size difference
between the vortex scale (measured in metres) and the ice crystals (microns), these
particles are often treated as flow tracers, i.e. with no backward influence on the carrier
fluid (Paoli & Garnier 2005; Naiman et al. 2011). This assumption can reasonably simplify
the particle-flow dynamics. However, when considering a large particle number density,
reportedly ranging from 10° to 10! per cubic metre (Paoli et al. 2004; Paoli & Garnier
2005), combined with the density ratio of ice to air (approximately 10°), their bulk impact
may not be simply ignored. In the most optimistic estimation based on the given figures
(a particle radius of 5 microns and a particle number density of 10!! per cubic metre), the
upper limit of the particle mass fraction could fall between 10~2 and 10~!, which, although
representing one extreme end, is not preposterous. This mass fraction is substantial enough
to initiate perturbations ultimately evolving into significant disturbances (recall § 3.4).

When considering ice crystals, a primary emphasis has typically been on their
microphysical growth, typically using an ice microphysics model alongside a flow solver
(e.g. Lewellen & Lewellen 2001; Paoli er al. 2004; Paoli & Garnier 2005; Naiman et al.
2011). We exclude the context of microphysical growth in this study and, instead, direct
our attention to two-way coupling, specifically through drag momentum exchange. This
direction aligns with our essential goal of exploring whether particle-induced drag can
initiate optimal transient growth.

Inspired by natural contrail formation, our analysis in this section seeks to shed light
on how particles’ backward influence can act as a ‘controlled’ perturbation mechanism
to trigger optimal transient growth. Unlike ambient turbulence, which is stochastic and
uncontrollable, particles may offer the potential for a more deliberate approach. By
strategically releasing particles around the vortex periphery, e.g. adjusting their distance
from the vortex or timing their ejection period, it is possible to introduce targeted
perturbations that invoke the optimal structures identified for transient growth.

Recent studies by Shuai & Kasbaoui (2022) and Shuai er al. (2022) indicate that
weakly inertial particles within a vortex, under two-way coupled conditions, can
trigger instabilities and expedite the process of vortex decay. While the initial particle
distributions considered in these studies — where particles are loaded either throughout the
entire domain or inside the vortex core — are not directly applicable to our case, where
particles are at the periphery of the vortex core and interact with the vortex, these studies
support the underlying concept that even a dilute amount of particles can meaningfully
influence the surrounding vortex. By considering particles, our study aims at broadening
the understanding of transient growth dynamics in a controlled manner, providing insights
into potential applications of particle-driven perturbations.

4.2. Two-way coupled equations for vortex—particle interaction

To simulate the initiation process leading to transient vortex growth via particle drag, it
is necessary to introduce additional parameters and variables to establish the equations
governing particle motion. Additionally, a coupling term must be added to the momentum
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equation of fluid motion in (2.2) to complete a two-way coupled formulation. In this study,
we consider dispersed ice crystals, whose density is approximately 10° times that of the
surrounding fluid (air). We define the ratio of particle density p, to fluid density p as a
new dimensionless parameter, denoted by ¢ (=p,,/p). For subsequent calculations, we set

¥ to a constant value of 103,

In this study, we employ the Eulerian approach adopting the fast equilibrium
approximation proposed by Ferry & Balachandar (2001). This method treats the set of
particles as a continuum, allowing the flow—particle system to behave like a two-phase
flow. Given the high particle number density, we opt against Lagrangian approaches that
track all individual particles (e.g. Paoli et al. 2004; Naiman et al. 2011; Shuai et al.
2022). Thanks to the relatively moderate computational cost, we believe that the Eulerian
approach is favourable for future scale-up simulations involving two or more vortices
to explore secondary vortex evolution. Moreover, our focus on the ‘bulk’ influence of
particles on the surrounding vortex, rather than individual particle statistics, justifies the
continuum treatment of particles.

