
J. Appl. Prob. 50, 300–307 (2013)
Printed in England

© Applied Probability Trust 2013

A DUALITY RELATION BETWEEN THE
WORKLOAD AND ATTAINED WAITING
TIME IN FCFS G/G/s QUEUES

YI-CHING YAO,∗ Academia Sinica and National Chengchi University

Abstract

Sengupta (1989) showed that, for the first-come–first-served (FCFS) G/G/1 queue, the
workload and attained waiting time of a customer in service have the same stationary
distribution. Sakasegawa and Wolff (1990) derived a sample path version of this result,
showing that the empirical distribution of the workload values over a busy period of a
given sample path is identical to that of the attained waiting time values over the same
period. For a given sample path of an FCFS G/G/s queue, we construct a dual sample
path of a dual queue which is FCFS G/G/s in reverse time. It is shown that the workload
process on the original sample path is identical to the total attained waiting time process
on the dual sample path. As an application of this duality relation, we show that, for a
time-stationary FCFS M/M/s/k queue, the workload process is equal in distribution to
the time-reversed total attained waiting time process.
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Sengupta [3] showed that, for the first-come–first-served (FCFS) G/G/1 queue, the workload
and attained waiting time of a customer in service have the same stationary distribution.
Sakasegawa andWolff [2] derived a sample path version of this result, showing that the empirical
distribution of the workload values over a busy period of a given sample path is identical to that
of the attained waiting time values over the same period. See also [1] for a different proof and
[4] for related results. For a general multiserver queueing system, Yamazaki and Miyazawa
[5] established that the workload and total attained waiting time of customers in service are
identical in average, but their distributions are unequal in general. We complement this result
by deriving a duality relation between the workload process and the total attained waiting time
process (in reverse time) in FCFS G/G/s queues. As an application of this duality relation,
we show that, for a time-stationary FCFS M/M/s/k queue, the workload process is equal in
distribution to the time-reversed total attained waiting time process.

Specifically, consider a sample path ω of an FCFS G/G/s queue. We will construct a
corresponding sample path ω∗ of a dual queue which is FCFS G/G/s in reverse time, and show
that the workload process on ω is identical to the total attained waiting time process on ω∗.
Let [t, t] be a busy period of ω during which n customers C1, . . . , Cn enter the system with
corresponding arrival and departure times, Ai < Di, i = 1, . . . , n, where t = A1 < A2 <

· · · < An < t (implying no batch arrivals). We also assume that the departure times D1, . . . , Dn

are all distinct. Let π be the permutation of (1 2 · · · n) such that

t < Dπ(1) < Dπ(2) < · · · < Dπ(n) = t . (1)
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To be consistent with the assumption of an FCFS service discipline, π needs to satisfy the
requirement that

π(i) < s + i for all 1 ≤ i ≤ n. (2)

In words, the ith departing customer must be one of C1, . . . , Cs+i−1. Note that (2) is equivalent
to

j > π(i) for all 1 ≤ i, j ≤ n with i ≤ j − s. (3)

The service time of each customer can be determined as follows. Each of C1, . . . , Cs begins
service upon arrival, so that Ci’s service time Si = Di − Ai, i = 1, . . . , s. Customer
Cs+1 begins service either upon arrival if at least one of C1, . . . , Cs has already completed
service, or at the first departure time Dπ(1) otherwise. More generally, Cs+i begins service at
max{As+i , Dπ(i)}, so that

Ss+i = Ds+i − max{As+i , Dπ(i)}, i = 1, . . . , n − s. (4)

The workload V (t) at time t ∈ [t, t] is the total remaining service time of customers in the
system at time t (which is also known as the virtual waiting time for the case s = 1). The
arrival and departure times, Ai, i = 2, . . . , n and Dπ(i), i = 1, . . . , n − 1, divide the interval
[t, t] = [A1, Dπ(n)] into 2n − 1 subintervals. In each (open) subinterval, V (t) is linear with a
slope belonging to {−1, . . . ,−s}. (More precisely, the absolute value of the slope equals the
smaller of s and the number of customers in the system during this subperiod.) Let L(t) =
|{i : Ai < t < Di}|, the number of customers in the system at t /∈ {Aj , Dj , j = 1, . . . , n},
which is constant in each of the 2n − 1 (open) subintervals. The following lemma can be
proved easily.

