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What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of
model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to
model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the
model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model
parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters
from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is
defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs
(stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by
ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands
mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of
pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of
structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are
(i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling,
(ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use
identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models.
By using illustrative examples that include published mathematical models describing lactation in cattle, we show how structural
identifiability analysis can contribute to advancing mathematical modelling in animal science towards the production of useful
models and, moreover, highly informative experiments via optimal experiment design. Rather than attempting to impose a
systematic identifiability analysis to the modelling community during model developments, we wish to open a window towards the
discovery of a powerful tool for model construction and experiment design.
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Implications

Mathematical modelling has played a central role in animal
science with a plethora of developments for enhancing
understanding and guiding sustainable livestock farming.
Progress in precision farming and omics technologies will call
for model developments adapted to get the most out of the
resulting big data, including better modelling practice. Our
objective is of providing insight into a mathematical tool
called structural identifiability analysis that has been seldom
used for analysing dynamic models in animal science. We
illustrate how this tool (when relevant) can contribute to

advancing mathematical modelling towards the production
of useful models and optimal experiments.

Introduction

The development of mathematical models in animal science
has contributed to gaining insight in different central aspects
of animal physiology such as metabolism and digestion. The
potential of modelling has been discussed by different authors
(France, 1988; Baldwin, 2000; Doeschl-Wilson, 2011).
A classical modelling approach for describing the dynamics

of a system under study is to construct dynamic models con-
sisting of ordinary differential equations (ODEs). These models
comprise parameters (sometimes in large number) whose
numerical values need to be estimated from experimental data† E-mail: rafael.munoztamayo@agroparistech.fr
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by an adequate calibration routine. In animal science model-
ling, it is a common practice to assess model adequacy by
statistical analysis applied on observed experimental data
relative to the variables predicted by the calibrated model
(Tedeschi, 2006). However, little attention has been paid to
analytic tools that exploit the mathematical properties of the
model equations. For example, it is a typical situation to
encounter difficulties when tackling model calibration due to
the lack of experimental data on key system variables.
Accordingly, before performing the model calibration, one
might want to know if finding unique best values for the
model parameters is possible given an experimental setup
with specified measurements. The theoretical ability to recover
the best model parameters uniquely is called structural (a
priori) identifiability of parameters (Bellman and Astrom,
1970). Structural identifiability is a prerequisite for ensuring
that the model calibration problem is well-posed (that it is a
problem whose solution is unique). This property is only based
on the model structure (see Table 1 for a definition) and is
independent of the accuracy of experimental data. When the
identifiability issue is addressed by taking into account the
type and quality of available data, we refer to practical
(a posteriori) identifiability. This paper is centred on the
question of structural identifiability for models described by
ODEs in animal science. Structural identifiability has been
largely addressed by the community of control engineering
and system identification (Walter and Pronzato, 1997). In
animal science, identifiability analysis has been performed to
analyse statistical models focussed on animal breeding and
genetics (Wu et al., 2010). With respect to dynamic ODE
models, although the notion of structural identifiability was
already introduced to the community (Boston et al., 2007),
identifiability analysis has been rarely addressed (we found
only one reference of a mastitis transmission model (White
et al., 2002)). The lack of pervasiveness of identifiability ana-
lysis is also found in other domains of biological modelling
(Roper et al., 2010; Chis et al., 2011b). A possible explanation
of this situation is that very often identifiability analysis turns
out to be difficult and demands expert knowledge on mathe-
matical technicalities. Within this context, in this paper we
address the structural identifiability analysis from a practitioner
perspective by capitalizing on the use of dedicated software
tools. Our objectives are (i) to explain simply the notion of
structural identifiability for the community of animal science
modelling, (ii) to assess its relevance in this context and (iii) to
motivate the community to the use of identifiability analysis in
its modelling practice (when the concept is relevant). We want
to emphasize that it is not our intention to impose on the
modelling community a requirement to perform systematically
identifiability analysis in their model developments. Instead,
we want to open a window towards the discovery of a pow-
erful tool for model construction and experiment design.
For the sake of clarity, in Table 1, we define the terms to be

used in what follows. We focus mainly on dynamic models,
although many aspects of what will be discussed are generic.
For illustration purposes, we will use as a work-horse
mathematical models describing lactation in cattle. When

needed, alternative models will be used to tackle specific
scenarios.
The paper is organized as follows. First, a brief theoretical

background on parameter identification and structural
identifiability will be presented. The relevance of structural
identifiability analysis will be further discussed by case
studies. After, we will discuss the framework of practical
identifiability and optimal experiment design (OED) to
illustrate the usefulness of the theoretical principles
presented here on the conception of experimental protocols.
Finally, the main conclusions of the work will be summarized.