The following two variables now represent the particles in the dispersed phase form: the
particle velocity field, u , (r, ¢, z, t), and the particle volume fraction, c¢(r, ¢, z, ). The fast
equilibrium approximation enables explicit evaluation of u, in terms of the fluid velocity
field, u. Using the Maxey—Riley equation with the added mass effect (Maxey & Riley
1983; Auton, Hunt & Prud’Homme 1988), u, can be reduced and the resulting two-way
coupled equations (see Ferry & Balachandar 2001, p. 1221) are

M oy e @ - 1)e2” Wit Vou=0 (4.1)
= u x —Vu— @ —e—  wi -u=0, .
ot ¢ “T Re “Di
and
9 281k(® — 1 D
9 gy DO DG ( Du) 4.2)
ot 29 4+ 1 Dt

where D/Dt =09/0t +u -V is the material derivative with respect to the fluid phase
and Stk is the Stokes number, i.e. the dimensionless particle relaxation time normalised
by Ro/Up. For calculations, Stk is set to 107> to maintain compatibility with the fast
equilibrium approximation as well as practical conditions (Kércher et al. 1996). The
discretisation and time-integration procedures for (4.1) and (4.2) are not different from
those used in the previous pure vortex cases, as detailed in Appendix B. Compared with
(2.2), it is found that the last term in (4.1) accounts for the particle drag, with its magnitude
dependent on the order of c.

4.3. Initial particle distribution

As discussed in recent studies on vortex—particle interactions (Shuai & Kasbaoui 2022;
Shuai et al. 2022), the observable effects of these interactions depend on the initial particle
distribution. To explore whether particle drag can initiate optimal transient growth in
the vortex, it is necessary to establish an effective initial distribution of the particles.
In the following discussion, we first emphasise that the particles’ influence is limited to
generating only a weak disturbance within the vortex system, under the assumption that
(¢ — 1)c remains significantly less than order unity, comparable to the perturbation order.

To comprehend how the particles induce perturbations in the carrier fluid, we reorganise
the coupled momentum equation in (4.1), yielding

A+ Doy _ypy Ly (4.3)
I TP TR '
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which is in fact the original formulation provided by Ferry & Balachandar (2001). In this
form, it is evident that the combined motion of the two phases resembles a single-phase
flow with slight density variations, as characterised by the factor (1 + (¢ — 1)c). This
effect is understood as a consequence of the dispersed phase absorbing momentum from
the fluid phase. Loosely speaking, if the fluid accelerates, the particles’ presence retards
the fluid’s acceleration, resulting in a negative perturbation velocity, and vice versa.

Given that the perturbation velocity is induced by non-zero ¢, we derive the perturbation
momentum equation from the decompositions of velocity and pressure in (4.3) (i.e.
u=u+u' and p=7p+ p’), with the assumption that (¥ — 1)c is comparable to the
perturbation (prime) order, e.g. O(g). Since zero particle concentration implies no
perturbation, the mean quantity (overscore) equation is obtained by setting ¢ = 0 in (4.3),
yielding Du/Dt = —V D + V2 /Re. Subtracting this from (4.3) and neglecting terms of
order higher than O (¢), we obtain

77 /

du _ _ ou — ’ / 1 2.7
@—Dec|—+@-Vyu|l|+—+@-VYu=—Vp + —V-u. 4.4)
ot ot Re

Our goal is to estimate the initial particle distribution c¢(t = 0), denoted cg, that effectively
perturbs the ‘undisturbed’ vortex towards optimal transient growth, i.e. u’(t =0) =0.
Under this condition, (4.4) reduces to the initial perturbation growth formula:

ou’

ot
which describes the growth of u’ over a brief initial period, e.g. 0 <t <8t <K 1.
After a brief advance of time, the spatial structure of u’ is primarily attributed to
that of —(1% — 1)coDu/Dt|;—o (initial particle drag) while —V p/(r =0) serves only
to maintain the divergence-free constraint. In other words, we expect u’(t =5t) ~
8t[— (0 — 1)coDu /Dt | =¢] with a minor adjustment for the field to be solenoidal (for
details of the adjustment, see Appendix C).