Lemma 1. Assume that n ≥ 2. Let (t1, t2) and (t2, t3) be two consecutive subintervals (t1 <

t2 < t3).

(i) If t2 = Di for some i then V (t) is continuous at t2 and V ′(t2+) − V ′(t2−) = 0 or 1
according to whether L(t2−) is greater than s or less than or equal to s.

(ii) If t2 = Ai for some i then V (t2+)−V (t2−) = Si (the service time of Ci) and V ′(t2+)−
V ′(t2−) = −1 or 0 according to whether L(t2−) is less than s or greater than or equal
to s.

(iii) V (t) = t − t in the last subinterval (Dπ(n−1), t).

Let Wa,i(t) denote the attained waiting time of Ci at t , which is defined as t − Ai if Ci is
in service at t or 0 otherwise. Let Wa(t) = ∑n

i=1 Wa,i(t), the total attained waiting time of
all customers in service at t , which is linear in each of the 2n − 1 subintervals with a slope
belonging to {1, 2, . . . , s} (depending on the number of customers in service). The following
lemma can also be proved easily.

Lemma 2. Assume that n ≥ 2. Let (t1, t2) and (t2, t3) be two consecutive subintervals (t1 <

t2 < t3).

(i) Suppose that t2 = Ai for some i. Then Wa(t) is continuous at t2 and W ′
a(t2+) −

W ′
a(t2−) = 1 or 0 according to whether L(t2−) is less than s or greater than or equal

to s.
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(ii) Suppose that t2 = Di for some i. If L(t2−) > s, some customer Cj begins service at t2,
and then Wa(t2+) − Wa(t2−) = Wa,j (t2+) − Wa,i(t2−) = Ai − Aj and W ′

a(t2+) −
W ′

a(t2−) = 0. If L(t2−) ≤ s then Wa(t2+) − Wa(t2−) = −Wa,i(t2−) = Ai − Di =
Ai − t2 and W ′

a(t2+) − W ′
a(t2−) = −1.

(iii) Wa(t) = t − t in the first subinterval (t, A2).

We now construct a (time-reversed) sample path ω∗ of a dual FCFS G/G/s queue in
reverse time which has the same busy periods as ω. In the busy period [t, t] of ω∗, n

customers C∗
1 , . . . , C∗

n enter the system with corresponding arrival and departure times A∗
i >

D∗
i , i = 1, . . . , n, where A∗

i = Di and D∗
i = Ai . Since t < Dπ(1) < · · · < Dπ(n) = t ,

we have t < A∗
π(1) < · · · < A∗

π(n) = t , implying that the n customers arrive in the
order C∗

π(n), C
∗
π(n−1), . . . , C

∗
π(1) (since these customers arrive in reverse time order). Since

t = A1 < A2 < · · · < An < t , we have t = D∗
1 < D∗

2 < · · · < D∗
n < t , implying

that the n customers leave the system in the order C∗
n, C∗

n−1, . . . , C
∗
1 . By (3), we have

j ∈ {π(n), π(n − 1), . . . , π(j − s + 1)}, i.e. the (n − j + 1)th departing customer must
be one of the first n − j + s arriving customers, implying that the arrival and departure times
A∗

i , D
∗
i , i = 1, . . . , n, are consistent with the requirement of FCFS service discipline. (Note

that the j th arriving customer in forward time corresponds to the (n − j + 1)th departing
customer in reverse time.) So ω∗ is a valid sample path of a (dual) FCFS G/G/s queue in
reverse time.