Theoretical framework

Model calibration
Model calibration is the step that connects the model with the
system under study. Once experimental data on the system
are available and a model structure has been defined, the
calibration (parameter identification) translates into an
optimization problem, namely that of finding a set of para-
meters that best fits the variables predicted by the model to
the data. It should be said that defining a model structure is a
challenging task that represents the core of the modelling
building process. Figure 1 displays a possible scheme of the
parameter identification process. Here, we consider a dynamic
system subjected to an external forcing variable (input), from
which we have built a mathematical model. From this system,
we have collected measurements at different times of some
quantities that characterize the behaviour of the system. We
aim to minimize the distance between the measured quan-
tities and their corresponding model-predicted variables
(observables). That is, we aim for the error (the difference
between measurements and observables) to be minimum in
some sense. After defining a cost function of the error (e.g. the
least square error), the calibration consists of adjusting the
model parameters by an optimization algorithm that
minimizes the defined cost function. There are a wealth of
software packages for tackling the parameter identification
problem (Maiwald and Timmer, 2008; Muñoz-Tamayo et al.,
2009; Balsa-Canto and Banga, 2011).
The parameter identification problem is often an ill-posed

problem (it is a problem whose solution is not unique). This
characteristic is the result of different aspects related to
model structure, experimental data and numerical algo-
rithms (Walter and Pronzato, 1997; Vargas-Villamil and
Tedeschi, 2014). Ideally, we expect that the problem solution
provides reliable numerical values of the parameters. In the
following section, we discussed tools for tackling the para-
meter identification problem.

Structural identifiability
Once the structure of a model is fixed and before attempting
a numerical estimation of the model parameters, we might
want to know if we have chances of succeeding in estimating
unique optimal values of the model parameters from a given
experimental setup. As previously mentioned, the possibility
of recovering uniquely the model parameters relates to the
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Table 1 Definition of terms used in the manuscript

Term Definition

System In the modelling context, a system is a conceptual abstraction and simplification of the object under study (reality). A
system consists of a set of inter-related components that interact and react as a whole to external or internal stimuli
(Spedding, 1988). The system is delimited by spatial and temporal boundaries. The definition of a system sets the basis
for model construction. It is of common usage to refer to the object under study as a system. Hence, we talk about system
dynamics, system behaviour, etc.

Model Set of mathematical equations derived from an abstraction and simplification of the real world (Spedding, 1988). A model
is therefore a subjective formalization of knowledge on the system under study. Model construction can be motivated by
two main targets: (1) understanding the functions of the system and (2) predicting the response of a set of variables for a
given set of inputs

When the modelling target is that of understanding system functioning, model construction intends to describe at least
partly the mechanisms that underlie the behaviour of the system under study by describing some individual elements of
the system and their mutual inter-relation. In this case, the resulting model is referred to as a mechanistic model. A
compartmental model describing the set of reactions in a metabolic pathway is an example of mechanistic model
When a model allows prediction of the time trajectories of a set of variables, the model is referred to as a dynamic model.
Dynamic models are often described by ordinary differential equations (ODE). These models are, by construction, mostly
mechanistic

State variables An ODE model is often referred to as a state-space model. It consists of equations describing the derivatives of
characterizing variables with respect to time. These variables are called state variables. They represent the memory that
the system has of its past (Khalil, 2000). They also represent systems properties such as a substrate concentration or an
organ’s weight (France, 1988)

Observables Subset of the predicted variables of a model that, with respect to a defined experimental setting, can be observed
(measured). In a dynamic model, they can be state variables (e.g. BW in an animal model) or a function of the state
variables (e.g. the pH in a rumen fermentation model). In ODE models, observables are often referred to as model outputs

Inputs In the dynamic modelling context, inputs are forcing variables (stimuli or challenges) external to the system that influences
the system dynamics. For example, in a mathematical model of animal digestion, the food intake rate can be a model
input

Parameters Scalars (assumed here to be constant) that allow the evaluation of the functions that describe the model equations. The
parameters may have known values (e.g. physical constants such as the Avogadro number), or may need to be estimated
from experimental data via model calibration

Model structure The model structure refers to the set of mathematical functions that specify the coupling between the state variables, the
inputs and observables (Bellman and Astrom, 1970). A structural property is derived from the model equations and is
(almost) independent of the values of the parameters (Walter and Pronzato, 1997). The linearity/nonlinearity of a model
with respect to its parameters is an example of a structural property

Model complexity Throughout the manuscript, model complexity refers to the high-dimensionality of a model in terms of its parameters and
state variables. In addition, complexity is also related to the model structure: at the same number of state variables and
parameters, a nonlinear model is more complex than a linear model

Model calibration The action of using a mathematical (numerical) routine for finding the value of unknown parameters of a model that best fit
an experimental data set. The problem of finding the model parameters (an inverse problem) is formulated as the
minimization of an adequate measure of the distance between the model observables and the experimental data. Model
calibration is also called parameter identification (or estimation) and model fitting

Over-parameterization Development of models that contain more parameters than are needed to adequately describe the responses observed
(Baranyi et al., 1996)

