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Abstract

Consider the prototype ill-posed problem of a first kind integral equation
J^u{x) = f K{x,i)u(t)dt = f(x) with discrete noisy data d, = /(z,-) + e,-,
i = 1 n. Let uo be the true solution and una a regularised solution with
regularisation parameter a. Under certain assumptions, it is known that if o —• 0
but not too quickly as n —• oo, then una converges to uo. We examine the de-
pendence of the optimal sequence of a and resulting optimal convergence rate on
the smoothness of / or uo, the kernel K, the order of regularisation m and the
error norm used. Some important implications are made, including the fact that
m must be sufficiently high relative to the smoothness of uo in order to ensure
optimal convergence. An optimal filtering criterion is used to determine the order
77i = 6 + 1/2 where 9 is the maximum smoothness of uo. Two practical methods
for estimating the optimal a, the unbiased risk estimate and generalised cross
validation, are also discussed.

1. Introduction

With the growing recognition of the significance of inverse problems in applica-
tions, it is important to examine the techniques available for their approximate
solution. In this paper we will consider the most prominent of these—the method
of regularisation. Although this method can be applied to general inverse prob-
lems we focus on the important special case of integral equations of the first
kind, which have the form (after scaling onto [0,1])

= f K(x,t)u{t)dt = f{x) x 6(0,1]. (1.1)
Jo

Assume that (1.1) has a unique solution uo-
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[2] Assessing regularised solutions 25

It is well known that these equations are ill-posed, in the sense that small
perturbations in / can lead to large errors in the solution uo- Moreover these
equations serve as a good model for general ill-posed inverse problems. Some-
times it is possible (and indeed useful) to determine the degree of ill-posedness
of an inverse problem by comparing it with a first kind integral equation.

Under mild conditions on the kernel function K(x,t) in (1.1), the operator
31': L2(0,1) —> L2(0,1) has singular values w< (i.e. w? are eigenvalues of Jf*^
which form a sequence decreasing to 0. The degree of ill-posedness of (1.1)
depends upon the rate of decay of Wi; the faster the decay the more ill-posed
the problem. There are results which relate the smoothness of the kernel K(x, t)
to the decay rate of Wj-—basically the smoother the kernel, the faster the decay
rate and hence the more ill-posed the problem. See [7] for a discussion of these
points.

Below are some examples of first-kind integral equations from applications,
which are listed in order of increasing degree of ill-posedness.

Abel's equation.

Au(x) = f {t2 - x2)-l'2u{t) dt = f{x).
Jx

Applications of this equation occur regularly in such areas as metallurgy, seis-
mology and biology. The equation is said to be weakly ill-posed and corresponds
to a half differentiation (see [1]).

Differentiation.

If f u(t)dt = f{x) thenu = / ' .
Jo

Higher-order differentiation.
If

/ :
where s+ = s for s > 0 and s+ = 0 for s < 0, then u = f^h Note that the
kernel is fc — 2 times continuously differentiable and it is known that the singular
values behave as Wj ss ci~k.

Fujita's equation.

= ' < * > • •

This equation arises in the sedimentation analysis of polymers (see [8]). The
kernel is analytic and therefore its singular values decay exponentially like w, w
ca\ 0 < a < 1.

We shall suppose that the function f(x) in (1.1) is given only as discrete noisy
data

di = f(xi) + ei i = l,...,n. (1.2)
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The errors e^ could be (say) experimental or roundoff errors. We shall assume
that £i, i — l , . . . , n , are uncorrelated random variables with mean zero and
common variance a2.

Given data (1.2), the method of regularisation defines an approximate solution
to (1.1) as the solution to the following problem:

1
minimise - J ^ u f o ) " d*)2 + «ll«llw- (1-3)

t=i

Here W is a Hilbert space of smooth functions, which is often taken to be the
Sobolev space of order m defined by

Wm'2[0,1] = {u e L2{0,1): u(m) exists weakly and u(m) € L2(0,1)}.

Then m is called the order of regularisation. In place of the norm \\u\\w in (1-3),
it is also common to use the seminorm ||u^m^||, where || • || denotes the L2(0,1)
norm. However, we will consider the formulation (1.3), because its solution is
somewhat simpler to deal with. For a general introduction to regularisation see
[9], [18].

