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Abstract

We study the elliptic curve discrete logarithm problem over finite extension fields. We
show that for any sequences of prime powers (qi)i∈N and natural numbers (ni)i∈N with
ni −→∞ and ni/log(qi)−→ 0 for i−→∞, the elliptic curve discrete logarithm problem
restricted to curves over the fields Fqnii can be solved in subexponential expected time

(qnii )o(1). We also show that there exists a sequence of prime powers (qi)i∈N such that the
problem restricted to curves over Fqi can be solved in an expected time of eO(log(qi)

2/3).
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1. Introduction

The classical discrete logarithm problem in finite prime fields can be solved in an expected
time which is subexponential in the bit-length of the group size via the so-called index calculus
method. In contrast, it is not known if the discrete logarithm problem in the groups of rational
points of elliptic curves over finite fields (the elliptic curve discrete logarithm problem for short)
can be solved in subexponential expected time (in the bit-length of the group size). While some
infinite classes of elliptic curves are known for which the problem can be solved in subexponential
expected time (for example, supersingular elliptic curves over prime fields), it was up until now
not known if there exists a sequence of finite fields of increasing size such that the problem
restricted to curves over these fields can be solved in subexponential expected time.

We prove that such a sequence of finite fields exists. Indeed, we establish the following results.
Here and in the following, q is always a prime power and n a natural number.

(i) Let sequences of prime powers (qi)i∈N and natural numbers (ni)i∈N with ni −→∞ and
ni/log(qi)−→ 0 for i−→∞ be given. Then the discrete logarithm problem in the groups of
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C. Diem

rational points of elliptic curves over the fields Fqnii can be solved in an expected time of

(qnii )o(1).

(ii) Let β ∈ [12 , 1) and a, b > 0 be fixed. Let

α :=
1− β

2β
=

1
2
·
(

1
β
− 1
)
∈
(

0,
1
2

]
and γ :=

2β
β + 1

= 2 ·
(

1− 1
β + 1

)
< 1.

Then the discrete logarithm problem in the groups of rational points of elliptic curves over finite
fields Fqn with

a · log(q)α 6 n6 b · log(q)β

can be solved in an expected time of

eO(log(qn)γ).

(iii) Let positive real numbers a < b be fixed. Then the discrete logarithm problem in the
groups of rational points of elliptic curves over finite fields Fqn with

a ·
√

log(q) 6 n6 b ·
√

log(q)

can be solved in an expected time of

eO(log(qn)2/3).

Note that, in result (ii), γ as a function of β is strictly monotonically increasing from 2
3 for

β = 1
2 to 1 in the limit, and α is strictly monotonically decreasing from 1

2 to 0 in the limit.
Result (iii) is a special case of result (ii) for α= β = 1

2 .
Our main result is the following theorem.

Theorem. The discrete logarithm problem in the groups of rational points of elliptic curves
over finite fields Fqn can be solved in an expected time of

eO(max(log(q),n2)).

We note that all results in this work hold for all specified instances; the averaging only takes
place on the running times for a fixed input, and there is no averaging over input classes.

Given the theorem, it is easy to establish results (i) and (ii) (and therefore also result (iii))
above. Result (i) follows immediately, and a proof of result (ii) is as follows.

Let α, β, γ and a, b as in result (ii) be given. Note that β = 1/(2α+ 1) and γ = 1/(α+ 1). Now
first, as a · log(q)α 6 n, we have log(q) = log(q)γ·(α+1) 6 (1/a · log(q) · n)γ = 1/aγ · (log(qn))γ .
Second, as n6 b · log(q)β, we have n2 = nγ·(1+(1/β)) 6 (n · b1/β · log(q))γ = bγ/β · (log(qn))γ .

The method: index calculus. Index calculus is originally a method to compute discrete
logarithms (or indices in the classical terminology) in the multiplicative groups of finite prime
fields. It can briefly be described as follows.

Let a prime p and a, b ∈ F∗p, where a is a generating element, be given. The task is to compute
the discrete logarithm of b with respect to a, that is, the smallest number x ∈ N0 with ax = b.
For this, one first fixes a so-called smoothness bound S ∈ N and considers the set of all prime
numbers at most S; this set is called the factor base. Then one searches for relations between input
elements and classes mod p of factor base elements. After one has obtained enough relations,
one derives the discrete logarithm by linear algebra.

76

https://doi.org/10.1112/S0010437X10005075 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005075


On the discrete logarithm problem in elliptic curves

A similar method can also be used to compute discrete logarithms in other finite groups: if one
considers the multiplicative groups of finite fields of a fixed characteristic, one substitutes prime
numbers by irreducible polynomials whose degree is below a certain bound. If one considers the
degree zero class groups of curves over a fixed finite field, one proceeds similarly, substituting
polynomials by effective divisors and irreducible polynomials by prime divisors.

It is common to use the term index calculus to refer to the general method of computing
discrete logarithms by relation generation and linear algebra. The algorithm for the theorem is
also based on this method. However, in contrast to the algorithms mentioned above, the factor
base is defined in an algebraic rather than an arithmetic way; in particular, there is no smoothness
bound. Relations are derived by solving systems of multivariate polynomial equations over Fq.

On the proof. We give here a very brief overview of the algorithm leading to the theorem
above.

Let E/Fqn be an elliptic curve. Then we compute a covering ϕ : E −→ P1
Fqn of degree two

which satisfies ϕ ◦ [−1] = ϕ as well as a certain additional condition (Condition 2.7). The factor
base is then given by

{P ∈ E(Fqn) | ϕ(P ) ∈ P1(Fq)}. (1)

The relation generation relies on an algorithm which we call a decomposition algorithm. Given
an elliptic curve E/Fqn , the extension degree n, a covering ϕ as above and some point P ∈ E(Fqn),
this algorithm either fails or outputs tuples (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈ P1(Fq) for
i= 1, . . . , n such that

P1 + · · ·+ Pn = P.

The decomposition algorithm is based on solving multivariate systems of polynomial equations
over Fq. Of course it fails if there is no such tuple (P1, . . . , Pn). However, it might also fail
if the algebraic set defined by the associated multivariate system is not zero-dimensional. We
remark here that the most difficult part of the proof is to show that for a uniformly distributed
point P ∈ E(Fqn) with a sufficiently high probability the algebraic set defined by the associated
multivariate system is indeed zero-dimensional. In order to prove this result, we pass to higher-
dimensional schemes over Fq by using Weil restrictions. The proof then relies crucially on
intersection theory in products of projective lines.

Some historical comments. In 2004 Igor Semaev put a preprint on the archive of the Inter-
national Association for Cryptographic Research (IACR) in which he discussed the possibility of
index calculus in the groups of rational points on elliptic curves over prime fields [Sem04]. In his
work, Semaev defined the factor base via an upper bound on the x-coordinates of points, where
the elliptic curve is given by a Weierstraß model.

He also introduced so-called summation polynomials: let E be an elliptic curve over a field K,
given by a Weierstraß model, and let m ∈ N, m> 2. Let K be an algebraic closure of K. Then the
mth summation polynomial as defined by Semaev is an irreducible polynomial f ∈K[x1, . . . , xm]
such that the following holds: given P1, . . . , Pm ∈ E(K)− {O}, we have

f(x(P1), . . . , x(Pm)) = 0←→∃ε1, . . . , εm ∈ {1,−1} : ε1P1 + · · ·+ εmPm =O,

where we identify A1(K) = P1(K)− {∞} with K. These summation polynomials have degree
2m−2 in each variable.
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Now, any algorithm to determine solutions with ‘small coordinates’ for multivariate equations
of high degree would give rise to an algorithm for relation generation. However, no efficient
algorithm for this task is known (except for very special equations), and therefore, Semaev’s
approach does (currently) not lead to an algorithm which is faster than generic algorithms to
solve discrete logarithm problems.

Semaev’s work led both Pierrick Gaudry and the author to reflect on the question of whether
a similar approach over extension fields might not give algorithms which are asymptotically faster
than generic algorithms for certain input classes.

In [Gau09] Gaudry argues on a heuristic basis that, for any fixed extension degree n> 2
and q −→∞, the elliptic curve discrete logarithm problem over fields Fqn can be solved in an
expected time of

Õ(q2−(2/n))

on a randomized random access machine.1 The current author, on the other hand, tried to see
whether a common variation of n and q would lead to a sequence of finite fields such that the
elliptic curve discrete logarithm problem over these fields would become subexponential, and
this study finally led to the present work.

We note that all previous results on classes of elliptic curves for which the discrete logarithm
problem can be solved in subexponential expected time rely on a transfer : first a homomorphism
from the group under consideration to another group is applied and then the problem is solved
in the second group.

This contrasts to the direct application of index calculus in the groups of rational points of
elliptic curves in [Gau09] and the present work. We note that one might argue that we implicitly
use the isomorphism E(Fqn)' ResFqn

Fq (E)(Fq), where ResFqn
Fq (E) is the Weil restriction of the

elliptic curve E/Fqn with respect to Fqn |Fq. The important aspect is here nonetheless that no
computation is performed in doing so. Weil restrictions are of crucial importance for the analysis
of the algorithm, but the algorithm itself can be formulated without even mentioning Weil
restrictions, and we do so.

An outline. Let us give an outline of the rest of this article.
In the next section, we give the algorithm for the theorem above. For this we start off with

a ‘decomposition algorithm’ followed by the computation of a suitable covering ϕ and finally
the index calculus algorithm for the theorem. In § 3 we introduce homogeneous summation
polynomials via a geometric approach. In the last section we give some geometric background
on the decomposition algorithm and its analysis.

Notation and terminology. We set N := {1, 2, 3, . . .} and N0 := {0, 1, 2, . . .}.
An algebraic closure of a field k is denoted by k. If R is a ring with an ideal I and a ∈R, the

residue class of a in R/I is denoted by [a]I . If I = (r), we also use the notation [a]r.
If X and Y are two subschemes of a scheme Z, then we set X ∩ Y :=X ×Z Y , the scheme

theoretic intersection.
Now let X and Y be locally noetherian schemes. Then a finite and flat morphism X −→ Y

is also called a flat covering.

1 Using a suitable variant of Gaudry’s algorithm and techniques of the present work, a proof of this result is given
in [Die09].
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Products of projective lines play an important role in this work. We set P1 := Proj(Z[X, Y ])
and x :=X/Y . We identify (P1)n componentwise with Proj(Z[X1, Y1])× · · · × Proj(Z[Xn, Yn]).
Therefore we have bases Xi, Yi ∈ Γ((P1)n,O(0, . . . , 0, 1, 0, . . . , 0)), where the 1 is at the ith
position. For any commutative ring A we have the multigraded homogeneous coordinate
ring A[X1, Y1, . . . , Xn, Yn] of (P1

A)n. In the following by a multihomogeneous polynomial
in A[X1, Y1, . . . , Xn, Yn] we mean a polynomial which is homogeneous with respect to
the multigrading. A multihomogeneous ideal in A[X1, Y1, . . . , Xn, Yn] is then an ideal in
A[X1, Y1, . . . , Xn, Yn] which is generated by multihomogeneous polynomials. Now, for some
multihomogeneous ideal I, we denote the subscheme defined by I in (P1

k)
n by V (I). Moreover,

we set xi :=Xi/Yi and An := Spec(Z[x1, . . . , xn]).
Additionally, we set P2 := Proj(Z[X, Y, Z]) and x :=X/Z, y := Y/Z. The elliptic curve E/Fqn

under consideration is always given by a Weierstraß model in P2
Fqn .

Finally, let f be a partial function from N to R which is defined on an infinite subset S of
N such that f is eventually positive. Then we define the usual sets O(f) and Õ(f) of functions
S −→ R. Additionally, we define the set of functions which are polynomially bounded in f as

Poly(f) := {g : S −→ R : ∃c > 0, N ∈ N : ∀n ∈ S with n>N : |g(n)|6 f(n)c}.