Suppose that we aim to initiate a known optimal velocity perturbation #'. If we identify
co such that —(% — 1)coDu/Dt|;—o matches (a positive constant multiple of) #’, then
we can expect #’ to exhibit this perturbation form. However, the existence of such cg is
rare, since this matching requires solving three component equations whereas cg is the
only unknown. To circumvent this overdetermination issue, we inevitably focus on the
most critical component among them. By choosing the azimuthal component, the problem
reduces to finding cop such that

@ —1) (Dﬂ)
— @ - Deo| —
Dr /g

where C is an arbitrary positive constant, which can be used to scale c¢p when solving (4.1)
and (4.2) for different levels of particle volumetric loading. Arranging the terms based on

the fact that (Du/Dt)g|;—0 = —4re™" 2 /Re for the ‘undisturbed’ g-vortex profile, we can

/ Du
=-Vp (=0 —(@— 1)coD—

4.
t =0 (4.5)

t=0

= cill, (4.6)

further simplify this relation to co ocity, /(re™" %,

The proposed ¢y has two serious limitations that restrict its practical applicability.
Nevertheless, we affirm that it remains sufficiently effective for initiating optimal transient
growth. First, the radial and axial components of perturbation velocity are excluded in
this derivation. This is justifiable since the azimuthal component of velocity perturbation
is generally dominant during the initial stages of transient growth (see the left panels
in figure 7). Second, the particle volume fraction cannot take on negative values. The
continuity of the fluid may alleviate this issue; in a local sense, a deficit (or surplus) in
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Figure 12. Initiation of optimal transient growth via inertial particles: (@) the initial particle volume fraction
contour on the z =0 plane, in the pursuit of initiating the perturbation discussed in § 3.4 (see figure 8); and
(b) the axial vorticity perturbation contour on the z =0 plane after a brief advancement in time (¢ = 0.01)
in the two-way coupled vortex—particle simulation, solving (4.1) and (4.2) with an initial particle volumetric
loading level of ¢4 = 107%. In panel (b), the same contour style as figure 8 is used and |w; (t=0.01)|nax =

5.80 x 107°.

speed within the particle-laden fluid must be offset by a corresponding gain (or loss) of
speed in the circumferential particle-free fluid. As a result, we set ¢y to locally zero when
its calculated value from (4.6) is locally negative.

For comparison’s sake, we revisit the optimal perturbation case discussed in § 3.4,
where (m, k) = (1, 0.1) with t = 50. Figure 12 shows the initial particle volume fraction
calculated using the proposed estimation, along with the axial vorticity after a brief
advancement in time (¢ =0.01), resulting from the two-way interactions between the
particles and the vortex with an initial particle volumetric loading level of ¢4 = 107°.
The computation of perturbation velocity fields in two-way coupled vortex—particle
simulations follows the same approach as described in (3.5), except that what determines
the perturbation intensity is now the particle volumetric loading level c;,. Despite
the previously mentioned limitations, the resulting perturbation effectively resembles
the intended perturbation input (see figure 8) needed for optimal transient growth. This
observation provides a posteriori validation of (4.6).

4.4. Particle-initiated transient growth

Now that the vortex evolution is governed by (4.1), where the term (% — 1)c(Du/Dt)
serves as an additional forcing term, the overall perturbation dynamics is influenced not
only by the transient growth process but also by the continual interaction between the
particles and the vortex flow over time (see also a simliar discussion by Fontane et al.
2008, p. 249). In what follows, we substantiate particle-initiated transient growth by
identifying some notable indications of transient growth over short time intervals in the
vortex—particle system, using the initial particle distribution shown in figure 12.
Temporal changes in perturbation energy are displayed in figurel3 for four different
levels of particle volumetric loading: ¢4 = 1074, 1073, 107° and 10~7. The case of
cmax = 107% is considered to be the upper limit where (9 — 1)c remains significantly
less than order unity (n.b. = 10°). All energy curves exhibit a nearly identical trend,
suggesting that similar dynamics govern every case. In panel (b), the data are normalised
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Figure 13. (a) Temporal changes in perturbation energy for vortex—particle interactions (see figure 12 for the
initial set-up), evaluated at various levels of particle volumetric loading: ¢;qx = 1074, 1075, 107% and 1077,
and (b) the same data, normalised by E (10), to facilitate comparison of energy amplification across cases. Note
that E(10) is used for normalisation because E(¢)/E (0) is undefined here (E(0) = 0).
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Figure 14. Axial vorticity perturbation contours of the vortex interacting with particles initially distributed
around the periphery (see figure 12 for the initial particle distribution) on the z = 0 plane at ¢t = 25, t = 50 and
t = 100. Here, depicted is the case with ¢4y = 1074,

by the perturbation energy at t = 10 for each case (note that E£(0) is zero and the energy
growth used, E(¢)/E(0), becomes undefined here), allowing for a comparison of energy
amplification across cases. Overall, energy amplification levels off at around 10% times
E(10), due to the long-term response of the vortex to the particle interactions. Arguably,
amplification beyond this level should be attributable to the transient growth process, as
evidenced by the energy amplification ‘hump’ up to # = 80. Notably, the peak of this hump
at t = 50 coincides with the optimal transient growth period, T = 50, as intended to induce,
which further supports our argument.