Figure 1 Scheme of the parameter identification process. A model structure has been defined to represent the dynamics of a system under study. Dashed
lines represent the system (real world) and solid lines represent the virtual mathematical/numerical world. By an experimental protocol, dynamic
measurements of some quantities characterizing the system behaviour have been collected. The model parameters are identified by an optimization
algorithm that minimizes the model errors (distance between the measured quantities and the model observables).
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mathematical property of structural identifiability, which is
addressed on the sole basis of the model structure within a
hypothetical ideal experiment determined by a setting of
model inputs (stimuli) and observable variables (measure-
ments). In this theoretical framework, it is assumed that the
model represents perfectly the system, the observables are
noise-free, and the inputs can be chosen freely to provide a
sufficient excitation on the model response.
The property of structural identifiability is independent of

real experimental data and is determined as follows. Let
M(p) be a fixed model structure with a set of parameters
p= p1; � � � ;pnp

� �
. M(p) describes the relationship between

input variables and observables. Let us denote by M(p)=
M(p*) the equality of the input–output behaviour of the
model structure obtained for the two parameter sets p,p*.
A parameter pi (i= 1,… , np) is structurally identifiable if
the equality M(p)=M(p*) implies that pi =p�

i , that is

M pð Þ=M p�ð Þ ) pi =p�
i (1)

To perform the analysis of identifiability, the equality
M(p)=M(p*) is translated into a set of equations in p. These
equations can often be put in the form of a set of polynomial
equations in p (parameterized by p*). If the resulting set of
equations has a unique solution for the parameter pi, the
parameter is said to be structurally globally identifiable. If the
number of solutions for pi is finite, the parameter is structu-
rally locally identifiable. If infinite solutions exist for pi, the
parameter is nonidentifiable. A model is structurally globally
(or locally) identifiable if all its parameters are structurally
globally (or locally) identifiable. A model is nonidentifiable if
at least one of its parameters is nonidentifiable. A mathe-
matical rigorous definition of structural identifiability is given
by Walter and Pronzato (1997).
Different mathematical methods exist for testing the

structural identifiability of dynamic models. The tools involved
include the Laplace transform, Taylor series, generating series,
similarity transformation and differential algebra. The inter-
ested reader is referred to the dedicated literature (Carson
et al., 1983; Walter and Pronzato, 1996; Chis et al., 2011b;
Raue et al., 2014). In Supplementary Material S1, the Laplace
transform, Taylor series expansion, and generating series
methods are described.
To illustrate the notion of structural identifiability, consider

the following model:
y= a·b·x. We assume a hypothetical experimental protocol

where x, y are measured. It is straightforward to conclude that
only the quantity a·b is uniquely identifiable, while the indi-
vidual parameters a, b are nonidentifiable. Nonidentifiability
might imply that the model is over-parameterized (see
Table 1). In this trivial example, it is clear that the model can
be defined by one parameter instead of two.
As mentioned in the Introduction, testing the identifiability

of a model might turn out to be difficult, demanding
expertise on mathematical technicalities (see Supplementary
Material S1). It is not our objective to go into the details of such
technicalities. Rather, we take a practitioner perspective
capitalizing on the developments of several software tools.

These tools facilitate identifiability analysis by the practitioner
(who does not have necessarily extensive knowledge in
identifiability theory). Some of the identifiability software are
as follows.
DAISY (Differential Algebra for Identifiability of SYstems)

(Bellu et al., 2007) which is implemented in the symbolic
language REDUCE, GenSSI (Generating Series for testing
Structural Identifiability) (Chis et al., 2011a) implemented in
Matlab® and the IdentifiabilityAnalysis application (Karlsson
et al., 2012) implemented in Mathematica. All of these three
toolbox are freely available. The identifiability methods used
by DAISY and GenSSI are explicitly referred in their acronyms.
The IdentifiabilityAnalysis application uses the exact arith-
metic rank approach. Although DAISY and GenSSI perform
global identifiability analysis, IdentifiabilityAnalysis performs
local identifiability analysis, but has the advantage of
allowing the analysis of complex models. Overall, the out-
come of these toolboxes is a qualitative report that displays
the parameters that are identifiable.

The relevance of identifiability

In the following, we discuss the relevance of the identifia-
bility question by means of five case studies with different
modelling objectives.

Case study 1: we would like to know if we have a chance of
succeeding in estimating uniquely the parameters of our model
The aim pursued here is of a mathematical nature. We want
to know if the parameter identification problem is well-
posed. Let us consider the mathematical model proposed by
Wood (1967) that describes the lactation curve in cattle. We
will refer to this model as MW. In this model, the daily milk
production by the mammary gland (y) is described by the
following γ type algebraic equation

y tð Þ= a � tb � exp �c � tð Þ (2)

where t is the time after calving and a, b, c are empirical
parameters that determine the shape of the curve. MW is not
an ODE model (although it can be transformed into an ODE by
simply deriving in time equation (2)). Since MW is relatively
simple, its identifiability can be assessed by inspection. Indeed,
by taking logarithms in both sides of equation (2), we obtain

ln y tð Þ= ln a +b � ln t�c � t (3)

If continuous data of milk yield are available, it can be
concluded that the model parameters are uniquely identifi-
able (Wood, 1967) and thus the parameter identification
problem is well-posed.