We do not use the usual ‘Landau-style notation’ g =O(f) etc. but g ∈ O(f) instead.
Sets O(f) etc. occur frequently in statements on (expected) running times. We then implicitly

fix a (reasonable) representation of the mathematical objects in question (for example, elliptic
curves etc.) by bit-strings, as usual.

2. The key algorithms

In this section we outline the algorithm for the theorem.

2.1 The decomposition algorithm
The decomposition algorithm relies on ‘homogeneous summation polynomials’. These
polynomials can be obtained by homogenizing the summation polynomials introduced by Semaev
in [Sem04] in an appropriate way. A more systematic point of view is, however, to regard Semaev’s
summation polynomials as being obtained by dehomogenization of the homogeneous summation
polynomials. The homogeneous summation polynomials are studied in detail in § 3; here we
merely mention the key results which are needed to describe the decomposition algorithm.

In § 3 we show the following two propositions.

Proposition 2.1. Let E be an elliptic curve over a field k, and let us fix a covering
ϕ : E −→ P1

k of degree two with ϕ ◦ [−1] = ϕ. Let m ∈ N with m> 2. Then there exists
an, up to multiplication by a non-trivial constant unique, irreducible multihomogeneous
polynomial Sϕ,m ∈ k[X1, Y1, X2, Y2, . . . , Xm, Ym] such that for all P1, . . . , Pm ∈ E(k) we have
Sϕ,m(ϕ(P1), . . . , ϕ(Pm)) = 0←→∃ε1, . . . , εm ∈ {1,−1} such that ε1P1 + · · · εmPm =O. The
polynomial Sϕ,m has multidegree (2m−2, . . . , 2m−2).

Definition 2.2. We call a multihomogeneous polynomial Sϕ,m as in the proposition an mth
summation polynomial of E with respect to ϕ.

Proposition 2.3. Given an elliptic curve E in Weierstraß form over a finite field Fqm ∈ N
with m> 2 and ϕ : E −→ P1

Fq of degree two with ϕ ◦ [−1] = ϕ, the mth summation polynomial
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with respect to the covering ϕ : E −→ P1
Fq can be computed with a randomized algorithm in an

expected time of Poly(em
2 · log(q)).

Now let K|k be a finite field extension of degree n with basis b1, . . . , bn, let E be an elliptic
curve over K (rather than over k), and let ϕ : E −→ P1

K be a covering of degree two with
ϕ ◦ [−1] = ϕ.

Now let P ∈ E(K). Let Sϕ,n+1(X1, Y1, . . . , Xn, Yn, ϕ(P )) be a polynomial obtained by
inserting the coordinates of ϕ(P ) for the variables Xn+1, Yn+1 in an (n+ 1)th summation
polynomial of E with respect to ϕ; note that this polynomial is unique up to multiplication
with a non-trivial constant.

Let S(1), . . . , S(n) ∈ k[X1, Y1, . . . , Xn, Yn] be defined by
n∑
j=1

bjS
(j) = Sϕ,n+1(X1, Y1, . . . , Xn, Yn, ϕ(P )). (2)

Clearly, if S(j) is non-zero, similarly to Sϕ,n+1 it is multigraded of multidegree (2n−1, . . . , 2n−1).
Note also that a different basis of K|k would give rise to a system of polynomials over k which
generate the same k-vector space. The same holds if the summation polynomial is multiplied
by a non-trivial constant or if the coordinates of ϕ(P ) are simultaneously multiplied by a non-
trivial constant. In particular, the subscheme V (S(1), . . . , S(n)) of (P1

k)
n does not depend on

these choices.
For Q1, . . . , Qn ∈ P1(k), the following conditions are equivalent.

(i) There exist P1, . . . , Pn ∈ E(K) such that P1 + · · ·+ Pn = P and ϕ(Pi) =Qi for all
i= 1, . . . , n.

(ii) Sϕ,n+1(Q1, . . . , Qn, ϕ(P )) = 0.

(iii) For all j = 1, . . . , n, S(j)(Q1, . . . , Qn) = 0, that is, (Q1, . . . , Qn) is a k-rational point of
V (S(1), . . . , S(n)).

Definition 2.4. A tuple (P1, . . . , Pn) ∈ E(K)n with P1 + · · ·+ Pn = P and ϕ(Pi) ∈ P1(k) for
i= 1, . . . , n is called a decomposition of P with respect to ϕ. Let such a decomposition be
given and let Qi := ϕ(Pi). Now if (Q1, . . . , Qn) is an isolated point of V (S(1), . . . , S(n)), the
decomposition is said to be ϕ-isolated.

The ‘decomposition problem’ is now the following computational problem: given a prime
power q, n ∈ N, an Fq-basis b1, . . . , bn of Fqn |Fq, an elliptic curve E over Fqn (given by a
Weierstraß model), ϕ : E −→ P1

k as well as P ∈ E(Fqn) of degree two with [−1] ◦ ϕ= ϕ, output
a list of decompositions of P with respect to ϕ containing all ϕ-isolated decompositions.
A ‘decomposition algorithm’ is then a randomized algorithm for this problem.

We now outline such an algorithm. The basis is the following proposition.

Proposition 2.5. (a) Let k be a field, and let F1, . . . , Fn ∈ k[X1, Y1, . . . , Xn, Yn] be
multigraded polynomials of multidegree (d, d, . . . , d) for some d ∈ N. Then ‘with multiplicities’,
there are at most n! · dn isolated points in V (F1, . . . , Fn). Or with other words: the degree of
the degree zero part of the cycle defined by V (F1, . . . , Fn) is at most n! · dn. Equality holds if
and only if the scheme is zero-dimensional.

(b) There exists a randomized algorithm with the following specification: given a system of
multihomogeneous polynomials F1, . . . , Fn ∈ Fq[X1, Y1, . . . , Xn, Yn] of multidegree (d, d, . . . , d)
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for some d ∈ N and prime power q, the algorithm outputs a list of Fq-rational points of
V (F1, . . . , F`) containing all Fq-rational isolated points. Moreover, the expected running time is
in Poly(n! · dn · log(q)), and the list has a size of Poly(n! · dn).

Sketch of a proof. Part (a) follows from intersection theory in (P1
k)
n. For background

information, we give a more general statement in § 4.2 (Lemma 4.7).

The computational statement can be obtained via an algorithm by Rojas [Roj99] and the
factorization of a univariate polynomial. This algorithm relies on ‘twisted Chow forms’ or, as
one might also say, on U -resultants of toric deformations. We note here that the use of twisted
Chow forms for polynomial system solving was pioneered by Canny [Can90].

Let k = Fq, and let (Gm)k = A1
k − {0} be the one-dimensional standard torus over k. Then,

given F1, . . . , Fn as above, with the algorithm by Rojas and the factorization of a univariate
polynomial, one can obtain a list of Fq-rational points of V (F1, . . . , F`) ∩ ((Gm)k)n containing
all Fq-rational isolated points. The expected running time is in Poly(n! · dn · log(q)), and the list
has size at most n! · dn.

Now P1
k can be covered by two copies of (Gm)k. Therefore, by applying Rojas’ algorithm

2n-times with different coordinates on the n factors of (P1
k)
n one can obtain a list of points which

contains all Fq-rational points. 2

We then have the following decomposition algorithm.

We have already remarked that one can compute the polynomial Sϕ,n+1 in an expected time
of Poly(en

2 · log(q)). Thus one can also determine the polynomials S(1), . . . , S(n) in an expected
time of Poly(en

2 · log(q)). We then apply an algorithm as in the previous proposition. (As the
polynomials are symmetric, we only have to apply Rojas’ algorithm n instead of 2n times.) Let
L be the list output by this algorithm.

We now want to find all tuples (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈ P1(Fq) for all i= 1, . . . , n
and P1 + · · ·+ Pn = P . For this we iterate over entries of L. For each such entry (Q1, . . . , Qn) we
consider all possible tuples (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) =Qi for i= 1, . . . , n and check if
P1 + · · ·+ Pn = P . We output all tuples (P1, . . . , Pn) for which this is the case.

Now for each tuple (Q1, . . . , Qn) ∈ L we need Õ(2n) · Poly(log(q)) bit operations, and we
have Poly(en

2
) such tuples (Q1, . . . , Qn). The expected total running time is then still in

Poly(en
2 · log(q)).

We obtain the following proposition.

Proposition 2.6. There exists a decomposition algorithm which operates in an expected time
of Poly(en

2 · log(q)).

In order to analyze the index calculus algorithm we need a lower bound on the probability
that a uniformly randomly distributed point has a ϕ-isolated decomposition. In order to derive
such a lower bound, we need the following condition on the covering ϕ.

Condition 2.7. There exists a point R ∈ P1(Fq) which is a ramification point of ϕ such that the
points R, σ(R), . . . , σn−1(R) are all distinct and ϕ is unramified at σ(R), . . . , σn−1(R).

Here and in what follows, σ is the relative Frobenius automorphism of k|k.

In the next subsection we prove the following proposition.
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Proposition 2.8. Given a prime power q, n ∈ N and an elliptic curve over Fqn in Weierstraß
form such that (q, n) 6= (3, 2), one can compute a covering ϕ : E −→ P1

Fqn of degree two with

ϕ ◦ [−1] = ϕ satisfying Condition 2.7 in an expected time of Poly(n · log(q)).

The key result for the analysis of the algorithm for the theorem is now as follows.

Proposition 2.9. Let ε > 0. Then for n large enough2 and (2 + ε) · n2 6 log2(q) the following
holds: let E/Fqn be an elliptic curve, and let ϕ : E −→ P1

Fqn be a covering of degree two with

ϕ ◦ [−1] = ϕ such that Condition 2.7 is satisfied.

Then the probability that a uniformly distributed point of E(Fqn) has a ϕ-isolated

decomposition is at least q−
1
2 .

Section 4 is devoted to the proof of this proposition.

2.2 Computing a suitable covering
We discuss how a covering ϕ : E −→ P1

Fqn satisfying Condition 2.7 can be computed efficiently.

We make some case distinctions. In each case we start off with a specific Weierstraß model
and determine some automorphism α of P1

Fqn . Then we set ϕ := α ◦ x|E .

2.2.1 Even characteristic. First, let j(E) = 0. Then by an easy coordinate change the ‘affine
part’ of E is defined by a polynomial

y2 + a3y + x3 + a4x+ a6

with a3 6= 0 (see [Sil86, Appendix A]). Now x|E is ramified exactly over∞. We set α := (ax− 1)/x
for some a ∈ Fqn which is not contained in any proper subfield of Fqn |Fq.3 Then α maps ∞ to a,
and thus ϕ is ramified exactly at a. Clearly the condition is satisfied.

Now let j(E) 6= 0. Then wlog. the ‘affine part’ of E is defined by the polynomial

y2 + xy + x3 + a2x
2 + a6.

Then x|E is ramified exactly over 0 and∞. We set α := x+ a with a as above. Then ϕ is ramified
at a and ∞, and again the condition is satisfied.

2.2.2 Odd characteristic. Now wlog. the ‘affine part’ of E is defined by

y2 − f(x),

where f(x) ∈ Fqn [x] is monic of degree three. The conditions which have to be satisfied are now
more subtle but the algorithm is very simple.

We choose λ ∈ Fqn uniformly at random and with α := x− λ we check if the condition is
satisfied. We repeat this until the condition is satisfied.

Note here that if f(x) = (x− λ1)(x− λ2)(x− λ3) (with λi ∈ Fq6n), then the ramification
points of ϕ= α ◦ x|E in P1(Fq) are λi − λ for i= 1, 2, 3. So it is easy to check the condition.

Proposition 2.8 now follows from the following lemma. (Note that we only apply the lemma
in the case that q is odd.)

2 As usual, by the phrase ‘for n large enough’ we mean that there exists a constant C > 0 such that the statement
holds for n > C.
3 By a ‘proper subfield’ we mean here a subfield of a field extension K|k which is not equal to K.
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Lemma 2.10. There exists a constant C ∈ (0, 1) such that the following holds.