Let W ∗
a,i(t) be the attained waiting time of C∗

i at t , i.e. W ∗
a,i(t) = A∗

i − t if C∗
i is in service

at t and 0 otherwise. Let W ∗
a (t) = ∑n

i=1 W ∗
a,i(t), the total attained waiting of all customers in

service at t for ω∗. Note that the 2n − 2 points in

{A∗
i , D

∗
i , i = 1, . . . , n} \ {D∗

1 , A∗
π(n)} = {Ai, Di, i = 1, . . . , n} \ {A1, Dπ(n)}

divide [t, t] into 2n − 1 subintervals. In each (open) subinterval, W ∗
a (t) is linear with a slope

belonging to {−1, . . . ,−s}. Since the definitions of V , Wa , and W ∗
a at arrival/departure times

may be ambiguous, we take the convention that V and W ∗
a are right continuous and Wa is left

continuous. Note also that

L(t) = |{i : Ai < t < Di}| = |{i : D∗
i < t < A∗

i }|
so that the number of customers in the system at t for ω is the same as that for ω∗.

Lemma 2 is stated in terms of ω. To facilitate the proof of Theorem 1 below, it is convenient
to rewrite Lemma 2 in terms of ω∗ as follows.

Lemma 2′. Assume that n ≥ 2. Let (t1, t2) and (t2, t3) be two consecutive subintervals
(t1 < t2 < t3).

(i) Suppose that t2 = A∗
i for some i. Then W ∗

a (t) is continuous at t2 and W ∗
a

′(t2−) −
W ∗

a
′(t2+) = −1 or 0 according to whether L(t2+) is less than s or greater than or equal

to s.

(ii) Suppose that t2 = D∗
i for some i. If L(t2+) > s, some customer C∗

j begins service at t2,
and then W ∗

a (t2−) − W ∗
a (t2+) = W ∗

a,j (t2−) − W ∗
a,i(t2+) = (A∗

j − t2) − (A∗
i − t2) =

A∗
j − A∗

i and W ∗
a

′(t2−) − W ∗
a

′(t2+) = 0. If L(t2+) ≤ s then W ∗
a (t2−) − W ∗

a (t2+) =
−W ∗

a,i(t2+) = t2 − A∗
i = D∗

i − A∗
i and W ∗

a
′(t2−) − W ∗

a
′(t2+) = 1.

(iii) W ∗
a (t) = t − t in the ‘first’ subinterval (A∗

π(n−1), t).
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Figure 1.

Theorem 1. In the busy period [t, t], we have V (t) = W ∗
a (t) for all t .

Before proving the theorem, we illustrate the result with Figure 1. We assume that there
are two servers (s = 2) and that four customers enter the system during the busy period
[t, t] = [0, 7] with

A1 = D∗
1 = 0, A2 = D∗

2 = 1, A3 = D∗
3 = 2, A4 = D∗

4 = 4,

D1 = A∗
1 = 5, D2 = A∗

2 = 3, D3 = A∗
3 = 7, D4 = A∗

4 = 6.

Note that this implies that

S1 = D1 − A1 = 5, S2 = D2 − A2 = 2,

S3 = D3 − D2 = 4, S4 = D4 − D1 = 1,

and that customers C∗
3 , C∗

4 , C∗
1 , C∗

2 enter the system at times 7, 6, 5, 3 (in reverse time) and
begin service at times 7, 6, 4, 2, respectively.

Proof of Theorem 1. The case n = 1 is trivial. Assume that n ≥ 2. The 2n − 2 points in
{Ai, Di, i = 1, . . . , n} \ {A1, Dπ(n)} = {A∗

i , D
∗
i , i = 1, . . . , n} \ {D∗

1 , A∗
π(n)} divide [t, t] into

2n−1 subintervals. In the subinterval (Dπ(n−1), t) = (A∗
π(n−1), t), which is the last subinterval

for ω and the ‘first’ subinterval for ω∗, we have V (t) = t − t = W ∗
a (t) by Lemmas 1(iii) and

2′(iii). Consider two consecutive subintervals (t1, t2) and (t2, t3), t1 < t2 < t3. Suppose that
V (t) = W ∗

a (t) for t ∈ (t2, t3). We will show that V (t) = W ∗
a (t) for t ∈ (t1, t2), which by

induction yields V (t) = W ∗
a (t) in each of the 2n − 1 open subintervals. It then follows from

the right continuity of V and W ∗
a that V (t) = W ∗

a (t) for t ∈ [t, t].
It remains to show that V (t) = W ∗

a (t) for t ∈ (t1, t2). We need to consider the following
cases separately.