The constant a > 0 in (1.3) is called the regularisation parameter. Clearly,
it controls the tradeoff between respecting the data by minimising the residual
sum of squares and smoothing the solution by minimising its norm.

An appropriate framework for the solution of the regularisation problem (1.3)
is to assume that W is a reproducing kernel Hilbert space (RKHS). That is,
W is a Hilbert space of functions such that for each x e [0,1] the evaluation
functional W —* R, u —* u{x) is bounded. Equivalently, there exists a function
R(x, t), called the reproducing kernel (RK), such that for all u e W, x e [0,1],

(R{x,),u)w = u(x).

It is not hard to show that R(x,t) is unique and symmetric, that is

R(x,t) = R(t,x).

For example, consider the Sobolev space M/m'2[0,1] with inner product

(u, v)w = Y^ BiuBiV + Tu Tv,

where T is a linear differential operator of order m, e.g. Tu — u^m\ and
BiU = 0, i = 1 , . . . , m, is a set of linear homogeneous boundary conditions, e.g.
BiU = u^~l\0) = 0. Then Wm'2[0,1] is a RKHS with RK
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where Oj, j = 1,. . . ,m, satisfy T6j = 0 and B{0j = 6ij, and G is the Green's
function for the boundary-value problem

Tu = 0, BiU = O t = l , . . . ,m.

For instance, if Tu = u<m) and BiU = ^ ' -^(O) , then $j{x) = x'^/U - 1)!
and G(x,y) = (x — j/)+~V(m — 1)!. An important point to note is that as m
increases, the RK R(x, t) becomes more smooth.

Under the weak assumption that the functionals W -* 31, u —> J^u{x),
x G [0,1] are bounded, it is known (see [19]) that the regularisation problem
(1.3) has the unique solution (called the regularised solution)

«na(0 = if(*)(Q» + ocnI)-xA, (1.4)

where

= f R{xi,s)K{t,s)ds,
Jo

and

fQ(x,y)=KRK*(x,y)= [ f K{x,s)R{s,t)K{y,t)dsdt. (1.5)
Jo Jo

Furthermore, because 3Pr\i(x) = Q(xi,x),

x) = Q(x)(Qn + anl)-1 d, (1.6)

where Qi{x) = Q{xi,x).
It is useful to note that a special case of regularisation is data smoothing. For

if 3£u = u in (1.3), then the solution una is a function smoothing the data di. If
also ||u||{y is replaced with | | t /m) | | 2 , then una is the familiar natural polynomial
smoothing spline of degree 2m — 1.

From the regularisation problem (1.3), it is intuitively clear that there is an
optimal a. If a is too large then the smoothing term a||u||jy dominates the
residual term, resulting in an overly smooth regularised solution which takes
little account of the data. On the other hand, if a is too small then the residual
term dominates the smoothing term, and because of the ill-posedness of the
problem this results in a very noisy regularised solution.

It is also possible to foresee the fact that a must tend to zero as n —> oo
in order that the regularised solution una converge to the true solution u0 of
3£u = f. This is because as n increases, the residual term in (1.3) reflects an
increasing knowledge of the function / , and so should be given greater weighting.

The aim of this paper is to assess regularised solutions from a theoretical
point of view. In so doing we hope to shed some light on both their potential
and limitations as approximate solutions to inverse problems.
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In Section 2, we investigate the question of convergence of una to the true
solution uo of 3?u = f. We state some general results (proved in [11]) which
show that una converges to UQ as n —» oo in a wide class of norms, provided
that a = a(n) —> 0 in a certain way. These results are applied to convolution
equations with periodic kernels, and we determine how the rate of convergence
depends upon the degree of ill-posedness of the problem, the smoothness of / or
uo and the order of regularisation.

In the past, the question of the choice of the order of regularisation has been
largely ignored. In Section 3, following [12], we show how an optimal filtering
criterion leads, in the convolution case, to the choice of order m = 0+1/2, where
6 is the maximum smoothness of UQ.

For regularisation to be useful in practice, there must be some method for
choosing a good value of a, for any given data set. We shall consider two such
methods—the unbiased risk estimate and generalised cross validation (GCV).
Results are presented (proved in [13]) which support existing numerical evidence
that GVC is a very reliable method.