Case 2: we are interested in knowing the actual value of the
model parameters because of their biological relevance
In some cases, we are content with providing a model that
satisfactorily predicts a variable of interest without the need to
address identifiability issues. However, if our modelling
objective goes beyond the purely predictive scope and we aim
to improve the understanding of the phenomena that govern
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the system under study, the situation changes. In this case, we
can be interested in knowing the actual values of the model
parameters. In mechanistic models (see Table 1 for a defini-
tion), the parameters are biologically meaningful and we may
wish to identify them uniquely because of their relevance.
Let us consider the lactation curve model proposed by

Dijkstra et al. (1997), that we will refer to as MD. In contrast
toMW,MD was originally formulated as an ODE model. Both
models have equivalent predictive capabilities (Friggens
et al., 1999). InMD, the daily milk production is described by

dy
dt

= k1 � exp �k2 � tð Þ � y�k3 � y; y 0ð Þ= y0 (4)

with y0 the initial condition of milk production. The para-
meter k1 is the specific rate of secretory cell proliferation at
parturition, k2 a decay parameter that modulates the
proliferation of secretory cells and k3 a specific rate of cell
death. The analytical solution of MD is

y tð Þ= y0 � exp k1
k2

� 1�exp �k2 � tð Þ½ ��k3 � t
� �

(5)

For models with parameters that are biologically mean-
ingful, the question of identifiability appears relevant and
useful since knowing the actual value of the parameter can
be of help for providing biological insight on the system
under study. For example, we may wish to know unequi-
vocally the specific rate of secretory cell proliferation at
parturition (parameter k1) of MD. For that, we tested the
identifiability of MD in equation (4) with the DAISY toolbox;

DAISY handles models described by polynomial equations.
As MD has an exponential equation, the model was suitably
manipulated to facilitate the identifiability analysis as fol-
lows. We include a new state variable x1(t)= exp(− k2·t),
which results in the following ODEs

dy
dt

= k1 � x1 � y�k3 � y; y 0ð Þ= y0

dx1
dt

=�k2 � x1; x1 0ð Þ= 1 ð6Þ
If the milk yield is measured, the model parameters are

uniquely identifiable (see the DAISY output file in Table 2).
The computation time for the identifiability testing was <1 s
on an Intel processor of 3.20 GHz with 8.0 GB RAM.
To enlarge the discussion about the cases where iden-

tifiability is relevant, we tackled in Supplementary Material
S2, the identifiability analysis of a kinetic model of ruminal
lipolysis and biohydrogentation under in vitro conditions
(Moate et al., 2008). This model has the potential to be used
as primary scaffold for improving the mechanistic description
of rumen fermentation in existing models where lipid meta-
bolism is either represented in a simplified fashion (Baldwin
et al., 1987; Mills et al., 2001) or not accounted for (Muñoz-
Tamayo et al., 2016).

Case 3: the model should predict unobserved variables
The theoretical framework of structural identifiability
assumes perfect experimental data (noise-free and con-
tinuous in time). In addition, some hypotheses on the initial

Table 2 Output file of Differential Algebra for Identifiability of Systems (DAISY) resulting from the identifiability analysis of the lactation model of
Dijkstra et al. (1997). The model was suitably manipulated to be expressed with polynomial equations (a requirement of DAISY). The model is
structurally globally identifiable since the basis gi provides a unique solution for all the parameters

NUMBER OF EQUATIONS$ 
n_ := 3$ 
VARIABLES VECTOR$ 
b_ := {y1,x1,x2}$ 
UNKNOWN PARAMETER(S) VECTOR$ 
b1_ := {k1,k2,k3}$ 
NUMBER OF INPUT(S)$ 
nu_ := 0$ 
NUMBER OF OUTPUT(S)$ 
ny_ := 1$ 
NUMBER OF STATE(S) $ 
nx_ := 2$ 
MODEL EQUATION(S)$ 
c_ := {df(x1,t)=k1*x1*x2 - k3*x1,  
df(x2,t)= - k2*x2,y1=x1}$ 
CHARACTERISTIC SET$ 
aa_(1) := df(y1,t,2)*y1 - df(y1,t)**2 + df(y1,t)*y1*k2 + 
y1**2*k2*k3$ 
aa_(2) :=  - x1 + y1$ 
aa_(3) := df(y1,t) - x2*y1*k1 + y1*k3 
UNKNOWN PARAMETER(S) VECTOR$ 
b1i_ := {k1,k2,k3}$ 
RANDOMLY CHOSEN NUMERICAL PARAMETER(S ) VECTOR$ 
b2i_ := {k1=108,k2=111,k3=55}$ 
EXHAUSTIVE SUMMARY$ 
flist1i_ := {k2 - 111,k2*k3 - 6105,ic1*( - k1 + k3 + 53)}$ 
gi_ := {{k1=108,k3=55,k2=111}}$ 
MODEL GLOBALLY IDENTIFIABLE 
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conditions of the state variables need to be assumed. Initial
conditions can be assumed to be unknown or fixed. These
assumptions have implications on the results of identifiability
testing (Saccomani et al., 2003). We will use an example
borrowed from Balsa-Canto and Banga (2010), and further
discussed by Villaverde and Barreiro (2016). Let us consider a
system described perfectly by the following ODE model