Another indication of the particle-initiated transient growth is observed in the evolution
of the perturbation structure. In figure 14, axial vorticity perturbation contours on the
z=0 plane at t =25, t =50 and ¢ = 100 in the vortex—particle simulation with ¢;,,x =
10~ are shown. These snapshots are compared with those of the optimally perturbed
nonlinear vortex growth in figure 10(c). The continual vortex—particle interactions produce
structural discrepancies in the perturbation; this is clearly discernible at t = 100, where
strong spiralling arms form at the periphery as a result of prolonged drag momentum
exchange. Nonetheless, during the early-stage perturbation growth up to ¢ =50, key
features characterising the optimal transient growth process are observed, such as the
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Figure 15. Three-dimensional illustration of the g-vortex interacting with the peripherally located particles
(see figure 12) of the initial particle volumetric loading level of ¢,qy = 107%: (@) t =0 and (b) 1 = 50. The
vortex core is detected using the As-isosurface where 4o = —0.05, as with figure 11. The green isosurface of
c=2x107° (20 % of ¢4y ) is drawn together to visualise the particle distribution at each time.

appearance of two weak spiralling arms at the periphery of the core at ¢t =25. Most
notably, at the time of maximum energy growth (¢ = 50), perturbation energy transfer from
the periphery to the core — the iconic feature of the optimal transient growth process for
m =1 —is identifiable. We believe that this provides plausible evidence that near-optimal
transient growth takes place through vortex—particle interactions.

Lastly, we report the transient development of the particle distribution in association
with the vortex’s transient growth. In figure 15, the interaction between the vortex and
particles for the case cpqax = 10~* is visualised, using the Ap-isosurface at A = —0.05
for the vortex core and the c-isosurface representing 20 % of ¢4, for the particles.
As the vortex evolves from its unperturbed state at r =0 to its most excited state at
t =50, the particles show reduced dispersion, forming a coherent helical structure that
envelops the vortex core. However, this coherence is evanescent and dissipates rapidly
after the peak perturbation growth at + = 50. The physical significance of this temporary
coherence increase, as well as whether this is exclusive to the m =1 case, warrants
further investigation. For now, it is noteworthy that the physical phenomenon linked to the
current example, vortex meandering, is known to increase system ‘orderliness’ (i.e. reduce
the number of dynamically active proper orthogonal decomposition (POD) modes), as
reported by Bolle (2021); the coherence of the particles during transient vortex growth
may be associated with this tendency.

5. Conclusion

In this study, we investigated the transient dynamics of a wake vortex using a spectral
method specifically devised for a radially unbounded domain. Our findings confirmed that
the primary contributor to optimal transient growth among continuous eigenmode families
is the viscous critical-layer eigenmode family, rather than the potential eigenmode family.
Additionally, we explored the role of inertial particles located at the periphery of a vortex,
inspired by ice crystals forming contrails in real-world scenarios, as a significant means of
initiating optimal transient growth via drag momentum exchange — an effect that is often
overlooked.

Using the spectral method for an unbounded domain, developed with mapped Legendre
functions as basis functions (see Lee & Marcus 2023), we numerically analysed the
transient growth process of the g-vortex when slightly disturbed by a perturbation
formed as a sum of well-resolved eigenmodes. Unlike the conventional spectral method
involving Chebyshev polynomials with domain truncation, our method is not susceptible
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to critical issues that adversely impact numerical irrelevance in transient growth analysis.
These issues include the excessive generation of unnecessary (non-regular or spurious)
eigenmode families and the lack of clear distinction between the viscous critical-
layer spectrum and the potential spectrum, due to the incomplete approximation of the
unbounded domain. By addressing these problems proactively, our method offers greater
flexibility for adjusting numerical resolution through the map parameter L.