Let q be a prime power and n a natural number such that (q, n) 6= {(2, 2), (3, 2), (2, 3), (2, 4)}.
Now let λ1, λ2, λ3 ∈ Fq, and let λ be a uniformly distributed element in Fqn . Then with a
probability at least C we have

(λ1 − λ)q
i
/∈ {λ1 − λ, λ2 − λ, λ3 − λ}

for i= 1, . . . , n− 1.

Proof. Let `= 1, 2, 3. We have (λ1 − λ)q
i

= λ` − λ if and only if λq
i − λ= λq

i

1 − λ`. The map
Fqn −→ Fqn , λ 7→ λq

i − λ is an Fq-linear map with kernel Fqgcd(i,n) . There are thus either no or
qgcd(i,n) such λ.

We obtain that in total there are at most 3
∑n−1

i=1 q
gcd(i,n) elements λ for which the condition

in the lemma is not satisfied.

Now 3
∑n−1

i=1 q
gcd(i,n) 6 3(n− 1) · qn/2, and therefore the probability in question is

> 1− 3(n− 1)
qn/2

> 1− 3(n− 1)
2n/2

.

For n> 10 this is at least 5
32 > 0.

One also easily sees that for n6 9 and (q, n) 6= {(2, 2), (3, 2), (2, 3), (2, 4)} the probability is
positive. 2

2.3 The index calculus algorithm

Below we give an algorithm which leads to the following result.

Proposition 2.11. Let ε > 0. Then there exists a randomized algorithm with the following
specification: given a prime power q, a natural number n with (2 + ε) · n2 6 log2(q), an elliptic
curve E over Fqn (in Weierstraß form) and two points A, B ∈ E(Fqn) with B ∈ 〈A〉, it outputs the
discrete logarithm of B with respect to A. Moreover, the expected running time is polynomially
bounded in q.

This proposition implies the theorem:

Let an instance consisting of a prime power q, a natural number n, an elliptic curve E over
Fqn and two points A, B ∈ E(Fqn) with B ∈ 〈A〉 be given.

We then proceed with a case distinction.

If 3 · n2 6 log2(q), we apply an algorithm for Proposition 2.11. Thus for these instances we
obtain an expected running time which is polynomially bounded in q = elog(q).

If, on the other hand, 3 · n2 > log2(q), we set m := d(3 · n2)/log2(q)e. Note that 3 · n2 6
log2(qm) and m6 (6 · n2)/log2(q). We then apply an algorithm for Proposition 2.11 to the
instance consisting of the prime power qm, the natural number n, the elliptic curve EFqmn
over Fqmn and A, B ∈ E(Fqmn). Thus for these instances the expected running time is then
polynomially bounded in qm 6 q(6·n

2)/log2(q) = 26n2 ∈ Poly(en
2
).

In the theorem, only qn but not q and n is part of the input. We can then apply the algorithm
just outlined for all possible extension degrees ‘in parallel’. The claimed expected running time
still holds.
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We now outline an algorithm for Proposition 2.11. For any ε > 0, the algorithm below
computes the discrete logarithm in any expected time of Poly(q) provided that n is large enough.
Proposition 2.11 can then be obtained by applying this algorithm ‘in parallel’ with a brute force
computation.

The algorithm
Input: A prime power q, a natural number n with (q, n) 6= (3, 2), an elliptic curve E over Fqn in
Weierstraß form, A, B ∈ E(Fqn) with B ∈ 〈A〉.

Output: The discrete logarithm of B with respect to A.

1. Compute N ←−#E(Fqn).

2. Compute the factorization of N .

3. Compute a generating system C1, C2 of E(Fqn).

4. Choose a covering ϕ : E −→ P1
Fqn of degree two with ϕ ◦ [−1] = ϕ satisfying Condition 2.7.

5. Construct the factor base F = {F1, F2, . . . , Fk}, that is, enumerate the set {P ∈ E(Fqn) |
ϕ(P ) ∈ P1(Fq)}.

6. Construct matrices R ∈ (Z/NZ)(k+3)×k and S ∈ (Z/NZ)(k+3)×2 as well as vectors α, β ∈
(Z/NZ)k+3 as follows:
For i= 1, . . . , k + 3 do

Repeat
Choose uniformly and independently randomly α, β, s1, s2 ∈ Z/NZ and apply a
decomposition algorithm to s1C1 + s2C2 + αA+ βB.

Until a decomposition is obtained. Choose such a decomposition and let∑
j

ri,jFj = si,1C1 + si,2C2 + αiA+ βiB

be the relation generated.

7. Compute a lower row echelon form H of (R|S) (over Z/NZ); apply the row transformations
also to α, β; let α′, β′ be the resulting vectors.

8. If β′1 ∈ (Z/NZ)∗, let ξ :=−α′1/β′1, otherwise go back to Step 6.

9. Compute ord(A), using the factorization of N .

10. Output the unique non-negative number x ∈ {0, . . . , ord(A)− 1} with [x]ord(A) = [ξ]ord(A) ∈
Z/ord(A)Z.

For the correctness of the algorithm note that, as (R|S) is a (k + 3)× (k + 2)-matrix, the
first row of H is trivial. Therefore we have the relation α′1A+ β′1B = 0.

We now give some additional information on subroutines for the various steps of the algorithm
and their complexity.

Step 1 can be performed in polynomial time with Schoof’s algorithm [Sch85].
Step 2 can be performed in an expected time of Poly(exp((log(N) · log(log(N)))1/2)), for

example with the algorithm by Lenstra and Pomerance [LP92].
Step 3 can be performed in expected polynomially bounded time with an algorithm by

Miller [Mil04]. Briefly, one chooses two points uniformly at random and checks whether they
form a generating system by computing the Weil pairing of the two points. For the claimed
expected running time, one needs the factorization of N .
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As already proven above, for (q, n) 6= (3, 2), Step 4 can be performed in expected polynomially
bounded time.

In Step 5, the factor base clearly has at most 2(q + 1) elements and can therefore be
constructed in an expected time of Poly(n · log(q)) · q.

Step 9 can be performed in polynomial time along the following lines.
As in the algorithm, let N =

∏v
i=1 `

ei
i with ei ∈ N and pairwise distinct prime numbers `i.

Now let Li :=N/`eii , and let oi := min{j ∈ 0, . . . , ei | `jiLi ·A= 0} for i= 1, . . . , v. Then
∏v
i=1 `

oi
i

is the order of A.
We now discuss Steps 6–8.

Step 6: Relation generation. As stated, we choose α, β, s1, s2 ∈ {0, . . . ,#E(Fqn)− 1}
uniformly at random and compute s1C1 + s2C2 + αA+ βB. Then we apply the decomposition
algorithm as described in the previous subsection to this element and the covering ϕ.

We repeat this procedure until the decomposition algorithm outputs at least one
decomposition of s1C1 + s2C2 + αA+ βB. Then we choose such a decomposition in such a way
that the choice depends only on the element s1C1 + s2C2 + αA+ βB and not on the further
internal state of the algorithm.

The time to compute s1C1 + s2C2 + αA+ βB is polynomial in log(qn). By Proposition 2.6,
the expected running time of one iteration in the Repeat-loop is then in Poly(en

2 · log(q)). Note
that for each iteration of the Repeat-loop the element s1C1 + s2C2 + αA+ βB is uniformly
randomly distributed (and independent of previous choices). Therefore by Proposition 2.9 for
instances with (2 + ε) · n2 6 log2(q) and n large enough the expected number of iterations in the
Repeat-loop is in O(q1/2).

We conclude that for instances with (2 + ε) · n2 6 log2(q) and n large enough, the expected
running time of Step 3 is in Poly(en

2 · log(q)) · O(q1/2) · O(q)⊆ Poly(q).

Step 7: Linear algebra. The computation of a lower row echelon form can be performed
with an easy modification of the usual Gaußian reduction algorithm with gcd computations.
Given a matrix of size m× n over Z/NZ, the computation can be performed in a time which is
polynomially bounded in m · n · log(N).

By the definition of the factor base, we have k + 2 ∈ O(q). We therefore have a running time
which is polynomially bounded in q · log(N).

Step 8: Invertibility. We need to estimate the probability that β′1 is invertible. The key
result is the following proposition.

Proposition 2.12. Conditionally to any outcome of Step 5 of the algorithm, the random
element β′1 is uniformly randomly distributed in Z/NZ.

For N −→∞, we have φ(N)/N ∈ Ω(1/log log(N)) (cf. [RS62, Formula 3.41]). Therefore, the
expected number of iterations of Steps 6–8 is in O(log log(N)) =O(log log(q)).

Proof of Proposition 2.12. We fix any outcome of Step 5 of the algorithm. Now, for each i, βi
is stochastically independent of αiA+ βiB. Therefore βi is stochastically independent of the ith
row of (R|S). It follows that β is independent of (R|S). Let U be the transformation matrix
such that H = U(R|S); this is also a random variable. Now U is stochastically independent of β.

85

https://doi.org/10.1112/S0010437X10005075 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005075


C. Diem

Let u be the first row of U and note that [u]` 6= 0 for all prime divisors ` of N . Then β′1 = uβ.
Now the statement follows with the following well-known lemma. 2

Lemma 2.13. Let N be a natural number, and let u ∈ (Z/NZ)m with [u]` 6= 0 for all prime
divisors ` of N . Furthermore, let v be a uniformly distributed random element in (Z/NZ)m.
Then

∑
i uivi is uniformly distributed in Z/NZ.

Proof. Let us first consider the case that N is a prime power. Then at least one entry of u is
invertible. This implies the statement. The general case then follows easily with the Chinese
remainder theorem. 2

The overall running time. Altogether we conclude as follows.
We again restrict ourselves to instances with (2 + ε) · n2 6 log2(q). As the factor base has

a size of O(q), it is now clear that for n large enough the expected running time of the whole
algorithm is then polynomially bounded in q.

3. The summation polynomials

In this section we prove Propositions 2.1 and 2.3 on the summation polynomials. Let E be an
elliptic curve over a field k, let m ∈ N, m> 2, and let ϕ : E −→ P1

k be a covering of degree two
which satisfies ϕ ◦ [−1] = ϕ.

Now let Nm (or N) be the kernel of the addition map Em −→ E, (P1, . . . , Pm) 7→ P1 + · · ·+
Pm. (Here the Pi are Z-valued points for some k-scheme Z.) Note that N is isomorphic to Em−1

via the projection (P1, . . . , Pm) 7→ (P1, . . . , Pm−1).
We now consider the projection Em −→ (P1

k)
m induced by ϕ. Note that [−1] operates on N ,

and the map N ↪→ Em −→ (P1
k)
m factors through the quotient N/[−1].

Definition 3.1. Let Hϕ,m (or Hm or H) be the image of N in (P1
k)
m (with the induced

subscheme structure).

Proposition 3.2. (a) The induced map N/[−1]−→H is finite and birational.

(b) H is a hypersurface in (P1
k)
m of multidegree (2m−2, . . . , 2m−2).

(c) The projections H −→ Pm−1
K to any m− 1 of the m components are flat coverings of

degree 2m−2.

Proof. The maps N ↪→ Em −→ (P1
k)
m and H ↪→ (P1

k)
m are clearly finite. It follows immediately

that the induced map N −→H is also finite. This in turn implies that the induced map
N/[−1]−→H is finite too (by definition of the geometric quotient).