dx1 tð Þ
dt

=p1 � x1 � x2; x1 0ð Þ= x10

dx2 tð Þ
dt

=p2 � u; x2 0ð Þ= x20

y1 tð Þ= x1 tð Þ ð7Þ
The model has two state variables (x1, x2) and one input

(u). Note that the input can be time-variant (u(t)). For illus-
tration purposes, we assume here that the input is known
and constant over time. Only the state variable x1 can be
measured. This condition is represented in the definition of
the observable variable y1. The initial conditions are set by a
hypothetical experimental protocol. By solving analytically
the model equations in equation (7), we obtain the following
equation for the model observable:

y1 tð Þ= x10 � exp p1 � x20 � t + 0:5 � p1 � p2 � u � t2� �
(8)

Let us now assume that the initial conditions are set to x10=1,
x20=0, which leads to y1 tð Þ= exp 0:5 � p1 � p2 � u � t2� �

. It is
clear that under these initial conditions, only the quantity p1·p2
can be recovered from the observable variable. Hence, we can
conclude that the model is nonidentifiable (i.e. p1, p2 cannot be
uniquely identified). This result implies that when performing
the calibration, infinite solutions can be found which will make
the calibration difficult.
Let us now assume that the model has the following true

parameter values: p1= 1.0, p2= 2.0 and the input is u= 1.0. By
true parameters we refer to the ideal assumption that the
model represents perfectly the system. In reality the true para-
meters are unknown. Now, under the hypothetical experi-
mental conditions, any set of parameters fulfilling the condition
p1·p2= 2.0 is a solution of the parameter identification pro-
blem. Assume that noise-free data are available and that the
optimization routine led to the following estimated parameters
p1= 2.0, p2= 1.0. Note that the parameters fulfil the relation-
ship p1·p2= 2.0. To demonstrate the relevance of structural
identifiability we compare the time series of x1 and x2 from the
model simulation using the true parameters and the set of
estimated parameters. This comparison was performed by
using the original initial conditions of the hypothetical experi-
mental protocol (x10= 1, x20= 0, Figure 2a) and an additional
set of initial conditions (x10= 1, x20= 0.5, Figure 2b).
From this example, the following conclusions can be drawn:

a. If our modelling objective is to predict the dynamics of x1,
we can think at first sight that the identifiability question
is irrelevant because whatever estimated parameters we
obtain, we will be able to predict x1. This reasoning,
however, needs to be taken with caution. If we
constrained our modelling scope to the experimental

protocol with initial conditions x10= 1, x20= 0, the
question of identifiability is indeed irrelevant. As observed
in the left top plot of Figure 2a, the response of the two
models evaluated with the true and estimated set of
parameters are identical and thus we will be content in
finding a set of parameters such that p1·p2= 2.0.
However, if we are interested in enlarging the prediction
capabilities of the model to a broader experimental
context, the question of identifiability becomes relevant
and necessary. We observe in the right top plot of
Figure 2b that the model response with estimated
parameters differs from the response with the true
parameters. This result implies that any prediction of x1
in a different experimental context from that used for the
model calibration will be wrong.

b. If, in addition to predicting the dynamics of x1, we are
interested in predicting x2, the identifiability question is of
greater relevance. The two bottom plots illustrate that if
structural identifiability cannot be guaranteed, the model
predictions of x2 will certainly be wrong.

The lack of identifiability of this model can easily be
reversed. Indeed, by simply setting x20> 0, the parameters p1,
p2 are uniquely identifiable. In Supplementary Material S1, we
show the structural identifiability analysis of this model by
using the Taylor series and the generating series methods. We
also analysed the parameter identifiability of the model using
DAISY. The identifiability analysis was performed in less than
one second. This example stresses the importance of the
design of an experimental protocol (including the initial con-
ditions) for guaranteeing structural identifiability.

Case 4: we attempt to use our model for testing hypotheses
that cannot be verified experimentally
In animal science, the lack of experimental data on key vari-
ables can lead to multiple model structures for representing

Figure 2 Relevance of structural identifiability analysis. The model
response with the true values of parameters p1= 1.0, p2= 2.0
(continuous blue lines) is compared with the model response with
parameters (p1= 2.0, p2= 1.0) obtained from a hypothetic calibration
scenario (dashed black lines) with initial conditions x10= 1, x20= 0 (a),
and where only x1 can be measured ideally (noise free). Under these
conditions, the model is nonidentifiable (only p1·p2 is identifiable). In (b),
the initial conditions are x10= 1, x20= 0.5. The parameters estimated
from the experimental conditions in (a) cannot provide accurate
predictions under other experimental conditions.