2. Convergence of regularised solutions

First we must define the sense in which convergence is meant.
Assume that the function Q(x, y) defined in (1.5) is continuous on [0,1] x [0,1].

Then the integral operator & with kernel Q(x, y) defined by

*/(*)= I Q(x,y)f(y)dy
Jo

has eigenvalues Ai > A2 > • • • > 0 satisfying Aj J. 0 with corresponding or-
thonormal eigenfunctions 4>i € C[0,1]. We shall assume that the Aj decay such
that

0 < a i t~2 p < A, < o2i~2 p P>\- (2.1)

Following [10], define a class of Hilbert spaces H^, 0 < fi < 1, by

f <ooj,

where the inner product (•,•) is the usual L2(0,1) inner product. The inner
product in H^ is

t = l

Equivalently, H^ can be defined as
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with inner product

where d?*1!2 is the /x/2 root of the positive operator @. Also define another class
of Hilbert spaces W^, 0 < /x < 1, by

WM = {u: Jfu G H^}

with inner product
{u,v)Wii = (3gru,3Fv)Hl>-

It is known (see [14]) that Hi has the alternative description Hi = H = <
with inner product

Therefore, from the definition, W\ = W. Also, by definition, Ho = L2(0,1). It
is clear that if // > v, then H^ c i/i, and || • H^ is a stronger norm than || • \\HV.
Thus we have a class of spaces H^, 0 < /x < 1, ranging from HQ = L2(0,1) to

From the definition of W^ and since JI^UQ = / , we have

||«na -

Hence we have an immediate connection between convergence in the domain
space Wp and in the range space H^ = ^{W^). When it is obvious from the
function, we will simply write || • ||M for both || • ||HM and || • ||wM-

Because we assume that the errors e» are random variables, then from (1.4),
fj.na is a random function. Therefore, convergence of una will be taken to mean
with respect to the expected squared error E\\una — uo||^ and it is this that must
be estimated.

To describe the convergence results, we shall use the following notation. Given
two positive sequences an,6n, denote an ^ 6n if there is a constant c such that
On < cbn for all n. Write an w bn if there are constants ci,c2 > 0 such that
cibn < an < cibn for all n. We shall also use the asymptotic notation an ~ bn,
which means an/bn —» 1.

We shall need the following quadrature assumption. Assume there exists u,
0 < v < 1 - (l/4p), and sequence kn —* 0 such that for all f,g G H

f
The following theorem is proved in [11]. See also [19], [17] and [2].

THEOREM 2 . 1 . With assumption (2.1) and (2.2), let f G Hs, where
s > max{i/, fj,} and fj, < 2 — v — ( l /2p). Suppose that a —> 0 as n —> oo in
such a way that
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and if

Then for n<s < n + 2,

M. A. Lukas [7]

<* n
2 E\\una -

n
and for s > fj. + 2,

E\\una - a2 | | 2
+ 2

2

n

The proof of Theorem 2.1 begins by decomposing the expected mean square
error into the bias squared plus the variance as follows:

E\\una - uo||2 = E\\Euna - u0 + «„« - Euna\\l

= \\Euna - uQ\\l + E\\una - Euna\\l

+ 2E{Euna - u0, una - Euna)n

= \\Euna - uo\\l + E\\una - Euna\\l

since from (1.4), for any v G W^,

E(V, Una - (U> Vi)lt(.Qn + Otfll)^1E{dj -

= 0.

The bias squared and variance are then estimated separately, giving rise to the
two terms in the bounds of Theorem 2.1.

If it is assumed that the Fourier coefficients of / decay in a certain regular
way, then the bounds in Theorem 2.1 can be replaced by precise estimates.

THEOREM 2 . 2 . Suppose that assumptions (2.1) and (2.2) hold and f satisfies

( />0 t ) 2 ^ K> which implies that f € Hs for all s < s = r — l / 2 p . If for some

e > 0, a —* 0 os n —• oo in such a way that

kna~u~1/4p~£ —> 0 when n<v or when n> v, §<v + 2

and

then
0 when

E\\una-u0\\l

a 2

a
n

2

a n

n

<§<n+2
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This result is proved in [11].
Suppose that a = a{n) minimises £| |un a — wo||^- That is, a is the optimal

value of a with respect to the \i norm. By minimising the estimates in Theorem
2.2 we have the following.