Let us now consider the commutative diagram

N

zzvvvvvvvvv
� � //

��

Em

��uukkkkkkkkkkkkkkkkk

Em−1

��

H
� � //

{{wwwwwwwww
(P1
k)
m

uulllllllllllllll

(P1
k)
m−1

where the vertical maps are induced by the covering ϕ and the morphisms Em −→ Em−1

and (P1
k)
m −→ (P1

k)
m−1 are the projections to the first m− 1 coordinates. Then the induced
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morphism N −→ Em−1 is an isomorphism, and the morphism Em−1 −→ (P1
k)
m−1 is a generically

separable flat covering of degree 2m−1.
Below we show that the mapN −→H generically has degree two, and the mapH −→ (P1

k)
m−1

generically has degree 2m−2. This statement implies statements (a) and (b) in the lemma. Indeed,
first as N −→H generically has degree two, the induced map N/[−1]−→H generically has
degree one, that is, it is birational. Second, the fact that the map H −→ (P1

k)
m−1 is quasi-finite

and generically of degree 2m−2 implies that the last component of the multidegree of H is 2m−2.
‘By symmetry’ (or by a repetition of the argument with projections to different components)
then all components of the multidegree are 2m−2.

Note first that we have already established that both maps are generically separable, and
that the product of the two degrees is 2m−1. Therefore, it suffices to show that the extension of
the function fields k(N)|k(H) has separability degree two.

We are going to apply the isomorphism Em−1 −→N which is the inverse of the projection
N −→ Em−1 and consider the extension k(Em−1)|k(H).

Let Ω := k(Em−1), let pi : Em−1 −→ E be the projection to the ith coordinate, and let
Pi ∈ E(Ω) be the induced points. (That is, Pi is the morphism Spec(Ω)−→ Spec(k(Em−1))−→
Em−1 pi−−→ E, where the first two morphisms are the canonical ones.) Let pm :=−

∑m−1
i=1 pi and

Pm :=−
∑m−1

i=1 Pi.
Then the inverse of the projection N −→ Em−1 to the first m− 1 coordinates is given by

(p1, . . . , pm); the corresponding Ω-valued point of N is given by (P1, . . . , Pm).
The points P1, . . . , Pm−1 are linearly independent, since the maps p1, . . . , pm−1 are linearly

independent, the map Mork(Em−1, E)−→ E(k(Em−1)) is injective (in fact, it is an isomorphism),
and the map E(k(Em−1))−→ Spec(Ω) is injective too.

Now let us consider the preimage of ϕ(P1, . . . , Pm) = (ϕ ◦ P1, . . . , ϕ ◦ Pm) ∈H(Ω) in N(Ω).
This set consists of all tuples (ε1P1, . . . , εmPm) ∈ Em(Ω) with εi =±1 and

∑m
i=1 εiPi =O.

Clearly, there are exactly two such tuples: ±(P1, . . . , Pm).
We conclude as follows: there are exactly two Ω-valued points of Em−1 which induce the Ω-

valued point (ϕ ◦ P1, . . . , ϕ ◦ Pm) ∈H(Ω) under the projection N −→H. This means that there
are exactly two extensions of the canonical inclusion k(Em−1)−→ Ω to k(N). Therefore, the
separability degree of the extension k(Em−1)|k(H) is two.

We come to part (c). We still (wlog.) only consider the projection p :H −→ (P1
k)
m−1 to the

first m− 1 components. As the map is quasi-finite and as H has multidegree (2m−2, . . . , 2m−2),
each fiber has degree 2m−2. In other words, the Hilbert polynomials of the fibers are equal to
2m−2. With [Har77, Theorem 9.9] we conclude that p is flat.

Note that H is a projective over (P1)m−1
k , thus it is, in particular, proper. Moreover, p is quasi-

finite. These two properties together are equivalent to being finite by [Gro61, Proposition 4.4.2]. 2

Now clearly, if S is any irreducible polynomial in k[X1, Y1, . . . , Xm, Ym] which is
multihomogeneous, then S satisfies the conditions of Proposition 2.1 if and only if H = V (S).
This establishes Proposition 2.1.

Thus the mth summation polynomial (cf. Definition 2.2) with respect to ϕ is the (up to a
multiplicative constant unique) polynomial S with V (S) =H.

Remark 3.3. Let α ∈Aut(P1
k). Then Hα◦ϕ,m = α(Hϕ,m) or, in other words, Hα−1◦ϕ,m =

α−1(Hϕ,m). This implies that Sα−1◦ϕ,m = α∗(Sϕ,m).
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We now discuss how the summation polynomials for elliptic curves in Weierstraß form can
be given in an explicit and constructive way, following [Sem04].

Lemma 3.4. Let E be an elliptic curve in P2
k in Weierstraß form:

E = V (Y 2Z + a1XY Z + a3Y Z
2 − (X3 + a2X

2Z + a4XZ
2 + a6Z

3))

with a1, a2, a3, a4, a6 ∈ k and O = [0 : 1 : 0]. Then the third summation polynomial of E with
respect to x|E is

((x2
1x

2
2 + x2

2x
2
3 + x2

1x
2
3)− 2(x2

1x2x3 + x1x
2
2x3 + x1x2x

2
3)− (a2

1 + 4a2)x1x2x3

− (a1a3 + 2a4) · (x1x2 + x2x3 + x1x3)− (a2
3 + 4a6) · (x1 + x2 + x3)

− a2
1a6 + a1a3a4 − a2a

2
3 − 4a2a6 + a2

4) · Y 2
1 Y

2
2 Y

2
3 .

Sketch of a proof. Let S be the polynomial in the lemma. Using the inversion and addition
formulae for elliptic curves in Weierstraß form (cf. [Sil86]), one can check (with a rather lengthy
computation) that, for all P1, P2 ∈ E(k), we have S(x(P1), x(P2), x(P1 + P2)) = 0. This implies
that S3 divides S. As both polynomials have multidegree (2, 2, 2), it follows that they are equal.
Let us note here that one only has to check that S(x(P1), x(P2), x(P1 + P3)) = 0 for P1 6=±P2

and P1, P2 6=O because then S vanishes on an open part of H3 and thus also on all of H3. 2

Let us indicate how the polynomial S was found, following [Sem04].
Let P1, P2 ∈ E(k) with P1, P2 6=O and P1 6=±P2. Then clearly both x(P1 + P2) and

x(P1 − P2) satisfy the polynomial (x− x(P1 + P2))(x− x(P1 − P2)). We computed this
polynomial over the field Q(a1, a2, a3, a4, a6) and for ‘generic’ P1, P2 using the computer algebra
system MAGMA [BCP97]. The polynomial S is then obtained by multiplication with the
denominator and homogenization.

Lemma 3.5. Let E still be an elliptic curve and let ϕ : E −→ P1
k be a covering of degree two

with ϕ ◦ [−1] = ϕ. Let s, t ∈ N with s, t> 2. Then

Sϕ,s+t(X1, Y1, . . . , Xs+t, Ys+t)
= Res(X,Y )(Sϕ,s+1(X1, Y1, . . . , Xs, Ys, X, Y ), Sϕ,t+1(Xs+1, Ys+1, . . . , Xs+t, Ys+t, X, Y )).

Here by Res(X,Y ) we mean the usual Sylvester resultant for homogeneous polynomials in X and
Y of degrees 2s−1 and 2t−1.

Proof. For (P1, . . . , Ps+t) ∈ (E(k))s+t we have P1 + · · ·+ Ps+t =O if and only if there exists
some P ∈ E(k) with P1 + · · ·+ Ps + P =O and Ps+1 + · · ·+ Ps+t − P =O.

It follows that topologically the hypersurface Hs+t is the image of V (Sϕ,s+1(X1, Y1, . . . , Xs,
Ys, X, Y ), Sϕ,t+1(Xs+1, Ys+1, . . . , Xs+t−1, Ys+t, X, Y )) in (P1

k)
n × Proj(k[X, Y ]) under the

projection to (P1
k)
n. As Hs+t is irreducible it follows that the resultant in the lemma is (up

to a multiplicative constant) a power of Sϕ,s+t.
In order to prove that the resultant is (up to a constant) equal to Sϕ,s+t, we consider their

multidegrees.
The generic Sylvester resultant for polynomials of degrees a and b has degree b in the

coefficients of the first polynomial and degree a in the coefficients of the second polynomial.
We apply this with a= 2s−1 and b= 2t−1. In our case we obtain a polynomial of degree
2s−1 · 2t−1 = 2s+t−2 in (Xi, Yi) for all i= 1, . . . , s+ t.

As Sϕ,s+t has multidegree (2s+t−2, . . . , 2s+t−2), the result follows. 2
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The two preceding lemmata give rise to algorithmic constructions of the summation
polynomials over finite fields.

First, given an elliptic curve in Weierstraß form and a covering of degree two ϕ : E −→ P1
Fq

with ϕ ◦ [−1] = ϕ (which means that the automorphism α ∈Aut(P1
k) with ϕ= α ◦ x|E is given),

one can easily determine Sϕ,3 via Lemma 3.4 and Remark 3.3.
Further, one can compute Sϕ,m for m> 3 from Sϕ,m−1 and Sϕ,3 by applying the above

lemma with s=m− 2 and t= 2. This computation can be performed via interpolation provided
that q > 2m−2 (which means that #P1(Fq) > 2m−2 + 1). For completeness we give here the
interpolation result we apply.

Proposition 3.6 (Multihomogeneous interpolation). (a) Let d ∈ Nn, and let S := {1, . . . ,
d1 + 1} × · · · × {1, . . . , dn + 1}. Let k be a field, let (ai,j , bi,j) ∈ k2 − {0} for i= 1, . . . , n and
j = 1, . . . , di + 1 such that, for each i, the elements (ai,1 : bi,1), . . . , (ai,di+1 : bi,di+1) ∈ P1(k) are
pairwise distinct, and let cj ∈ k for j ∈ S. Then there is exactly one multihomogeneous polynomial
F ∈ k[X1, Y1, . . . , Xn, Yn] of multidegree d with F (a1,j1 , b1,j2 , . . . , an,jn , bn,jn) = cj for all j ∈ S.

(b) Given a prime power q and elements as above over k = Fq, the interpolating polynomial
F can be computed in a time of Poly((d1 + 1) · · · (dn + 1) · log(q)).

Proof. Let us first consider the classical one-dimensional interpolation problem in the context
of homogeneous polynomials: let d ∈ N and (aj , bj) ∈ k2 − {0} for j = 1, . . . , d+ 1 such that the
induced elements in P1(k) are pairwise distinct. Moreover, let c1, . . . , cd+1 ∈ k. Then there is
exactly one homogeneous polynomial F (X, Y ) ∈ k[X, Y ] of degree d with F (aj , bj) = cj for all
j = 1, . . . , d+ 1. Moreover, with Lj :=

∏
`6=j(b`X − a`Y )/(ajb` − a`bj) we have F =

∑
j cjLj .

For the general case we proceed by induction on n.
Let us first prove the uniqueness. For this, let d, S, k, and (ai,j , b,j) ∈ k2 − {0} for i= 1, . . . , n

and j = 1, . . . , di + 1 be as in the proposition, and let F ∈ k[X1, Y1, . . . , Xn, Yn] be of multidegree
d with F (a1,j1 , b1,j2 , . . . , an,jn , bn,jn) = 0 for all j ∈ S.

Then, by the induction hypothesis, for each j = 1, . . . , dn + 1, we have F (X1, Y1, . . . , Xn−1,
Yn−1, an,j , bn,j) = 0 ∈ k[X1, Y1, . . . , Xn−1, Yn−1]. We now regard F (X1, Y1, . . . , Xn, Yn) as a
bivariate homogeneous polynomial in the ring k(X1, Y1, . . . , Xn−1, Yn−1)[Xn, Yn]. Then by the
uniqueness of the solution of the one-dimensional interpolation problem, we conclude that F = 0.

We come to the existence. Let objects as in the proposition be given.
For each j = 1, . . . , dn + 1 there is by the induction assumption exactly one

multihomogeneous polynomial Cj ∈ k[X1, Y1, . . . , Xn−1, Yn−1] of multidegree (d1, . . . , dn−1)
with Cj(a1,j1 , b1,j2 , . . . , an−1,jn−1 , bn−1,jn−1) = cj for all j ∈ S with jn = j. Let Lj :=∏
`6=j(b`Xn − a`Yn)/(ajb` − a`bj) for j = 1, . . . , dn + 1. Then the polynomial F :=

∑
j CjLj

fulfills the requirements.
The computational result can easily be obtained via a linear algebra algorithm. 2

This gives the following proposition.