Muñoz-Tamayo, Puillet, Daniel, Sauvant, Martin, Taghipoor and Blavy

706

https://doi.org/10.1017/S1751731117002774 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731117002774


the same process (Sauvant, 1994). This multiplicity comes
from the subjective nature of model construction that makes
modelling similar to a form of art (Barnes, 1995). One of the
powerful applications of mathematical modelling is that of
providing a mean to address questions that are difficult to
tackle experimentally. These applications include the oppor-
tunity of modelling abstract/theoretical variables that cannot
be measured. We will illustrate this powerful role of models
with the topic of nutrient partitioning. This issue is central in
animal nutrition since the amount of nutrient that fuels a
function (such as growth or lactation) is the basis for
predicting nutrient requirements and develop feeding systems
and recommendations.
Nutrient partitioning is regulated by two systems: a short-

term system, namely homoeostatic system, and a long-term
system, namely homeorhetic system (Sauvant, 1994).
Homoeostasis regulations consists of an ensemble of adap-
tation and survival functions of an individual, such as
glycaemia regulation after a meal. Homeorhetic regulations
correspond to the orchestrated hormonal changes that drive
metabolism to support the succession of physiological states
that favour species survival. An example of a homeorhetic
regulation is the increase of body reserves mobilization in
early lactation to support milk production.
Different approaches exist to represent homeorhetic control

of nutrient partitioning (Friggens et al., 2013) but their com-
mon feature is the use of theoretical components to account
for complex underlying mechanisms. These theoretical vari-
ables are used in models as proxy for translating the effects of
mechanisms at underlying levels of organization. For instance,
the concept of ‘theoretical hormones’ or ‘meta-hormones’ has
been used to represent the driving forces of body reserves
changes (Hanigan et al., 2007). The concept of ‘priorities’ for
life functions has been used to investigate dynamic trajec-
tories of lactating ruminants (Puillet et al., 2008; Martin and
Sauvant, 2010). All these conceptual elements are used to
represent the result of complex mechanisms that control
nutrient partitioning and that are not possible to measure
experimentally. The incorporation of theoretical driving forces
in animal science modelling has been useful to move forward
in predicting animal responses to their nutritional environ-
ment; that is, coordinated responses of both body reserves
and milk production in the dairy goat (Puillet et al., 2008) and
in the dairy cow (Martin and Sauvant, 2010).
Let us consider in some detail the compartmental model

developed by Puillet et al. (2008) to represent a homeorhetic
regulatory system that controls body reserves changes and
milk production across parity in dairy goats. Model equa-
tions, based on a system of priorities, are:

dA tð Þ
dt

=�k1 � A;A 0ð Þ=A0

dB tð Þ
dt

= k1 � A�k2 � B;B 0ð Þ=B0

dC tð Þ
dt

= k2 � B;C 0ð Þ=C0 ð9Þ

where the state variables A, B, C represent, respectively, the
priorities for body reserves mobilization, milk production and
body reserves reconstitution. Simple mass-action kinetics
(determined by the kinetic parameters k1, k2) are used to
capture the major phases of body reserves changes
throughout lactation process, represented as a transfer of
priorities. Figure 3 displays the model schematics. At par-
turition, the priorities for using reserves and for producing
milk are high. Then priority for body reserves mobilization
decreases and, simultaneously, priority for milk production
increases until it reaches a peak. This is followed by a shift in
priority from milk production to body reserves reconstitution.
The model structure has been constructed on biological
basis. Indeed, the priority A follows an analogous dynamics
to the body lipid mobilization dynamics (which can be
indirectly assessed by plasma non-esterified fatty acids con-
tent), and the priority B follows an analogous dynamics to
the observed dynamics of a lactation curve.
We tested the identifiability of the model in equation (9)

with DAISY. The model parameters (k1, k2) are uniquely
identifiable if at least two state variables are measured
simultaneously. They are also uniquely identifiable if either B
or C are measured and the initial conditions are known. If
only A is measured, the model is nonidentifiable. The com-
putation time for identifiability testing was <1 s.
It should be noted that the priorities described by the

model are abstract variables that cannot be measured. In this
case, the model construction is motivated by providing a
conceptual and pertinent structure that concretizes biological
hypothesis rather than producing a quantitative prediction
tool. It was also constructed to overcome the existing diffi-
culty of performing experiments to quantify homeorhetic
mechanisms. As a consequence, the question of structural
identifiability is in this case not relevant and does not pre-
clude the models usefulness as a tool for understanding.
Indeed, model simulations have provided useful information
to analyse theoretical dynamics of phenotypic variables of
interest such as milk production and body reserves.
With an academic motivation, let us analyse the hypo-

thetical case where the priorities A, B, C of the model in
equation (9) can be measured by an adequate experimental
technique. This hypothetical case is here assumed to
demonstrate the relevance that identifiability analysis can
have for guiding experiment design. Suppose we plan to
perform a series of experiments for estimating the model