Following the typical transient growth formalism, we treated perturbations as a sum of
eigenmodes and subsequently explored which family of eigenmodes primarily contributes
to optimal perturbations for achieving maximum transient growth. The important
behaviour of short-term perturbation energy growth is associated with continuously
varying eigenmodes, grounded upon the non-normality of the linearised Navier—Stokes
operator. While Mao & Sherwin (2012) demonstrated the dominance of continuous
eigenmodes in optimal perturbations for transient growth in a wake vortex, their study
did not further categorise the continuous eigenmodes, particularly those belonging to the
viscous critical-layer eigenmode family.

Through an analysis of sub-eigenspaces, each spanned by a distinct eigenmode family,
it was corroborated that optimal transient growth is primarily attributed to the viscous
critical-layer eigenmodes. This finding provides a better alignment with the theoretical
foundation of transient growth with the critical layer analysis, rather than with the wave
packet pseudomode analysis, supporing the argument that inviscid continuous spectrum
(CS) transients drive vortex growth over short time intervals (Heaton 2007b). It also refines
the focus when exploring the continuous spectra, as the viscous critical-layer spectrum
accounts solely for continuous curves adjacent to the discrete spectrum, whereas the
remaining continuous spectrum (potential spectrum) covers a much wider area in the left
half of the complex eigenvalue plane.

The energy growth curves and associated optimal perturbation structures obtained
in the current analysis, for both axisymmetric (m =0) and helical (m = 1) cases with
axial wavenumbers « of order unity or less, were consistent with previous studies. We
identified the general responses during optimal transient growth: for m =0, a transition
from azimuthal velocity to other components, forming consistent ring-like streaks; and for
m = 1, a shift from swirling velocity layers outside the vortex core to substantial transverse
motion within the core. These results align with earlier research on vortex transient growth,
such as by Pradeep & Hussain (2006), Fontane et al. (2008), Mao & Sherwin (2012).
In nonlinear simulations of the g-vortex, initiated with an (m, x) = (1, 0.1) optimal
perturbation over the optimal growth period t = 50, transient growth dynamics persisted
notably up to the time of maximum energy growth (¢ < t = 50). The linear prediction of
transient growth effectively captures early development in the original nonlinear vortex
system, even when perturbation growth becomes comparable to the base flow order and
causes visible distortion (see figures 9 and 11).

Lastly, we discussed the initiation process of transient growth — generating perturbations
through physical interactions rather than assuming their presence from the start — and
evaluated its validity. While ambient turbulence may offer a potential mechanism for
initiating transient growth, its inherent complexity, involving a broad range of scales and
stochastic dynamics, complicates precise modelling. To bypass these complexities, we
focused on vortex—particle interactions inspired by ice crystals (or contrails) associated
with aircraft wake vortices.

Despite the small size of individual particles, which often leads to the assumption that
their influence on the flow is negligible, their bulk inertial effect, combined with high
particle number density, can have a significant impact. By enabling two-way coupling
between particles and the vortex flow via drag momentum exchange, we conducted

1014 A16-27


https://doi.org/10.1017/jfm.2025.253

https://doi.org/10.1017/jfm.2025.253 Published online by Cambridge University Press

S. Lee and P.S. Marcus

vortex—particle simulations, with particles initially distributed at the periphery of the
vortex core to initiate the optimal perturbation for (m, k) = (1, 0.1) studied earlier. The
simulations showed clear signs of optimal transient growth during the continual vortex—
particle interactions, including notable energy amplification peaking at t = T = 50 and the
transfer of perturbation energy from the periphery to the core.

The present study underscores the crucial role of the optimal transient growth process of
a single vortex over short time intervals, initially structured by critical-layer eigenmodes.
The initiation of transient growth via particle drag not only demonstrates the practicability
of this transient growth process but also highlights the susceptibility of vortex motion, even
to physical interactions that are often overlooked for simplicity or perceived insignificance.
As Fontane et al. (2008) suggested in their study on vortex transient growth study with
stochastic forcing, the transient growth process may be active regardless of the specific
characteristics or dynamics of the perturbations; particle drag could serve as one of these
activators.