Proposition 3.7. Given a natural number m> 3, a prime power q with q > 2m−2, an elliptic
curve E over Fq in Weierstraß form and a covering ϕ : E −→ P1

Fq of degree two with ϕ ◦ [−1] = ϕ,
one can compute the mth summation polynomial of E with respect to ϕ in a time of
Poly(em

2 · log(q)).

By passing to field extensions if necessary, one obtains Proposition 2.3.
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4. Geometric background on the algorithm and analysis

The main purpose of this section is to prove Proposition 2.9. Additionally, we give some
background information on the definition of the factor base from a geometric point of view.

4.1 Weil restrictions
We make use of Weil restrictions of schemes. Here we briefly recall the definition and some
basic properties of Weil restrictions. For further information we refer to [BLR80, 7.6] and [Die01,
ch. 1].

Let S′ and S be locally noetherian schemes, and let a flat covering S′ −→ S (a finite and flat
morphism) be fixed. (Note here that a flat covering is locally free (see [Mat89, Theorem 7.10]).)
Let X ′ be an S′-scheme such that the fibers of X ′ over S′ are quasi-projective. Then one can
show that the functor from the category of S-schemes to the category of sets Z 7→MorS′(ZS′ , X ′)
is representable by an S-scheme; the (unique up to unique isomorphism) representing object is
called the Weil restriction of X ′ with respect to S′ −→ S. We denote it by ResS

′
S (X ′).4

A reformulation of this definition is as follows. The Weil restriction of X ′ with respect
to S′ −→ S is an S-scheme ResS

′
S (X ′) together with an S′-morphism u : (ResS

′
S (X ′))S′ −→X ′

such that the following holds: whenever Z is an S-scheme, and α : Z ×S S′ = ZS′ −→X ′ is
an S′-morphism, there is a unique S-morphism β : Z −→ ResS

′
S (X ′) with α= u ◦ βS′ , where

βS′ := β ×S S′ = β ×S idS′ . We denote the morphism β by α}.
The assignment X 7→ ResS

′
S (X ′) gives rise to a functor (which we call the scalar restriction

functor) from the category of S′-schemes with quasi-projective fibers to the category of
S-schemes. Moreover, if X ′ is an affine S′-scheme, then ResS

′
S (X ′) is an affine S-scheme.

We will use the following two lemmata. The proofs are rather easy and therefore omitted.

Lemma 4.1. Let S′ −→ S be as above, and let X ′, Y ′, W ′ be S′-schemes with S′-morphisms
X ′ −→W ′ and Y ′ −→W ′. Then we have a Cartesian diagram

ResS
′

S (X ′ ×W ′ Y ′) //

��

ResS
′

S (Y ′)

��
ResS

′
S (X ′) // ResS

′
S (W ′)

with the obvious canonical morphisms.

Lemma 4.2. Let S′ −→ S as above, let T be an S-scheme, and let T ′ := T ×S S′. Let X ′ be a
T ′-scheme with structural morphism α :X ′ −→ T ′.

Let v : (ResT
′

T (X ′))T ′ −→X ′ be the universal morphism; v is thus a T ′-morphism. We have
(ResT

′
T (X ′))×T T ′ ' (ResT

′
T (X ′))×S S′, and v is in particular an S′-morphism. Thus by the

universal property of ResS
′

S (X ′) we have an induced S-morphism v} : ResT
′

T (X ′)−→ ResS
′

S (X ′).
Now we have a Cartesian diagram

ResT
′

T (X ′)

��

// ResS
′

S (X ′)

��
T // ResS

′
S (T ′)

4 The similarity between the notation for Weil restrictions and resultants is accidental.
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where the morphisms are defined as follows: the left morphism is the structural morphism, the
right morphism is ResS

′
S (α), the upper morphism is v}, and the lower morphism is the morphism

id} : T −→ ResS
′

S (T ′) corresponding to the identity on T ′ under the defining functorial property
of ResS

′
S (T ′).

Now let K|k be a finite separable field extension. If X ′ is a quasi-projective (respectively
projective) scheme over K, then ResKk (X ′) is a quasi-projective (respectively projective) scheme
of dimension [K : k] · dim(X ′) over k. Note that by the defining functorial property of the Weil
restriction we have, in particular, a bijection

X ′(K) = MorK(Spec(K), X ′)−→ ResKk (X ′)(k) = Mork(Spec(k), ResKk (X ′)),
P 7→ P}.

If X ′ is a group scheme over K, then ResKk (X ′) is in a natural way again a group scheme, and
if A′ is an abelian variety over K, then ResKk (A′) is in a natural way an abelian variety too.

Let K|k now be an extension of finite fields of degree n, and let σK|k be the relative Frobenius
automorphism of K|k. We denote the induced isomorphism Spec(k)−→ Spec(k) again by σK|k.
Let X ′ be a quasi-projective K-scheme. Then we have a canonical isomorphism

(ResKk (X ′))K '
n−1∏
i=0

σiK|k(X
′)

of K-schemes under which the universal morphism u : (ResKk (X ′))K −→X ′ corresponds to the
projection

u :
n−1∏
i=0

σiK|k(X
′)−→X ′.

Moreover, if Z is any k-scheme and α : ZK −→X ′ is a morphism, then (α})K corresponds to

(α, σK|k(α), . . . , σn−1
K|k (α)) : ZK −→

n−1∏
i=0

σiK|k(X
′)

and if ϕ :X ′ −→ Y ′ is a morphism of quasi-projective K-schemes, then ResKk (ϕ) corresponds to

ϕ× σK|k(ϕ)× · · · × σn−1
K|k (ϕ) :

n−1∏
i=0

σiK|k(X
′)−→

n−1∏
i=0

σiK|k(Y
′).

4.2 Intersection theory in (P1
k)n

The proof of Proposition 2.9 relies crucially on intersection theory in products of projective lines
and on the theory of resultants for multihomogeneous polynomials. In this subsection we state
some results on intersection theory and resultants in this specific situation.

For this subsection, let k be any field.

Notation 4.3. Let V be a fixed quasi-projective variety, and let X be a closed subscheme of V .
Then we denote the class of X in the Chow ring of V by [X]. (We do not fix a notation for the
cycle corresponding to a closed subscheme as we never perform operations with cycles but only
with classes.)

We have the following explicit description of the Chow ring of (P1
k)
n.
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Proposition 4.4. Let hi := [V (Xi)] ∈ CH((P1
k)
n) for i= 1, . . . , n. Then we have an

isomorphism Z[H1, . . . , Hn]/(H2
1 , . . . , H

2
n)−→ CH((P1

k)
n), [Hi] 7→ hi.

This proposition can easily be derived from a general result on the Chow rings of toric
varieties (cf. the proposition on page 106 of [Ful93, § 5.2]). We remark here that the book [Ful93]
is concerned with toric varieties over the complex numbers. However, analytic arguments play
a minor role in the exposition, and the few such arguments can rather easily be replaced with
algebraic arguments. In particular, the proposition just mentioned holds over arbitrary fields.

Example 4.5. The class of an effective Cartier divisor on (P1
k)
n of multidegree (d1, . . . , dn) is

d1h1 + · · ·+ dnhn.

Let us consider the pull-back and push-forward homomorphisms associated with the canonical
projections between powers of P1

k. The considerations below follow immediately from the axioms
of intersection theory in [Har77, Appendix A].

For n1 > n2, let p : (P1
k)
n1 −→ (P1

k)
n2 be the projection to the first n2 components. Let us

denote by hi, for i= 1, . . . , n1 or i= 1, . . . , n2, the class of V (Xi) in any of the two Chow rings.
Then the pull-back p∗ : CH((P1

k)
n2)−→ CH((P1

k)
n1), which is a ring homomorphism, is given

by the homomorphism which corresponds to the obvious inclusion under the isomorphism in
Proposition 4.4. This means that it is given by p∗(hi) = hi.

The push-forward p∗ : CH((P1
k)
n1)−→ CH((P1

k)
n2), which is a group homomorphism, is given

as follows.

Lemma 4.6. Let e ∈ {0, 1}n1 . Then p∗(he11 · · · h
en1
n1 ) = 1 if en2+1 = · · ·= en1 = 1 and

p∗(he11 · · · h
en1
n1 ) = 0 otherwise.

For completeness we mention the following lemma.

Lemma 4.7. Let F1, . . . , Fn be multihomogeneous polynomials. Let the multidegree of Fi be
(di,1, . . . , di,n), and let D := (di,j)i,j .

(a) The zero-cycle [V (F1)] · · · [V (Fn)] has degree Perm(D), the permanent of D. In
particular, if the multidegree of each Fi is (d, . . . , d) for a common d ∈ N, then the cycle has
degree n! · dn.

(b) The degree zero part of the class of V (F1, . . . , Fn) in the Chow ring has degree at most
Perm(D).

(c) We have equality in part (b) if and only if V (F1, . . . , Fn) is zero-dimensional.

Sketch of a proof. Part (a) follows immediately from Proposition 4.4.
Part (b) can easily be obtained from Krull’s Hautidealsatz and Axiom A7 on intersection

theory in [Har77, Appendix A].
For part (c) see [Ful84, Proposition 8.2]. 2

Intersection theory and the theory of resultants are closely connected. Let us recall the
definition and basic properties in the situation under consideration.

Note for the following that according to our convention N = {1, 2, . . .}. Let us fix some n ∈ N.
For d ∈ N, let Md be the set of monomials of multidegree d in k[X1, Y1, . . . , Xn, Yn].

Let some d(i) ∈ Nn be given for each i= 1, . . . , n+ 1. We want to define the generic
resultant for multihomogeneous polynomials of multidegrees d(1), . . . , d(n+1) over k. For this
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we consider a ‘universal coefficient ring’, which is a multivariate polynomial ring over k
which for each pair (i, m) with m ∈Md(i) has one indeterminate ci,m, that is, it is the ring
k[(ci,m)i=1,...,n+1,m∈M

d(i)
]. We define the generic system of n+ 1 multihomogeneous polynomials

with multidegrees d(1), . . . , d(n+1) as G1, . . . , Gn+1 ∈ k[(ci,m)i,m][X1, Y1, . . . , Xn, Yn] with Gi =∑
m∈M

d(i)
ci,m m.

The generic resultant for multihomogeneous systems with the given degrees is then an element
of k[(ci,m)i,m], and the resultant of a particular system of multihomogeneous polynomials with
the given degrees is obtained by substituting the coefficients of the polynomials for the generic
coefficients. The key statements are summarized in the following proposition.

Proposition 4.8. (a) There is an irreducible polynomial Res ∈ k[(ci,m)i=1,...,n+1,m∈M
d(i)

] which,

for i= 1, . . . , n+ 1, is homogeneous in the coefficients of the ith generic polynomial and which
has the following property: for all field extensions K|k and all systems of multihomogeneous
polynomials F1, . . . , Fn+1 ∈K[X1, Y1, . . . , Xn, Yn], where Fi has multidegree d(i), we have
Res(F1, . . . , Fn+1) = 0 if and only if V (F1, . . . , Fn+1) is non-empty. Here Res(F1, . . . , Fn+1)
is obtained by substituting the coefficients of the polynomials for the generic coefficients.

(b) The polynomial Res with the above properties is unique up to multiplication by a non-
trivial constant.

(c) The polynomial Res is geometrically irreducible.

(d) For each i= 1, . . . , n+ 1, Res has degree Perm(Di) in the coefficients of the ith generic

polynomial, where Di is obtained from the matrix

 d(1)

...
d(n+1)

 by deleting the ith row.

This proposition follows from general results [GKZ94, § 3.3] applied to multihomogeneous
polynomials. Note that all results in [GKZ94] are formulated over the complex numbers, but the
proof of this result holds over arbitrary fields as well.