Case (i). Suppose that t2 = Di = A∗
i for some i. By Lemmas 1(i) and 2′(i), we have

V (t2−) = V (t2+) = W ∗
a (t2+) = W ∗

a (t2−), where the second equality follows from the
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induction hypothesis that V (t) = W ∗
a (t) for t ∈ (t2, t3). We consider the following two

subcases.

Subcase (i.1). Suppose that L(t2−) ≤ s (implying that L(t2+) < s). By Lemmas 1(i) and
2′(i), V ′(t2+)−V ′(t2−) = 1 and W ∗

a
′(t2−)−W ∗

a
′(t2+) = −1, implying that V ′(t2−) =

W ∗
a

′(t2−) since V ′(t2+) = W ∗
a

′(t2+) by the induction hypothesis. It follows from the
linearity of V (t) and W ∗

a (t) in (t1, t2) that V (t) = W ∗
a (t) for t ∈ (t1, t2).

Subcase (i.2). Suppose that L(t2−) > s (implying that L(t2+) ≥ s). By Lemmas 1(i) and 2′(i)
and the induction hypothesis, V ′

a(t2−) = V ′
a(t2+) = W ∗

a
′(t2+) = W ∗

a
′(t2−), implying

that V (t) = W ∗
a (t) for t ∈ (t1, t2).

Case (ii). Suppose that t2 = Ai = D∗
i for some i. Then V (t2+)−V (t2−) = Si , the service

time of Ci . We consider the following two subcases.

Subcase (ii.1). Suppose that L(t2−) < s (implying that L(t2+) ≤ s). Then Ci begins service
upon arrival, so Si = Di − Ai and V (t2+) − V (t2−) = Di − Ai . Also, W ∗

a (t2+) −
W ∗

a (t2−) = W ∗
a,i(t2+) = A∗

i − D∗
i = Di − Ai , implying that V (t2−) = W ∗

a (t2−).
Furthermore, by Lemmas 1(ii) and 2′(ii), V ′(t2+) − V ′(t2−) = −1 and W ∗

a
′(t2−) −

W ∗
a

′(t2+) = 1, implying that V ′(t2−) = W ∗
a

′(t2−) since V ′(t2+) = W ∗
a

′(t2+) by the
induction hypothesis. So V (t) = W ∗

a (t) for t ∈ (t1, t2).

Subcase (ii.2). Suppose that L(t2−) ≥ s (implying that L(t2+) > s). By (4) we have

V (t2+) − V (t2−) = Si = Di − max{Ai, Dπ(i−s)} = Di − Dπ(i−s), (5)

since Ci begins service at max{Ai, Dπ(i−s)} = Dπ(i−s). As for ω∗, C∗
i completes

service at t2 = D∗
i and another customer begins service at t2 since L(t2+) > s. By time

t2 = D∗
i (= Ai), the number of customers who have completed service is n− i +1, since

the departure times before t2 (in reverse time) are D∗
i+1 = Ai+1, . . . , D

∗
n = An. Thus,

the customer who begins service at t2 must be the (n − i + 1 + s)th customer entering
the system, i.e. C∗

π(i−s). So

W ∗
a (t2−) − W ∗

a (t2+) = W ∗
a,π(i−s)(t2−) − W ∗

a,i(t2+)

= (A∗
π(i−s) − t2) − (A∗

i − t2)

= Dπ(i−s) − Di,

which, together with (5) and the induction hypothesis, yields V (t2−) = W ∗
a (t2−).

Finally, by Lemmas 1(ii) and 2′(ii) and the induction hypothesis, V ′(t2−) = V ′(t2+) =
W ∗

a
′(t2+) = W ∗

a
′(t2−), implying that V (t) = W ∗

a (t) for t ∈ (t1, t2).

This completes the proof.