I — )
V U J

COROLLARY 2 .1 . Assume that a - » 0 a s in Theorem 2.2. Then
T2 \ 2p/(2pS+l)

H < s < fi + 2

(2.3)

s> (J. + 2

(2.4)

and
2p(s-M)/(2ps+l)

U0\\
2 v «

w
.2 \ 4p/(4p+2p/i+l)

s> n + 2.

We now want to examine how these optimal estimates depend on the param-
eters involved. First note that fi and s (or r) are not absolute parameters. Since
Aj s=s i~2p, the norm ||/||p, / e H^, is equivalent to that denned as

Therefore the norm is described in absolute terms by 2pfi. Similarly the function
class Ha containing / is described in absolute terms by 2ps.

We shall discuss the optimal convergence rates (2.3) and (2.4) with particular
reference to the special case of a convolution equation

K{x - t)u{t) dt = f(x)

in which the function K is periodic of period 1. In this case, expand K in a.
Fourier series

/C(x-() =

where Kj is the Fourier coefficient

We shall assume that \Kj\ « j ~ f c , fc > 1, and so the Fourier series is uniformly
convergent.
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For this convolution case we will take W to be the space of periodic functions

W{m) = {uE Wm'2[0,1]: u W (0) = u<*> (1), i = 0, . . . , m - 1}

with inner product
/•l ,-i

(«,«)w(m)= uv+ i / m M m \
./o /o

or equivalently

W(m) = {u € L2(0,1): £ (27rj)2m|ui|
2 < oo}

i=-oo

with

i=-oo

The reproducing kernel for W(m) is known to be (see [3])

R{x,y) =
J=—oo

3*0

where 52m is the periodic extension of the Bernoulli polynomial 52m of degree
2m on [0,1]. These polynomials are denned inductively by

-i

K+i = (n + l)Bn, I Bn+1(t)dt = O forn>0,

so that the next two are

Some straightforward calculation shows that the kernel Q(x, y) in (1.5) is

Q(x,y) = Q(*-y) = \Ko\2-

From this expansion of Q{x, y) it is clear that the eigenvalues of (§ are

" [\Ko\2 j = 0

with corresponding orthonormal eigenfunctions
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Since \Kj\ « j ~ k , then Xj « j ~ 2 k ~ 2 m , and so the parameter p = k + m. The
space Hp can be written as

and Wfi is the completion of

under the inner product

But this space H^ is simply the periodic Sobolev space (or Besov space) of frac-
tional order of smoothness pn which we will denote by W(pn). So
Hft = W(pfi) and similarly Wp = W(pfi—k), which, if k > p/j,, is of negative order
and therefore a space of distributions. Note that as required W\ = W(m) = W

Let 9 = pa-k. Then f eHa,s<s, if and only if / e W{9 + k),9 <9, which
is equivalent to u0 € W{9), 9 < 9. Since the W^ norm and the W(r) norm for
T = pfj, — k are equivalent, the estimate (2.4) can be written as

^2v (29-2r)/(20+2fc+l)
— 1 T < 9 < T + 2m + 2k,
n J

4(m+fc)/(4m+6fc+2T+l)
9>T + 2m + 2k.

(2.5)
We shall now examine how the above convergence rates for a and en& depend

on each of the following aspects.

(0
Function / or solution UQ. Consider the behaviour of the convergence

rates (2.3) and (2.4) as we increase 2ps = 2pr — 1, thereby restricting / and
uo- Clearly d decreases more slowly as 2ps increases until 2ps = 2py. + 4p,
from which point its convergence rate is independent of 2pS. On the other hand,
ena decreases more quickly as 2ps increases until 2ps = 2p\i + 4p. This is not
surprising since the function / (or UQ) is better behaved as 2ps increases, but at
the point 2ps = 2p(i + Ap the approximation process becomes saturated.