4.3 Background on the factor base
As at the end of § 4.1, let K|k be an extension of finite fields of degree n. Let E be an elliptic
curve over K, and let us fix a covering ϕ : E −→ P1

K of degree two with ϕ ◦ [−1] = ϕ.
Let ι= id} : P1

k −→ ResKk (P1
K) be the morphism corresponding to the identity on P1

K . One
can easily see (for example, via base change to K) that ι is a closed immersion.

Let V be the preimage of ι(P1
k) under ResKk (ϕ) : ResKk (E)−→ ResKk (P1

K). This means by
definition that we have a Cartesian diagram.

V
� � //

��

ResKk (E)

ResKk (ϕ)
��

P1
k

� � ι // ResKk (P1
k)

(3)

Note that ResKk (ϕ) : ResKk (E)−→ ResKk (P1
K) is a flat covering of degree 2n (as one sees after

base change to K), and therefore V −→ P1
k is a flat covering of degree 2n too.

Let us now explain the connection of these definitions to the definition of the factor base
in the algorithm: let us consider a particular run of the algorithm. Then under the bijection
P1(K)' ResKk (P1

K)(k) the inclusion P1(k)⊆ P1(K) corresponds to ι(P1
k(k))⊆ ResKk (P1

K)(k).
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Therefore the factor base F = (ϕ−1(P1
k)(k))⊆ E(K) corresponds to V (k) under the bijection

E(K)' ResKk (E)(k). One can therefore say that the factor base is defined in a ‘geometric way’,
which is something that is not immediately apparent from the definition of the factor base in
the algorithm.

The addition on the Weil restriction induces a morphism V n −→ ResKk (E), and, again
under the bijection E(K)' ResKk (E)(k), for P ∈ E(K) the tuples (P1, . . . , Pn) ∈ E(K)n with
ϕ(Pi) ∈ P1(k) and

∑
i Pi = P correspond to the k-valued points of the fiber of V n −→ ResKk (E)

at P}, the k-rational point of ResKk (E) corresponding to P .
We now study V under Condition 2.7.

Proposition 4.9. Let Condition 2.7 be satisfied. Then V is geometrically reduced and
geometrically irreducible (and thus birational to a curve).

Proof. By (3) and Lemma 4.2 we have V ' ResP1
K

P1
k

(E), with respect to the covering ϕ : E −→ P1
k.

This implies that
VK ' E ×P1

K
σK|k(E)×P1

K
· · · ×P1

K
σn−1
K|k (E), (4)

where the morphisms are ϕ : E −→ P1
K , . . . , σ

n−1
K|k (ϕ) : σn−1

K|k (E)−→ P1
K .

Let us now fix an algebraic closure k(x) of k(x), and let σ again be the relative Frobenius auto-
morphism of k|k. Let us then prolong σ first to k(x) via σ(x) := x, and let us fix any
automorphism of k(x)|k(x) which restricts to σ; let us denote this automorphism again by σ.
Moreover, let us fix an injection of k(E) into k(x) over k(x).

We now consider the total quotient ring of the scheme Vk, which is isomorphic to

k(E)⊗k(x) σ(k(E))⊗k(x) · · · ⊗k(x) σ
n−1(k(E)).

By Condition 2.7 for i= 1, . . . , n− 1, the extension σi(k(E))|k(x) is ramified at σi(R), but
for any j = 0, . . . , i− 1, the extension σj(k(E))|k(x) is unramified at σi(R); thus the extension
k(E)σ(k(E)) · · · σi−1(k(E))|k(x) in k(x) is also unramified at σi(R). Thus σi(k(E)) is not
contained in k(E)σ(k(E)) · · · σi−1(k(E)). It follows therefore by induction that the extension
k(E)σ(k(E)) · · · σn−1(k(E))|k(x) in k(x) has degree 2n. Thus the total quotient ring of Vk
is isomorphic to the composite k(E)σ(k(E)) · · · σn−1(k(E)) in k(x) and therefore a field. We
see that Vk is reduced and irreducible; thus V is geometrically reduced and geometrically
irreducible. 2

Proposition 4.10. Let us still assume that Condition 2.7 is satisfied, let C be the curve which
is birational to V , and let π : C −→ V be a birational morphism. Then:

(a) the genus of C is at most (2n− 1) · (2n − 1);
(b) C(k) contains at most n · 2n+2 points which map to singular points under the birational

morphism π : C −→ V .

Proof. By a general result on elementary abelian extensions (see, for example, [KR89]) we have

g(C) =
∑
L

g(L),

where L runs over all subextensions of k(C)|k(x) of degree two. We show below that the
genus of a function field L as in the sum is always at most 2n− 1. This implies that g(C) 6
(2n− 1) · (2n − 1).
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To show the claim on the subfields L we proceed with a case distinction.

Let q be even. By Artin–Schreier theory every subfield L of k(x)|k(x) of degree two corresponds to
a one-dimensional subspace of the F2-vector space k(x)/P(k(x)), where P is the Artin–Schreier
operator.

Now if k(E) corresponds to 〈f〉, where f is the residue class of some f ∈ k(x), then each field
L as in the sum corresponds to 〈a0f + a1σ(f) + · · ·+ an−1σn−1(f)〉 for a uniquely defined tuple
(a0, . . . , an−1) ∈ Fn2 − {0}.
First, let j(E) = 0. In this case the extension k(E)|k(x) is ramified at one place, and k(E)
corresponds to some space 〈f〉, where f is either a polynomial of degree three or of the form
g/(x− λ)3 for λ ∈ k and deg(g) = 3.

Using [Sti93, Proposition III.7.8] one sees: if L is any field as in the sum, then L|k(x)
is ramified at at most n places (this is also immediately obvious), and the corresponding
discriminant exponents are all 4. This implies that the genus of L is at most 2n− 1.

Now let j(E) 6= 0. In this case k(E)|k(x) is ramified at 2 places, and k(E) corresponds to 〈f〉,
where f is the sum of two distinct polynomials f1, f2 such that each of these polynomials is
either x or 1/(x− a) for some a ∈ k. Now each subfield L as in the sum is ramified over at most
2n places and the different exponents are all 2. Again the genus of L is at most 2n− 1.

Let q be odd. In this case k(E)|k(x) is (tamely) ramified at 4 places. If thus L is as in the sum,
L|k(x) is ramified at most 4n places. Thus the genus of L is at most 2n− 1.

We come to part (b). Let S be the set of points of P1(k) over which one of the coverings
σi(E)−→ P1

k
is ramified. Using the fact that a morphism obtained from an étale morphism via

base change is étale we obtain that the canonical morphism V −→ P1
k is étale outside S. This

implies that V is smooth outside the preimage of S, and the birational morphism π : C −→ V
is an isomorphism outside the preimage of S. In other words, all points in C(k) which map to
singular points of V are contained in the preimage of S.

As the covering C −→ P1
k has degree 2n, the preimage of the set S has at most #S · 2n 6 4n · 2n

elements. 2

Proposition 4.11. Let k = Fq, and let n> 2 and log2(q) > 7n. Then, under Condition 2.7,

#{P ∈ E(K) | ϕ(P ) ∈ P1(k)}= #V (k) > 1
2 · (q + 1) .

Proof. By the above propositions and the Hasse–Weil bound we have

#V (k) > q + 1− 2 · (2n− 1) · (2n − 1) · q
1
2 − n · 2n+2 + 1 > q + 1− n · 2n+2 · (q

1
2 + 1).

Now, q
1
2 + 1 6 2 · (q + 1)/q

1
2 and thus

n · 2n+2 · (q
1
2 + 1) 6 2n/2 · 2n+3

q
1
2

· (q + 1) =
2

3
2
n+4

q
1
2

· q + 1
2

6
2

7
2
n

q
1
2

· q + 1
2

=
(

27n

q

) 1
2

· q + 1
2

.

By assumption this is at most (q + 1)/2 and thus #V (k) > (q + 1)/2. 2

4.4 The role of the summation polynomials
Let the hypersurface H =Hn+1 of (P1

k)
n+1 be defined as in § 3.

By applying the scalar restriction functor, we obtain

ResKk (H)−→ ResKk ((P1
K)n+1)' (ResKk (P1

K))n+1.

Via base change to K one sees immediately that we have a closed immersion.
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Let X be the scheme-theoretic preimage of ResKk (H) in (P1
k)
n × ResKk (P1

K) under the closed
immersion ι× ι× · · · × ι× id : (P1

k)
n × ResKk (P1

K)−→ ResKk ((P1))n+1. This means by definition
that we have a Cartesian diagram.

X� _

��

� � // ResKk (H)� _

��
(P1
k)
n × ResKk (P1

K) � � // (ResKk (P1
K))n+1

(5)

Note that, again under the obvious bijections, the elements of X(k) correspond to the tuples
(Q1, . . . , Qn, Q) with Qi ∈ P1(k) and Q ∈ P1(K) with (Q1, . . . , Qn, Q) ∈H(K). The latter
condition means of course that there are P1, . . . , Pn, P ∈ E(K) with ϕ(Pi) =Qi, ϕ(P ) =Q and∑

i Pi = P .

Notation 4.12. Let p1 : (P1
k)
n × ResKk (P1

K)−→ (P1
k)
n and p2 : (P1

k)
n × ResKk (P1

K)−→ ResKk (P1
K)

be the two projections.

Lemma 4.13. (p1)|X :X −→ (P1
k)
n is a flat covering of degree 2(n−1)·n.

Proof. By Proposition 3.2(c) the projection to the first n components H −→ (P1
K)n is a flat

covering of degree 2n−1. Therefore the induced map ResKk (H)−→ ResKk ((P1
K)n)' (ResKk (P1

K))n

is a flat covering of degree 2(n−1)·n. The map (p1)|X :X −→ (P1
k)
n is obtained from this map via

base change with ι× · · · × ι : (P1
k)
n −→ (ResKk (P1

K))n. 2

Notation 4.14. Let G be the graph of −an : V n −→ ResKk (E), where an is the restriction of the
addition morphism to V n. (Note the minus sign!)

As in § 3, for m ∈ N, let Nm be the kernel of the addition morphism Em −→ E. One easily
sees that ResKk (Nm) is (as a subscheme of ResKk (Em)) the kernel of the addition homomorphism
on ResKk (Em). Now let N :=Nn+1. By considering Z-valued points for any k-scheme Z, one
obtains immediately the following.

Lemma 4.15. G is the scheme-theoretic intersection of V n × ResKk (E) and ResKk (N) in
ResKk (En+1)' (ResKk (E))n+1.

Proposition 4.16. There is a canonical surjective morphism G−→X. Moreover, if
Condition 2.7 is satisfied, then X is geometrically irreducible.

Proof. Let us consider the commutative diagram

G � � //
� _

��

ResKk (N)
� _

��

''PPPPPPPPPPPP

X � � //
� _

��

ResKk (H)
� _

��

V n × ResKk (E)

))SSSSSSSSSSSSSS
� � // (ResKk (E))n+1

((QQQQQQQQQQQQQ

(P1
k)
n × ResKk (P1

K) � � // (ResKk (P1
K))n+1
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with the obvious canonical morphisms. As by definition of X the right-lower subdiagram
(i.e. diagram (5)) is Cartesian, we have an induced morphism G−→X.

It suffices to prove the surjectivity on k-valued points. Therefore let Q ∈X(k). As the map
N −→H is surjective, so is ResKk (N)−→ ResKk (H). Let us consider Q as a point in ResKk (H)(k),
and let us fix a preimage P ∈ ResKk (N)(k).

We claim that P lies in G(k), or in other words that the image of P in (ResKk (E))n+1(k) lies
in (V n × ResKk (E))(k). For this we have to check that the image of P in ResKk (P1

K)(k) lies in
((P1)n × ResKk (P1

K))(k). But this is obvious as the image is nothing but the point Q we started
with.