Figure 3 Schematics of the homeorhetic regulatory model of a dairy
goat of Puillet et al. (2008). The compartments A, B, C are, respectively,
the priorities for body reserves mobilization, milk production and body
reserves reconstitution. The model describes the lactation process as a
flow of substance moving through three successive compartments
following mass-action kinetics (with the parameters k1, k2). The model
structure follows a biological basis. For example, priority A follows an
analogous dynamics to body lipid mobilization, and priority B follows an
analogous dynamics to the lactation curve.
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parameters with a limited budget of 10 €. The cost of
measuring A, B and C is, respectively, 2 €, 8 € and 10 €. How
to select what to measure? Well, given the critical situation
of funding in research, we will be tempted to choose to
measure only A and use the remaining 8 € in other projects.
This decision is of course wrong, because measuring only A
will not provide quality information for model calibration.
Measuring either B or C will be adequate. If we measure only
B, we will have 2 € to compensate our financial deficit.
However, if we want to get the most out of the experiment,
the wisest choice is to measure both A and B.
Let us now consider the following model and assume that

it can be an alternative model of the regulatory model in
equation (9).

dA tð Þ
dt

=� k1
k3 +A

� A � B;A 0ð Þ=A0

dB tð Þ
dt

=
k1

k3 +A
� A � B�k2 � B;B 0ð Þ=B0

dC tð Þ
dt

=k2 � B;C 0ð Þ=C0 ð10Þ

This model is more complex than the model in equation (9).
First, it is nonlinear because the flux from A to B is described
by a nonlinear function (Michaelis–Menten kinetics) instead of
a first-order kinetics, and second, it has one additional para-
meter (k3). We tested the identifiability of the model using
DAISY, GenSSI and IdentifiabilityAnalysis. The computation
time was <1 s in all the three toolboxes. In this case, the
parameters of the model are identifiable if any of the state
variables is measured. If only A is measured the model para-
meters are identifiable, which contrasts to the identifiability
properties of the original model described by equation (9)
(nonidentifiable if only A is measured). The result appears at
first sight as counterintuitive, since in modelling practice
complex models are often penalized. In the framework of
structural identifiability, nonlinear models tend to be more
identifiable than linear models (Walter and Pronzato, 1996;
Roper et al., 2010). In the previous example, adding a non-
linearity and a supplementary parameter help to improve the
structural identifiability of the model. However, the increase of
the number of parameters has, in general, a negative influ-
ence on the practical identifiability by rendering the model
calibration harder, and increasing the risk of overfitting.

Case 5: what if in our modelling scenario the question of
structural identifiability is relevant but our model is
nonidentifiable?
As it was previously mentioned, the lack of experimental
data on key variables imposes a particular challenge in the
modelling task and can lead to various difficulties including
the lack of structural identifiability. Models where the num-
ber of parameters is very high with respect to number of
observables may lack of structural identifiability. Although,
as demonstrated in the case study 4, we cannot affirm
systemically that models with more parameters are less
identifiable than models with less parameters. The

identifiability depends on the model structure and on how
the parameters appear in the observables. After this clar-
ification, the lack of identifiability of mathematical models
is not an uncommon scenario, and is often encountered
in domains such as system biology. Then, what to do? One
popular solution consists in capitalizing on existing knowl-
edge by setting some parameters to known values reported
in the literature. This strategy (expert guess) results in redu-
cing the number of unknown parameters to be estimated and
may favour the identifiability of the reduced parameter set.
Caution should be paid in selecting parameters obtained
from experimental conditions that are compatible to the
case study. Parameter reduction can also be performed by
grouping some of the model parameters (Schaber and Klipp,
2011). A second solution is to design a new experiment that
renders the model identifiable by selecting an adequate set
of observables (Anguelova et al., 2012).
If after exhausting the above-mentioned alternatives the

nonidentifaibility cannot be eliminated, this does not neces-
sarily mean that our model is useless. First, the model con-
struction requires the verbal hypotheses on the system under
study to become specific and conceptually rigorous (Schaber
and Klipp, 2011). This conceptual step is central for gaining
insight on the system behaviour, and pointing out the aspects
that need to be deepened. Second, if our modelling purpose is
to predict, we can assess numerically to what extend the lack
of identifiability can impact model predictions. We can identify
which set of variables of the model are the less sensitive to the
actual values of the parameters (Gutenkunst et al., 2007) and
which model predictions can be uniquely determined despite
lack of identifiability (Cedersund, 2012). We emphasized that
the nonidentifiability of a model does not preclude its use-
fulness. A relevant example is the model of the circadian clock
in Arabidopsis thaliana (Locke et al., 2005). The model has 29
parameters, from which only 17 parameters are at least locally
identifiable under certain stimuli (Chis et al., 2011b). Although
its lack of identifiability, the model of Arabidopsis thaliana
represents an important modelling contribution for enhancing
understanding of the loops of genes that drive circadian locks
in living organisms. By being aware of the lack of identifia-
bility and by using adequate tools, nonidentifiable models can
still be useful by providing both qualitative and quantitative
information for gaining insight on system behaviour (Schaber
and Klipp, 2011; Cedersund, 2012).
A brief summary about the relevance of identifiability