For the convolution example above, increasing 2ps = 29 + 2k is equivalent to
increasing the order of smoothness of / 6 W(9 + k) and uo € W(9), 9 < 9. As
9 increases, the convergence rates (2.3) and (2.5) exhibit the same behaviour as
above with the saturation point at 9 = r 4- 2m + 2k. It is useful to consider
the special case of data smoothing by periodic splines of degree 2m — 1. This

https://doi.org/10.1017/S0334270000006019 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006019


34 M. A. Lukas [11]

is the case with ^ equal to the identity, so that k = 0. If also T = 0 (so
W(T) = L2(0,1)), then the estimate (2.5) becomes

/ 2\

f — J
2\ 29/(29+1)

0 < 0 < 2m,

4m/(4m+l)

0>2m.

This is consistent with the optimal convergence rates using periodic splines found
in [3].

Kernel K. Next, consider the dependence of the optimal convergence rates
on the kernel K and therefore on the degree of ill-posedness of the problem. If
the kernel K is assumed to be smoother, then the same will be true for the kernel
Q. Therefore we can expect the eigenvalues of Q to decay more quickly, which
means p is increased. As p increases (but assuming 2ps fixed) the exponent of
a2 /n for a. in (2.3) which equals

2p 2 p s - :
n< T

2p 2ps -

increases. This means the optimal regularisation parameter converges to 0 more
quickly. The exponent of a2/n for ena in (2.4), which equals

4p _ 2ps- 2pn

4
2ps - 2pn 2ps -

p>

increases for p < (2ps — 2p//)/4 and is constant for p > (2ps — 2p/u)/4.
This observation gives little hint of the practical difficulty of solving severely

ill-posed problems by regularisation. The main reason for this difficulty is that,
because of the very fast decay of Aj, only a very few A» and their corresponding
(pi can be computed accurately. Hence the computed regularised solution is
constrained to lie in a subspace of W with low dimension, much less than n.
This is why it is difficult to recover even a bimodal solution of Fujita's equation.
See [20], [10] and [16] for discussion of these points.

Order of regularisation m. As m increases, the reproducing kernel R, and
therefore the kernel Q, become smoother. Hence p increases, giving the same
effect as for the kernel K. Therefore we can optimise the rate of convergence by
ensuring that

p > (2ps - 2pn)/4.
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Exponent

2 0 - 2 T

(0-2ifc-r)/2 m

FIGURE l

This is equivalent to s < 2 + /i which is always the case if a < 2. This can be
interpreted as meaning that / should not be too smooth relative to Q; in fact
no smoother than that associated with / e S{L2(0,1)).

In the convolution case, the graph of the exponent of a1 In in (2.5) against
m is displayed in Figure 1. Therefore the rate of convergence is optimised for
m > (6 - 2fc - r)/2, which is true for all norms W{r), r > 0, if m > (0 - 2k)/2.

Norm || • 11̂ ,. As 2pn increases in (2.4), enSl decreases more slowly. This is
not surprising because the norm || • ||p will be stronger. The same occurs in (2.5)
as r increases.

In (2.3) however, it is clear that as 2p/i increases, a decreases more slowly
until 2p/z = 2ps - 4p, from which point the decay rate is independent of 2pfi.
Therefore if 2ps < 4p or s < 2, then the optimal rate of convergence for the
regularisation parameter does not depend on the norm used. This is important
in practice because if some method gives a good estimate of ao which minimises
say E\\^una - f\\2 (that is n = 0) then that estimate should also be close to
ai which minimises £||unQ - uo||v^ (i-e. /x = 1).

Note that this condition s < 2 is the same as that above which ensured the
optimal rate of convergence for enSt. In the convolution case, it is equivalent to
m>{0-k)/2.

Lastly in this section we shall verify the assumptions made in Corollary 2.1,
in the convolution case. The following result is a special case of Theorem 2.5 in
[11].

THEOREM 2.3. For the convolution case, assumption (2.2) holds with
v = 7/(m + k) and kn < n"1, for any 7 such that 1/2 < 7 < m + A; - 1/4.
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THEOREM 2.4. For the convolution case, a —* 0 as in Theorem 2.2 if
m + k> 3/4 and

( (m + k^r l/4)(20 + 2fc - 1) > 1/2 r < 9 < r + 2m + 2k,

\(m + k- l/4)(4m + 6fc + 2r - 1) > 1/2 $ > r + 2m + 2k.

PROOF. This is simply a matter of checking the conditions using Theorem
2.3.