Remark 1. In the arguments above, we have implicitly assumed that Aj �= Di for all i, j . This
restriction can easily be relaxed as follows. Let I = {i : Ai = Dj for some j}. For (sufficiently
small) ε > 0, define Ak,ε = Ak − ε1I (k) and Dk,ε = Dk, k = 1, . . . , n, where 1I (k) = 1 or 0
according to whether k ∈ I or k /∈ I . Then, by applying Theorem 1 to the arrival and departure
times {Ak,ε, Dk,ε, k = 1, . . . , n}, we have Vε(t) = W ∗

a,ε(t) for t ∈ [t, t]. Letting ε ↘ 0 yields
V (t) = W ∗

a (t).
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Remark 2. A stochastic FCFS G/G/s queueing system gives rise to a probability measure
on the space of sample paths ω (endowed with a suitably specified σ -field), which induces a
probability measure on the space of time-reversed sample paths ω∗, which in turn defines a dual
FCFS G/G/s queue in reverse time. We may also think of both queues as coupled (i.e. defined
on the same probability space). Then, by Theorem 1, V (t) = W ∗

a (t) for all t with probability 1,
where V is the workload process for the original queue and W ∗

a is the total attained waiting
time process for the dual queue. It would be of interest to characterize the dual queues for some
classes of queueing systems. For an FCFS M/M/s/k queue (k being the system capacity),
it can readily be argued that the dual queue is also FCFS M/M/s/k in reverse time, which
together with Theorem 1 implies that the workload process is equal in distribution to the total
attained waiting process in reverse time. This is summarized in the following theorem.

Theorem 2. For a time-stationary FCFS M/M/s/k queue with 1 ≤ s ≤ k ≤ ∞, the workload
process V (t) is equal in distribution to the time-reversed total attained waiting time process
Wa(t), i.e.

(V (t1), . . . , V (tk))
d= (Wa(−t1), . . . , Wa(−tk)) for all t1, . . . , tk, k ≥ 1.

Consequently, V (t) and Wa(t) have the same stationary distribution and the same autocovari-
ance function, i.e. cov(V (0), V (t)) = cov(Wa(0), Wa(t)) for all t .

Proof. For a time-stationary FCFS M/M/s/k queue, let L(t) denote the queue length
(number of customers in the system) at time t . As a birth-and-death process, L(t) is time
reversible. Let L(·) = {L(t) : − ∞ < t < ∞}, which is a random sample path such that
the value of L(·) at time t is L(t). Fix a realization ωL of L(·). Let [t, t] be a busy period of
ωL during which n customers C1, . . . , Cn enter the system with corresponding arrival times
t = A1 < A2 < · · · < An < t . Denote the ordered departure times by t < D̃1 < D̃2 <

· · · < D̃n = t . Necessarily, |{i : Ai < D̃j }| > j for j < n. While the information of the
Ais and D̃is is contained in ωL, the departure time Di of Ci may not be observable given
ωL. Since, by (1), the (unobservable) permutation π satisfies Dπ(1) < · · · < Dπ(n), we have
Dπ(i) = D̃i for all i, i.e. Di = D̃π−1(i) for all i. A permutation φ of (1 2 · · · n) is said to be
an admissible matching if the paired arrival and departure times (Ai, D̃φ−1(i)), i = 1, . . . , n,
satisfy the requirement of FCFS service discipline (cf. (2)). Since (Ai, D̃π−1(i)) = (Ai, Di),
the (unobservable) permutation π is (necessarily) admissible, which will be referred to as the
true matching. Note that the identity permutation is always an admissible matching. It is not
difficult to show that

(i) given L(·) = ωL, the true matching π for the busy period [t, t] is (conditionally) equally
likely to be any one of the admissible matchings,

(ii) given L(·) = ωL, the true matchings in different busy periods are (conditionally)
independent.