Now let Condition 2.7 be satisfied. By Proposition 4.9, V is then geometrically reduced and
geometrically irreducible; thus so is V n, which is isomorphic to the graph G. As the map G−→X
is surjective, X is then also geometrically irreducible. 2

Let us now fix some Q ∈ P1(K). Following our notation, let Q} be the corresponding
k-rational point of ResKk (P1

K). Let XQ} be the fiber of X at Q}, that is, we have the following
Cartesian diagram.

XQ}
� � //

� _

��

X� _

��
(P1
k)
n � � //

��

(P1
k)
n × ResKk (P1

K)

��
Spec(k) � � Q} // ResKk (P1

K)

Then we have the following connection with the decomposition problem.

Proposition 4.17. As a subscheme of (P1
k)
n, XQ} is V (S(1), . . . , S(n)), where the polynomials

S(j) ∈ k[X1, Y1, . . . , Xn, Yn] are defined as in (2).

We first show the following lemma.

Lemma 4.18. Let HQ ⊂ (P1
K)n be the restriction of H to (P1

K)n via the closed immersion
id× · · · × id×Q : (P1

K)n ' (P1
K)n ×K Spec(K)−→ (P1

K)n+1. Then we have a Cartesian diagram

XQ}
� � //

� _

��

ResKk (HQ)
� _

��
(P1
k)
n � � // (ResKk (P1

K))n

where the lower arrow is given by ι× · · · × ι.

Proof. We have ResKk (Spec(K)) = Spec(k) and ResKk (Q) =Q}. By Lemma 4.1 the defining
Cartesian diagram

HQ
� � //

� _

��

H� _

��
(P1
K)n � � // (P1)n+1

97

https://doi.org/10.1112/S0010437X10005075 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005075


C. Diem

gives rise to the Cartesian diagram

ResKk (HQ) � � //
� _

��

ResKk (H)
� _

��
(ResKk (P1

K))n � � // (ResKk (P1
K))n+1

where the lower arrow is given by id× · · · × id×Q} : (ResKk (P1
K))n ' (ResKk (P1

K))n ×k
Spec(k)−→ (ResKk (P1

K))n+1.
Now XQ} is the pull-back of ResKk (H) to (P1

k)
n under the map ι× · · · × ι×Q} : (P1

k)
n '

(P1
k)
n ×k Spec(k)−→ (ResKk (P1

K))n+1. This implies that we have a Cartesian diagram

XQ}
� � //

� _

��

ResKk (HQ) � � //
� _

��

ResKk (H)
� _

��
(P1)nk

� � // (ResKk (P1
K))n � � // (ResKk (P1

K))n+1

2

We come to the proof of Proposition 4.17.
By Lemmas 4.18 and 4.2 we have a commutative diagram

XQ} � p

!!CC
CC

CC
CC

∼ // Res(P1
K)n

(P1
k)
n (HQ)

yyssssssssss

(P1
k)
n

where the arrow to the left is the structural morphism, which of course is then also a closed
immersion.

To establish the result we thus have to show that, as a closed subscheme of (P1
k)
n,

Res(P1
K)n

(P1
k)
n (HQ) is equal to V (S(1), . . . , S(n)).

Now let Sϕ,n+1 be the same summation polynomial as in § 2.1 (recall that the (n+ 1)th
summation polynomial with respect to ϕ is only unique up to multiplication by a non-trivial
constant). Also, let b1, . . . , bn be the fixed k-basis of K from § 2.1. Note that b1, . . . , bn
is then also a basis of the free k[x1, . . . , xn]-module K[x1, . . . , xn]. Moreover, let S′ :=
Sϕ,n+1(X1, Y1, . . . , Xn, Yn, Q) be the polynomial obtained by inserting the same coordinates
of Q= ϕ(P ) into the summation polynomial as in § 2.1 (again these are only unique up to
multiplication by a non-trivial constant).

We now prove the result by restriction to affine parts of (P1
k)
n.

Let, for the moment, Xi,1 :=Xi and Xi,2 := Yi. Moreover, let, for some multihomoge-
neous polynomial F ∈ k[X1, Y1, . . . , Xn, Yn], UF := (P1

k)
n − V (F ) be the corresponding open

subscheme.
One can now show that, for any a ∈ {1, 2}n, the restrictions of both schemes to UX1,a1

∩
UX2,a2

∩ · · · ∩ UXn,an are equal, and this implies that the schemes are equal. For notational
convenience we consider in the following the case of a= (2, . . . , 2) (‘dehomogenization with
respect to Y1, . . . , Yn’); the other cases can be established in exactly the same way.
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Let s(x1, . . . , xn) := S′(x1, 1, x2, 1, . . . , xn, 1) ∈K[x1, . . . , xn]. Then HQ ∩ An
k ⊆ An

k =
Spec(k[x1, . . . , xn]) corresponds to the quotient ring k[x1, . . . , xn]/(s) of k[x1, . . . , xn].

As the formation of the Weil restriction commutes with base change on the base, we have
(Res(P1

K)n

(P1
k)
n (HQ)) ∩ An

k = ResAnK
Ank

(HQ ∩ An
K) as closed subschemes of An

k . A defining system of poly-
nomials for ResAnK

Ank
(HQ ∩ An

K) can be derived via the well-known method to obtain defining
equations for Weil restrictions of affine schemes over rings (see, for example, [Die01, ch. 1] or the
proof of [BLR80, § 7.6, Theorem 4]).

Let s(1), . . . , s(n) ∈ k[x1, . . . , xn] be defined by the equation∑
j

bjs
(j) = s.

Then ResAnK
Ank

(HQ ∩ An
K) = Spec(k[x1, . . . , xn]/(s(1), . . . , s(n))) = V (s(1), . . . , s(n))⊂ An

k . But the

s(j) are exactly the dehomogenizations of the polynomials S(j), and thus (XQ}) ∩ An
k =

(Res(P1
K)n

(P1
k)
n (HQ)) ∩ An

k = ResAnK
Ank

(HQ ∩ An
K) = V (s(1), . . . , s(n)) = V (S(1), . . . , S(n)) ∩ An

k as sub-
schemes of An

k . 2

4.5 Determination of non-zero-dimensional fibers
For the analysis of the algorithm we are interested in the number of points Q ∈ P1(K) for which
the fiber XQ} = p−1

2 (Q}) is not zero-dimensional. For this we first consider a base change to K,
such that XK is a closed subscheme of (P1

K)n × (P1
K)n, and we perform explicit computations in

the Chow ring of (P1
K)n × (P1

K)n. We identify for notational reasons (P1)n × (P1)n componentwise
with

∏n
i=1 Proj(Z[X1,i, Y1,i])×

∏n
i=1 Proj(Z[X2,i, Y2,i]), and let h`,i be the class of X`,i in the

Chow ring of (P1
K)n × (P1

K)n.

Lemma 4.19. The class of XK in CH((P1
K)n × (P1

K)n) is 2(n−1)·n∏n
i=1(h1,1 + · · ·+ h1,n + h2,i).

Proof. XK is defined inside (P1
K)n × (P1

K)n by the polynomials

Fj := Sϕ,n+1(X1,1, Y1,1, . . . , X1,n, Y1,n, X2,j , Y2,j)

for j = 1, . . . , n. One can easily see with this explicit description that, for all `= 2, . . . , n,
V (F1, . . . , F`−1) meets V (F`) properly.

Indeed, let C be an irreducibility component of V (F1, . . . , F`−1). Then C = C ′ × (P1
K)n−`+1

for some C ′ ⊆ (P1
K)n × (P1

K)`−1. Let (Q1, Q2) ∈ C ′(K), where Q1 ∈ (P1)n(K) and Q2 ∈
(P1)`−1(K). Now there are at most 2n−1 points in Q3 ∈ P1(K) with F`(Q1, Q3) = 0. Choose
some Q3 ∈ P1(K) which is distinct from these points, and choose Q4 ∈ (P1)n−`(K) arbitrarily.
Then (Q1, Q2, Q3, Q4) is a K-valued point of C which does not lie in V (F`)(K).

By Axiom A7 on intersection theory in [Har77, Appendix A] we conclude that [XK ] =
[V (F1)] · · · [V (Fn)] in the Chow ring of (P1

K)n × (P1
K)n. Moreover, [V (Fj)] = 2n−1(h1,1 + · · ·+

h1,n + h2,j). This gives the statement. 2

Lemma 4.20. The map (p2)|X is surjective.

Proof. There are two possible ways to prove this statement.
First, by the previous lemma and Lemma 4.6 we have ((p2)K)∗([XK ]) = n! · 2(n−1)·n; thus

(p2)K(XK) is equal to the ambient space
∏n
i=1 Proj(K[X2,i, Y2,i]).
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Second, Let Q= (Q1, . . . , Qn) ∈
∏n
i=1 Proj(K[X2,i, Y2,i])(K). Then the geometric fiber XQ

is the subscheme of
∏n
i=1 Proj(K[X1,i, Y1,i]) defined by Fi(X1,1, Y1,n, . . . , X1,n, Y1,n, Qi) for

i= 1, . . . , n. We see in particular that the fiber is never empty. More precisely, if it is zero-
dimensional then its degree is n! · 2(n−1)·n. 2

Remark 4.21. From the fact that (p2)|X is surjective one can easily deduce that the map
an : V n −→ ResKk (E) is also surjective.

Now let qi :
∏n
i=1(Proj(K[X1,i, Y1,i]))−→ Proj(K[X1,i, Y1,i]) be the projection to the ith

component.
For some Q ∈

∏n
i=1(Proj(K[X2,i, Y2,i]))(K) the geometric fiber XQ (which is contained in∏n

i=1 Proj(K[X1,i, Y1,i])) is zero-dimensional if and only if for no i= 1, . . . , n the image of XQ

under qi is equal to Proj(K[X1,i, Y1,i]).
Let Ri ∈K[X1,i, Y1,i, X2,1, Y2,1, . . . , X2,n, Y2,n] be the multigraded resultant of F1, . . . , Fn

with respect to the variables X1,1, Y1,1, . . . , X1,i−1, Y1,i−1, X1,i+1, Y1,i+1, . . . , X1,n, Y1,n. Let Q=
(Q1, . . . , Qn) ∈

∏n
i=1 Proj(K[X2,i, Y2,i])(K). Then qi(XQ) = Proj(K[X1,i, Y1,i]) if and only if

Ri(Xi, Yi, Q1, . . . , Qn) = 0. Thus the geometric fiber XQ is zero-dimensional if and only if, for
all i= 1, . . . , n, Ri(Xi, Yi, Q1, . . . , Qn) is non-trivial.

Note now that not all fibers are non-zero-dimensional because X has dimension n (see
Lemma 4.13) and (P1

K)n has dimension n too. Thus the polynomials R1, . . . , Rn are all non-
trivial.

Lemma 4.22. Each polynomial Ri has multidegree (n! · 2(n−1)·n, (n− 1)! · 2(n−1)·n, . . . ,
(n− 1)! · 2(n−1)·n).

Proof. The polynomials F1, . . . , Fn have multidegree (2n−1, . . . , 2n−1) ∈ Nn−1 with respect
to the variables under consideration. By Lemma 4.7 the corresponding generic resultant is
homogeneous in the coefficients of each of the polynomials of degree (n− 1)! · 2(n−1)2 . Now, for
j = 1, . . . , n, Fj has degree 2n−1 with respect to X2,j , Y2,j , and these variables do not occur in F`
for ` 6= j. This implies that the degree of Ri with respect to X2,j , Y2,j is (n− 1)! · 2(n−1)2 · 2n−1 =
(n− 1)! · 2(n−1)·n. Moreover, each polynomial F` has degree 2n−1 with respect to X1,i, Y1,i and
therefore the degree of Ri with respect to X1,i, Y1,i is (n− 1)! · 2(n−1)2 · n · 2n−1 = n! · 2(n−1)·n. 2

Let us now for every i= 1, . . . , n fix some non-trivial coefficient Ci of Ri regarded
as a polynomial in K[X2,n, Y2,n, . . . , X2,n, Y2,n][X1,i, Y1,i]. Then clearly the points Q ∈∏n
i=1

∏
Proj(K[X2,i, Y2,i]) for which the fiber XQ is not zero-dimensional are contained in

n⋃
i=1

V (Ci)⊆ (P1
K)n.