3. Order of regularisation

In Section 2 it was shown that in the convolution case, the rate of convergence
of una to UQ with respect to all W{T) norms, T > 0, is optimised if m > (6—2k)/2.
This means that one should always choose an order of regularisation which is
sufficiently high. A similar finding was made in a different context by Natterer
[15].

However, within the range m > (S — 2k)/2 there should be an optimal order
in some sense. We describe here the results in [12], in which an optimal filtering
criterion is used to derive an optimal order of regularisation.

Let Xi >, i = 1,. . . ,n, be the decreasing eigenvalues of the positive semi-
definite matrix (l/n)Qn and let fa be the corresponding eigenvectors normalised
such that

Clearly A* and <fo are approximations to A* and fa respectively. From (1.6) it is
not hard to show that

A lt \ I \ I J& JL. V Jl lO 1 \

i/(A» + ot){a, q>i)<pij. ("•!)
t=i

Note that Aj/(Aj + a) is a decreasing sequence and (d, fa) = (f, fa) + {e, fa)
where U = f(xi). Because most of the noise e will be contained in the "high fre-
quency" components it is clear from (3.1) that regularisation achieves a filtering
of the noise from the data. The sequence A</(A, + a), i = 1, . . . , n, is called the
regularisation filter.

Define the optimal filter /*, i = 1, . . . , n, to be the sequence U which minimises

E-
n i=i

where | • | is the usual Euclidean vector norm. It is not difficult to show that

r i = l , . . . ,n . (3.2)
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Of course the filter cannot be used in practice to construct an approximate
solution because / is not known.

However suppose that the regularisation filter were equal to the optimal filter
for all n, i.e.

Under certain conditions, this implies (see [12]) that

where

C=\\f\\2/ J*Q{x,x)dx.

That is (/, fa)2 « A£ with r = 1, which gives the optimal filtering condition

2p = 2ps + l. (3.3)

In the convolution case, since p = m + k and ps = 0 + k, the condition
2p = 2ps + 1 is equivalent to

m = 0 + ±. (3.4)

Recall that 6 is the maximum smoothness assumed for uo, i.e. uo G W(8) for all
6 < 0. Therefore if one is prepared to assume some degree of smoothness for UQ,
then the choice (3.4) of order of regularisation is very simple. For example if we
assume that u0 € W{2) but uo $ W(3), then of integer orders m, either m = 2
or m = 3 would be optimal.

Note that m = 0 + 1/2 is within the range m > (6 — 2k)/2 yielding the optimal
rate of convergence for una to UQ. When m = 6 + 1/2, then the exponent in
(2.3) is

2p _ 2m + 2fc _ 26 + l + 2k _
2ps + l ~ 20 + 2k + l ~ 26 + 2k + l ~~ '

so that a « a1 In. Numerical experiments reported in [12] support the claim
that these choices of m and a are optimal.

If nothing is known about the smoothness of uo, it is still possible to estimate
an order of regularisation by such methods as the unbiased risk estimate and
generalised cross validation. These will be discussed in the next section.

Related results on the optimal choice of m exist (see [4]) in the case of con-
tinuous regularisation (i.e. with \\3Tu - f\\2 in place of (1/n) £ X ^ U ( Z J ) - di)2

in (1.3)) and deterministic error. It should also be noted that the optimal filter
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(3.2) is analogous to the optimal Wiener filter applied to the deconvolution of a
stationary stochastic process contaminated by noise (see Chapter V of [18]).

4. Choice of regularisation parameter

In practice, the choice of regularisation parameter is crucial to obtaining a
good regularised solution. We shall consider two methods which have been found
to be very effective in giving a ggod choice of the parameter. Both of these
methods can be defined in terms of the matrix

which is called the influence matrix because

3?ua(xi) = A(a)di i = l,..

Consider the mean square error in the range space

1 = 1

It is well known and easy to verify, using the assumed properties of e, that the
expectation of R(a) is

ER{a) = (l/n)|(7 - A(a))f|2 + (a2/n)Tr A2(a),

where Tr denotes the trace of the matrix. The minimiser of ER(a) would of
course be a good choice for a, but it cannot be found because / is not known.
However there are methods which provide a good estimate of this minimiser.
From the discussion in Section 2, and since asymptotically R(a) ~ | | ^«na - / | | 2 ,
these methods also provide good estimates of the minimisers So and 5i, as long
as s < 2 .