(See Remark 3 below for further discussion.)
While ωL consists only of information about the arrival and departure times, let ω be an

expanded sample path version of ωL which also includes the information of paired arrival and
departure times. More precisely, write ω = (ωL, �(ωL)), where the second component �(ωL)

(a rule matching arrival times with departure times) specifies an admissible matching in each
of the busy periods of ωL. Let ω∗ = (ωL, �(ωL))∗ = (ω∗

L, �(ω∗
L)) be the corresponding

(time-reversed) sample path of a dual queue as defined earlier, where ω∗
L is ωL with the roles
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of arrival times and departure times interchanged, and the matching rule �(ω∗
L) is such that

an arrival time t ′ is matched with a departure time t ′′ under �(ω∗
L) if and only if t ′ (departure

time) and t ′′ (arrival time) are matched under �(ωL) . Furthermore, let L� = (L(·), �(L(·)))
be the random (expanded) sample path, where the second component �(L(·)) specifies the
(unobservable) true matching in each of the busy periods of L(·). By (i) and (ii), it is instructive
to think of the second component �(L(·)) as if it picks an admissible matching at random
in each of the busy periods of L(·). Consequently, for the random time-reversed (expanded)
sample path L∗

� = (L(·), �(L(·)))∗ = (L∗(·), �(L∗(·))), we may also think of the second
component �(L∗(·)) as if it picks an admissible matching at random in each of the busy periods
of the first component L∗(·). Since L(·) is time reversible (i.e. L∗(·) is a time-reversed copy
of L(·)), it follows that the random (expanded) sample path L∗

� is a time-reversed copy of the
random (expanded) sample path L�.

Now let V (·) be the workload process on the random (expanded) sample path L�, and let
Wa(·) and W ∗

a (·) be the total attained waiting time processes on L� and L∗
�, respectively.

Since L∗
� is a time-reversed copy of L�, W ∗

a (·) is a time-reversed copy of Wa(·), i.e. for all
t1, . . . , tk, u1, . . . , uk, k ≥ 1,

P(W ∗
a (ti) ≤ ui, i = 1, . . . , k) = P(Wa(−ti ) ≤ ui, i = 1, . . . , k).

By Theorem 1,

P(V (ti) ≤ ui, i = 1, . . . , k) = P(W ∗
a (ti) ≤ ui, i = 1, . . . , k),

showing that (V (t1), . . . , V (tk)) and (Wa(−t1), . . . , Wa(−tk)) have the same joint distribution.
This completes the proof.

Remark 3. Denote by (a1 d1 · · · ar dr) the arrival–departure run pattern determined by the
(ordered) arrival and depature times, Ai and D̃i , in the busy period [t, t], i.e.

A1 < · · · < Aa1 < D̃1 < · · · < D̃d1 < Aa1+1 < · · · < Aa1+a2 < D̃d1+1 < · · ·
< D̃d1+d2 < · · · < Aa1+···+ar−1+1 < · · · < An < D̃d1+···+dr−1+1 < · · · < D̃n.

The ais and dis need to satisfy

j∑
i=1

ai >

j∑
i=1

di, j = 1, . . . , r − 1;
r∑

i=1

ai =
r∑

i=1

di = n.

The number of admissible matchings is a function of (a1 d1 · · · ar dr), which will be denoted
by Nr(a1 d1 · · · ar dr) and which can be computed recursively as follows. The first min{a1, s}
arriving customers are equally likely to leave the system first at D̃1 since the (common) service
time distribution is memoryless. When one of A1, . . . , Amin{a1,s} is matched with D̃1, the run
pattern reduces to ((a1 − 1) (d1 − 1) · · · ar dr) if d1 > 1 or ((a1 + a2 − 1) d2 · · · ar dr) if
d1 = 1. This leads to the recursion

Nr(a1 d1 a2 d2 · · · ar dr)

=
{

min{a1, s}Nr((a1 − 1) (d1 − 1) a2 d2 · · · ar dr) if d1 > 1,

min{a1, s}Nr−1((a1 + a2 − 1) d2 · · · ar dr) if d1 = 1.

https://doi.org/10.1239/jap/1363784441 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784441


A duality relation between the workload and attained waiting time 307

Alternatively, the departure time Dn of the last arriving customer Cn is equally likely to be
any one of D̃i , n−min{dr , s}+1 ≤ i ≤ n. When An is matched with one of these D̃is, the run
pattern reduces to (a1 d1 · · · (ar − 1) (dr − 1)) if ar > 1 or (a1 d1 · · · ar−1 (dr−1 + dr − 1))

if ar = 1. This leads to a different but equivalent recursion for Nr(a1 d1 · · · ar dr).
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