Even though our motivation of considering particles was founded upon contrails in real-
world scenarios, the use of particles to perturb a vortex can also be justified for purposes
beyond understanding its nature, such as actively controlling the wake vortex system
to hasten its destabilisation, potentially through deliberate injection of inertial particles.
Leveraging the same numerical scheme (see Appendix B), we expect to extend the scope to
our analysis to vortex pairs or multi-vortex systems to explore whether the transient growth
of individual vortices contributes to faster onset of practical and established instabilities
in aircraft wake vortices, such as the Crow instability, facilitating more expeditous vortex
destabilisation.

Acknowledgements. We would like to thank Dr Joseph A. Barranco (San Francisco State University) for his
valuable insights about particle-laden flow simulations using the fast equilibirum assumption, and Jinge Wang
(University of California, Berkeley) for engaging discussions on wake vortex instabilities.

Funding. This research received no specific grant from any funding agency, commercial or not-for-profit
sectors.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Numerical integration for energy calculation
Consider the following definite integral I of an arbitrary scalar f in terms of r:

1(f) = /0 £ £ (ryrdr. (AD)

It is assumed that f decays sufficiently fast as r — oo so that 7 (f) is well defined. Using
a change of variables from r € [0, co0) to a new variable ¢ € [—1, 1) via

P22
(= SESL (A2)
where L > 0 is the map parameter, we transform (A1) into a new form as follows:
1= [ (1) £ (145) e (A3)
1 1-¢ 1-¢) 1-90)?

Applying the Gauss-Legendre quadrature rule as employed by Lee & Marcus(2023,
p. 13), the numerical form of (A3) becomes
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1(f)= Zf r ,) )2f( . (A4)
where ¢; and @; are the jth abscissa and weight of the Gauss—Legendre quadrature
rule for degree N (j=1, 2,---, N), and r; EL\/(I +¢;j)/(1 —=¢;) is the jth radial
collocation point. Note that (A4) can be expressed as f*MF f if we define f as the

discretised version of f in physical space, i.e. f=(f(r1), ---, f(ry)) and M as

L? L?
IVFEdiag< w12,...,ﬂ2) (AS)
=2 (I—=¢n)

Finally, the energy in (2.7), which is equal to [I(u,)+ I(uy)+ 1(u;), can be
numerically calculated as follows:

M0 U,
E@) = (7 (o, 00 )| T0TTHT0 || Ty
——\ 0 : 0 P\ o,
b* N ‘ y
M o (A6)

This constitutes the formation of M representing the matrix calculation for energy in (2.8).

Appendix B. Numerical set-up for nonlinear simulations

To discretise the radially unbounded domain considered in this paper, especially in
three dimensions for nonlinear simulations, we employ a pseudo-spectral method based
on the mapped Legendre spectral collocation method. The method assumes that an
arbitrary scalar field (or a component of an arbitrary vector field) that decays rapidly and
harmonically in r, say, f, is expanded as follows:

fod =Y 3 3 k@ P et 7, (B1)

k=—00 m=—00 n:|m|

where Z is the computational domain length in the z direction, corresponding to the
longest axial wavelength under consideration. This expansion assumes periodicity with
a period of Z in z and ensures analyticity at »r =0 and harmonic decay at radial infinity,
due to the mapped Legendre basis functions Pﬁ (r). In this study, we chose Z =20,
corresponding to the smallest axial wavenumber of 0.1 to be considered. Meanwhile, L,
the map parameter, defines the high-resolution region during pseudo-spectral calculations
in the range 0 < r < L (see Lee & Marcus 2023, p. 13), and we selected L =4 to ensure
sufficient resolution for the vortex core and its near periphery.

Although special logarithmic terms may be required to address the O(1/r) decay at
large r (see Matsushima & Marcus 1997, p. 331), we omit them here for simplicity in
description. The method was originally introduced by Matsushima & Marcus (1997), who
provided validation examples involving vorticity equations, where further details can be
found. An in-depth discussion of the method’s implementation in vortex stability research
is available from Lee & Marcus (2023).