Unbiased risk estimate. This estimate is recommended when the variance
a2 of the errors is known. Define

R(a) = (l/n)|(7 - A(a)) d|2 - (<r2/n)Tr(7 - A{a))2 + (a*/n)TrA2(a).

It is easy to show that R(a) is an unbiased estimate of ER(a), that is,
ER{a) = ER(a). Therefore, choose a to be the minimiser of R(a). This
estimate was proposed in this context by Craven and Wahba [3] and Lukas [10]
and has been found to be very reliable in numerical experiments.

Clearly R = R(m, a) is also a function of the order of regularisation m. By
minimising R(m, a) with respect to both m and a, a good estimate of the optimal
order of regularisation is also obtained.
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Generalised cross validation (GCV). This estimate is recommended
when a2 is unknown.

Let Ua be the regularised solution found by ignoring the fcth data value.
That is ua minimises

1

If d is a good choice of a, then for each fc, 3?u\ {xk) should be closer to dk

on average than JtTua
k'(xk) for other values of a. That is SPu^ {xk) should

be better able to predict dk. Define the total prediction error, called the GCV
function, V(a), by

V{a) = - J2(^u^(xk) - dk)
2wl. (4.1)

The weights are defined by

W/c=
 akk akk

(l/n)Tr(7 - A)

where akk is the fcth diagonal element of A = A{a). Then the GCV choice for a
is the minimiser ay of V(a).

The expression (4.1) for V(a) however is not suitable for practical computa-
tion. Instead one uses the equivalent practical expression

This method of generalised cross validation was proposed by Wahba [19] (see
also [3]).

The weights in (4.1) and equivalently the denominator in (4.2) are denned so
that EV(a) behaves like ER(a) in a neighbourhood of the minimum of ER(a).
In fact we have the following results.

THEOREM 4 . 1 . Under assumptions (2.1) and (2.2), suppose that a —• 0 as
n —> oo as in Theorem 2.1. If furthermore na1/2" —> oo, then

EV(a)~ER{a)+o2.

This result was foreshadowed in [19] and [3], and proved rigorously in [13].
Suppose that ay minimises EV(a) and ao minimises ER(a). Because

nc*o p —» oo (see [13]), Theorem 4.1 shows that the graph of EV(a) tracks
that of ER(a) in a neighbourhood of ao as depicted in Figure 2. Furthermore,
for sufficiently large n, the value of ER(ay) will only be a fraction greater than
ER(aco). This comes from the following.
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ER(aK)

ER(a0)

FIGURE 2

THEOERM 4.2. Under assumptions (2.1) and (2.2), suppose that ay and
c*o both tend to 0 as in Theorem 2.1. If furthermore no^j2p —> oo,
"inefficiency ratio" ER(ay)/ER(ato) satisfies

Again, this result was foreshadowed in [19] and [3], and proved rigorously in
[13]. See also [5], [6] for this result in the convolution case.

Suppose that dy minimises V(a) and do minimises R(a). That is ay is the
actual GCV estimate and do is the optimal regularisation parameter for the
given data set. Numerical experiments in [21] indicate that with realistic noise
levels (say a < 0.1 and / 0 \f{t)\dt m 1) and with n > 30 (approximately), the
inefficiency ratio R(&v)/R(ao) is seldom greater than 2, over many independent
data sets. This demonstrates that the GCV estimate is generally very reliable.

If however, the noise level is higher or the number of data points smaller,
then the GCV estimate may not be reliable. In this case, it has often been
observed that there are several local minima of V(a) vying for the global min-
imum. Therefore one should perform the minimisation carefully. Furthermore
it is possible that the regularised solution corresponding to the global minimum
is not as good as the regularised solution corresponding to a comparable local
minimum. In this case, it is advisable to do some experimentation with the
regularised solution.

The GCV function is also a function of the order of regularisation m, so that
V = V(m, a). If V(m, a) is minimised with respect to both m and a, then a good
estimate of the optimal order is obtained. In [12], it is shown that asymptotically,
the minimiser my of EV(m, a) behaves like the optimal filtering order, that is,
$ + (1/2) in the convolution case.
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