Let us fix some i= 1, . . . , n. Then V (Ci) is an effective Cartier divisor of multidegree
((n− 1)! · 2(n−1)·n, . . . , (n− 1)! · 2(n−1)·n) in

∏n
i=1 Proj(K[X2,i, Y2,i]), and (p2)−1

K (V (Ci)) is an
effective Cartier divisor of multidegree (0, . . . , 0, (n− 1)! · 2(n−1)·n, . . . , (n− 1)! · 2(n−1)·n) in
(P1
K)n × (P1

K)n.
It follows that

[XK ] · [(p2)−1
K (V (Ci))]

= (n− 1)! · 22(n−1)·n ·
( n∏
i=1

(h1,1 + · · ·+ h1,n + h2,i)
)
· (h2,1 + · · ·+ h2,n)
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in CH((P1
K)n × (P1

K)n). With Lemma 4.6 this implies that

((p1)K)∗([XK ] · [(p2)−1
K (V (Ci))]) = (n− 1)! · 22(n−1)·n · n · (h1,1 + · · ·+ h1,n)

= n! · 22(n−1)·n · (h1,1 + · · ·+ h1,n). (6)

Assumption 4.23. Let us from now on assume that Condition 2.7 is satisfied.

Notation 4.24. Let k = Fq (such that K = Fqn).

Recall that X is now geometrically irreducible (Proposition 4.16). Clearly XK is not contained
in (p2)−1

K (V (Ci)) (because otherwise (p2)K(XK) would be contained in V (Ci), contradicting the
surjectivity of p2). Thus we have [XK ] · [(p2)−1

K (V (Ci))] = [XK ∩ (p2)−1
K (V (Ci))] by Axiom A7

on intersection theory in [Har77, Appendix A]. As the map (p1)K :XK −→
∏n
i=1 Proj([X1,i, Y1,i])

is finite and flat (cf. Lemma 4.13), the dimension of (p1)K(XK ∩ Ci) is equal to the dimension
of XK ∩ Ci. With (6) we conclude the following lemma.

Lemma 4.25. (p1)K(XK ∩ Ci) (with the induced reduced scheme structure) is a reduced
effective Cartier divisor of

∏n
i=1 Proj([X1,i, Y1,i]) whose multidegree is componentwise at most

(n! · 22(n−1)·n, . . . , n! · 22(n−1)·n).

The subscheme
n⋃
i=1

n−1⋃
j=0

σj((p1)K(XK ∩ Ci))

of
∏n
i=1 Proj([X1,i, Y1,i]) is Gal(K|k)-invariant. It thus descends to a subscheme of (P1

k)
n; let B

be this scheme.

Lemma 4.26. (a) B is a reduced effective Cartier divisor whose multidegree is componentwise
at most (n2 · n! · 22(n−1)·n, . . . , n2 · n! · 22(n−1)·n).

(b) Let Q ∈ (P1(k))n −B(k), and let Q′ be any preimage of Q under p1. Then the fiber
Xp2(Q′) is zero-dimensional.

(c) There are at most n3 · n! · 22(n−1)·n · (q + 1)n−1 points in B(k).

Proof. Let Ai be a multihomogeneous polynomial defining (p1)K(XK ∩ Ci). Then B is
V (
∏n−1
j=0 σ

j(A1 · · ·An))red. The polynomial in question has a multidegree which is componentwise
at most (n2 · n! · 22(n−1)·n, . . . , n2 · n! · 22(n−1)·n).

Statement (b) follows immediately from the definition of B.
Statement (c) follows from (a) and the following lemma. 2

Lemma 4.27. Let H be an effective Cartier divisor of multidegree d in (P1
k)
n. Then

#H(k) 6

( n∑
i=1

di

)
· (q + 1)n−1.

Proof. It clearly suffices to show the result under the condition that all entries of the multidegree
are positive.

We proceed with induction by n. For n= 1 the claim is that #H(k) 6 d1, and this is surely
correct.

Now let H be defined by the polynomial F (X1, Y1, . . . , Xn, Yn) ∈ k[X1, Y1, . . . , Xn, Yn]. Let
us consider the projection to the first n− 1 components (P1

k)
n −→ (P1

k)
n−1 and the induced
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morphism H −→ (P1
k)
n−1. Now, for every point P = (P1, . . . , Pn−1) ∈ (P1

k)
n−1(k) for which

F (P1, . . . , Pn−1, Xn, Yn) does not vanish, the fiber has degree dn; thus, in particular, it contains
at most dn k-rational points. Now let C be a non-trivial coefficient of F regarded as a
polynomial in k[X1, Y1, . . . , Xn−1, Yn−1][Xn, Yn]. Then all points P ∈ (P1

k)
n−1(k) for which

F (P1, . . . , Pn−1, Xn, Yn) vanishes are contained in V (C). Now C has multidegree (d1, . . . , dn−1),
and thus #V (C)(k) 6 (

∑n−1
i=1 di) · (q + 1)n−2 by induction. We conclude that

#H(k) 6 dn · (q + 1)n−1 + #V (C)(k) · (q + 1)

6 dn · (q + 1)n−1 +
(n−1∑
i=1

di

)
· (q + 1)n−1

=
( n∑
i=1

di

)
· (q + 1)n−1. 2

Given an element P ∈ E(K), there is a ϕ-isolated decomposition of P if and only if the fiber
Xϕ(P )} contains an isolated k-rational point (Q1, . . . , Qn) such that there exist P1, . . . , Pn ∈
E(K) with ϕ(Pi) =Qi and

∑
i Pi = P . This is, in particular, the case if the fiber is zero-

dimensional and contains such a k-rational point.
We want to derive a lower bound on the number of such elements P ∈ E(K).
In [Die09], among other things we study the complexity of the elliptic curve discrete logarithm

problem restricted to curves over extension fields with a fixed extension degree n. In preparation
for this, we now proceed a bit more generally.

Given any subset M of {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) ∀i= 1, . . . , n}, we want to
derive a lower bound on the number of elements P ∈ E(K) such that the fiber Xϕ(P )} is zero-
dimensional and contains a k-rational point (Q1, . . . , Qn) such that there exist P1, . . . , Pn ∈
E(K) with ϕ(Pi) =Qi and

∑
i Pi = P .

For this, let us consider the commutative diagram of sets of k-valued points,

G(k)
ρ // X(k)

(p1)|X
��

V n(k)

γ

OO

τ //
∏n
i=1 Proj(k[X1,i, Y1,i])(k)

where the map γ : V (k)−→G(k) is induced by the graph morphism, that is, it is explicitly given
by (P1, . . . , Pn) 7→ (P1, . . . , Pn,−

∑
i Pi), the map ρ :G(k)−→X(k) is induced by the morphism

G−→X defined in Proposition 4.16, and the map τ : V n(k)−→
∏n
i=1 Proj(k[X1,i, Y1,i])(k) is

induced componentwise by the canonical morphism in diagram (3).
Note that, under the scalar restriction functor and in the context of the index calculus

algorithm for the theorem, V (k) corresponds to the factor base F = {P ∈ E(K) | ϕ(P ) ∈ P1(k)},
G(k) corresponds to the set of tuples (P1, . . . , Pn, P ) with ϕ(Pi) ∈ P1(k) and P =−

∑
i Pi, and

X(k) corresponds to the set of tuples (Q1, . . . , Qn, Q) with Qi ∈ P1(k) and Q ∈ P1(K)
and Sn+1(Q1, . . . , Qn, Q) = 0. The map γ then corresponds to the map which is again given by
(P1, . . . , Pn) 7→ (P1, . . . , Pn,−

∑
i Pi), and the maps ρ and τ correspond to the componentwise

application of ϕ.
Let M ⊆ {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) ∀i= 1, . . . , n}, and let M} be the corres-

ponding subset of V n(k). Then every element P ∈ E(K) such that ϕ(P )} ∈ ResKk (P1
K)(k)

is the image under p2 of an element in (ρ ◦ γ)(M})− p−1
1 (B(k)) is an element as desired.
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(Indeed, if P is such an element, first the fiber Xϕ(P )} is zero-dimensional by Lemma 4.26(b), and
second there exist P1, . . . , Pn ∈M with ϕ(P1 + · · ·+ Pn) = ϕ(P ), thus P1 + · · ·+ Pn =±P .)

We are thus interested in the cardinality of the set

p2((ρ ◦ γ)(M})− p−1
1 (B(k))).

For this we first derive a lower bound on

(ρ ◦ γ)(M})− p−1
1 (B(k)).

The image of this set in
∏n
i=1 Proj(k[X1,i, Y1,i])(k) is contained in

τ(M})−B(k).

As τ corresponds to the componentwise application of ϕ, we have #τ(M}) > (1/2n)#M} =
(1/2n)#M .

With Lemma 4.26(c) we obtain

#((ρ ◦ γ)(M})− p−1
1 (B(k))) > #(τ(M})−B(k))

>
#M
2n
− n3 · n! · 22(n−1)·n · (q + 1)n−1. (7)

Now if an element Q in the set p2((ρ ◦ γ)(V n(k))− p−1
1 (B(k))) is given, the fiber of p2(Q)

under p2 is zero-dimensional, and thus its degree is n! · 2(n−1)·n (see the proof of Lemma 4.20).
We therefore have the following proposition.

Proposition 4.28. Let

M ⊆ {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) ∀i= 1, . . . , n}.

Then the number of elements P ∈ E(K) such that there exists a ϕ-isolated decomposition
(P1, . . . , Pn) of ±P with P1, . . . , Pn ∈M is

>
#M − n3 · 22n2−n · (q + 1)n−1

n! · 2n2 .

We now apply this proposition with M} = V (k). By Proposition 4.11 for log2(q) > 7n
and n> 2 we have #V (k) > (q + 1)/2; thus #V n(k) > (q + 1)n/2n. With Proposition 4.28 we
obtain that the number of elements P ∈ E(K) such that there exist P1, . . . , Pn ∈ E(K) with
ϕ(Pi) ∈ P1(k) and

∑
i Pi = P is

>
(q + 1)n−1

n! · 2n·(n+1)
· (q + 1− n3 · 22n2

).

Now let ε > 0. Then for n large enough this is

>
qn−1

n! · 2n·(n+1)
·
(
q − 1

2
· 2(2+ε)·n2

)
.

Then for log2(q) > (2 + ε) · n2 this is

>
qn

n! · 2n·(n+1)+1
.

Again for n large enough and log2(q) > (2 + ε) · n2 this is

> 2 · qn−
1
2 .

We therefore have the following proposition.
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Proposition 4.29. Let ε > 0. Then for n large enough and (2 + ε) · n2 6 log2(q) there are at

least 2 · qn−
1
2 elements in E(K) which have ϕ-isolated decompositions.

This implies Proposition 2.9, the main result for the analysis of the decomposition algorithm
in § 2.1.
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BCP97 W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,

J. Symbolic Comput. 24 (1997), 235–265.
Can90 J. Canny, Generalized characteristic polynomials, J. Symbolic. Comput. 9 (1990), 241–250.
Die01 C. Diem, A study on theoretical and practical aspects of Weil-restrictions of varieties, PhD thesis,

University of Essen (2001).
Die09 C. Diem, On the discrete logarithm problem in class groups of curves. Math. Comp. (2009),

doi: 10.1090/S0025-5718-2010-02281-1.
Ful84 W. Fulton, Intersection theory (Springer, Berlin, 1984).
Ful93 W. Fulton, Introduction to toric varieties (Princeton University Press, Princeton, NJ, 1993).
Gau09 P. Gaudry, Index calculus for abelian varieties of small dimension and the elliptic curve discrete

logarithm problem, J. Symbolic. Comput. 44 (2009), 1690–1702.
GKZ94 I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, resultants, and multidimensional

determinants (Birkhäuser, Basel, 1994).
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