The set of the coefficients f,{”k now represents f in a discrete manner. As practical
computations require a finite set, we used n < 400, |m| < 16 and |k| < 16. The reason the
radial elements make use of an extra degree (i.e. large n) compared with the others is
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to deal with the radially fine structures of the viscous critical layers at high Re, while a
high degree for the other elements (i.e. large m and k) is unnecessary since the focus is
primarily on small wavenumbers.

In pure vortex simulations (without particles), the toroidal and poloidal streamfunctions
¥ and x are discretised in space and then integrated in time to solve the vortex motion
governed by (2.2). To use ¢ and y as state variables, the toroidal-poloidal decomposition
operator PP is applied to both sides of the momentum equation in (2.2), which leads to the

following:
o (v I (v
5 (X) = P(u X a)) + R_ev <X> . (B2)

When particles are included, the particle volume fraction c is also considered. The vortex
and particle motions are now governed by (4.1), with P applied to both sides, i.e.

(V) _ Lo (Vs Du
P (X)_]P’(uxw)—l—ReV (x) (& I)P(th>, (B3)

for ¢ and x, and (4.2) for c.

When it comes to time integration, the fractional step method is employed, using the
Adams—Bashforth method for non-stiff terms (e.g. advection) and the Crank—Nicholson
method for stiff terms (e.g. viscous dissipation), with Richardson extrapolation applied for
the first time step (see Matsushima & Marcus 1997, p. 343). Preliminary simulations with
the g-vortex (¢ = 4) perturbed by a small-amplitude eigenmode with a known frequency
and decay rate determined that a time step of 1073 yielded a tolerable error for time
integration over t =0 to ¢ = 100, corresponding to the time range considered in the main
study.

Appendix C. Solenoidal (divergence-free) projection

For a sufficiently smooth, rapidly decaying three-dimensional vector field V, the
Helmholtz decomposition theorem, with the toroidal-poloidal decomposition as adopted
in this study, states that V' can be expressed in terms of a scalar potential § and the toroidal
and poloidal scalars ¥ and y:

V==Vo+Vx{yé}+Vx[Vx{xel}]. (C1)

where these three scalar functions are independent of each other and are uniquely
determined by imposing the condition that 6, ¢ and y rapidly decay to zero at infinity.
The toroidal-poloidal decomposition operator, P, acts on such vector fields to extract their
toroidal and poloidal streamfunctions. Mathematically,

P:U — P suchthat P(V)=(y, x), (C2)

where U denotes the set of all sufficiently smooth, rapidly decaying three-dimensional
vector fields, and P represents the space of ordered pairs of two sufficiently smooth,
rapidly decaying scalar functions. The mathematical details of [P are provided by Lee &
Marcus (2023), while its computational implementation based on the standard Gauss—
Legendre quadrature is explicated by Matsushima & Marcus (1997).

Given a pair of scalar functions (¥, x), the corresponding vector field S can be directly
constructed as

V x{yeé.}+Vx[Vx{xéel}]=S5. (C3)
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We denote this vector field construction as another operator, PT, defined as
P":P — U suchthat PT(y, x)=S. (C4)

As seen from the difference between (C1) and (C3), P" =P~! if and only if we reduce
U to its solenoidal subspace Uy ={S|Seld, V-S=0}. In general, P"(P(V)) can be
interpreted as the solenoidal (divergence-free) projection of V. As used in the present
study, the numerical implementation of P and P' is possible in practice using the mapped
Legendre spectral collocation method (i.e. Pand P’ in § 2.1).

An important property of P is that P(V8) = (0, 0) for any smooth, rapidly decaying
scalar 6 (i.e. if @ = V0, then O has null toroidal and poloidal components). We leverage
this property to decouple pressure p (or specific energy ¢) from momentum. For example,
if the momentum equation is expressed as du/dt = —V¢ + f(¢) under the divergence-
free constraint V -u =0 (where f encompasses nonlinear advection, non-conservative
forces, etc.), we apply PP to project each term onto the solenoidal subspace. The equation
that is actually solved is the projected form, i.e. 0P(u)/9t = P(f), leading to the following
solution form:

t
u(t) =P (/ P(f (1)) dr) +u(0). (C5)
0

This approach eliminates the typical computational requirement to solve Poisson’s
equation for ¢ at every time step to enforce the divergence-free constraint in the momentum
equation.
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