discussed here is given in Table 3. To sum up, structural
identifiability analysis remains desirable whenever feasible in
the model calibration context, since it determines if the para-
meter identification problem has a unique solution when we
have unlimited available data. Identifiability testing can pro-
vide guidelines for designing experiments and be useful for
facilitating model simplification by identifying some potential
over-parameterizations. Together, this information facilitates
the model calibration step. Identifiability analysis is therefore
relevant when (i) we are interested in the actual values of the
model parameters, and (ii) we want to predict variables, in
particular those that cannot be measured directly. Although
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structural identifiability is a desired property of a model, we
clearly state that a nonidentifiable model can still be a useful
model.
In addition to the identifiability methods previously

mentioned, identifiability analysis can also be performed
numerically, for example, by using interval analysis (Braems
et al., 2001). Numerical approaches allow the computational
complexity associated with identifiability methods based
on algebraic manipulations of observable derivatives to be
overcome. Indeed, when dealing with complex models,
identifiability analysis may be impossible to perform even
with the advanced software tools applied here, and recent
developments (Villaverde et al., 2016), and thus the assess-
ment of structural identifiability by numerical means is of
great value. A very intuitive solution consists in using prior
values of the model parameters for generating simulated
data for a hypothetical experimental setup and perform
the model calibration. By inspection, we can assess if the
resulting parameter estimates are close to the priors values
used for data generation. If this is this case, the model might
be at least locally identifiable (Walter and Pronzato, 1997).
A more sophisticated solution is that of the profile likelihood
approach (Raue et al., 2009) which provides a powerful
numerical method for assessing structural and practical
identifiability of high-dimension models.

On practical identifiability and optimal experiment
design for parameter estimation

In the previous section, we mentioned that structural
identifiability is a necessary condition for the well-posedness
of the model calibration problem. However, structural iden-
tifiability does not guarantee the accuracy of the estimation
and the quality of the model predictions (Carson et al., 1983).
In practice, we aim to find accurate parameter estimates
from experimental data. The actual accuracy of the para-
meter identification depends on the characteristics of the
actual experimental data. The question to be addressed is:
for a fixed model structure and given a set of experimental
data, how accurate will be the estimated parameters? Data
are always corrupted by noise, and are usually in short supply
(although this situation is rapidly changing due to the pro-
gress of precision farming technologies). Hence, even if the

model is structurally identifiable, the quality of the estima-
tion can be poor, leading to parameter estimates that can
even take values that are physically meaningless. Further-
more, there might exist many sets of parameter values that
fit the data equally well, which can be troublesome for
drawing biological-based conclusions as discussed by Boer
et al. (2017) when addressing the parameter estimation of a
bovine oestrous cycle model.
Tackling the accuracy of the parameter identification with

respect to experimental data is the core of practical
identifiability. To illustrate the notion of practical identifia-
bility, let us consider the model y= a·x1+ b·x2 and assume
that the variables x1, x2, y can be measured. The parameters
a, b are structurally identifiable. Now, consider that experi-
mental data are available and that x1, x2, are proportional
(i.e. x2= c·x1). With these data, the parameters a, b are not
practically identifiable. The only quantity that is practically
identifiable is a+ b·c. The parameter estimates under these
experimental conditions will not be accurate. Accuracy of the
parameter estimation is related to parameter uncertainty
(high accuracy implies low uncertainty) and is assessed by
the computation of the confidence intervals of the parameter
estimates. Large confidence intervals imply low reliability on
the parameter estimates (practical unidentifiability).
One classical approach for determining the confidence

intervals of the parameter estimates is via the computation
of the Fisher Information Matrix (FIM). In Supplementary
Material S3, we recall the principles of this classical approach
and introduce some aspects of OED for parameter estima-
tion. The goal of OED is to find, under a set of constraints, an
experiment setup that allows an accurate estimation of the
model parameters (which translates in small confidence
intervals). To illustrate the power of OED, consider the curve
lactation model MD in equation (4). The OED problem is
defined with a prior nominal parameter set (extracted from
literature or experimental data). Let us assume that these
nominal values are k1= 0.1, k2= 0.15, k3= 0.005, and that
the initial condition of yield milk is y0= 10 with t0= 0.1 day.
We aim to find three sampling times along 100 days that
provide high informative content for estimating the model
parameters accurately. For that, we defined an OED problem
in which the optimal sampling times were found by
maximizing the determinant of the FIM. Maximizing the

Table 3 Summary of the case studies for assessment the relevance of structural identifiability

Case
study Model objective Scientific question addressed

Relevance of
identifiability

1 To represent an observed variable for further prediction Is the parameter estimation well-posed? Yes
2 To represent an observed variable by using a biologically

based model for further prediction
Can we theoretically know the actual value of a parameter
that is biologically meaningful?

Yes

3 To represent an observed variable and predict an unobserved
variable

Can we guarantee highly-quality predictions for variables that
cannot be experimentally measured?

Yes

4 To provide a conceptual modelling framework of phenomena
that are difficult to evaluate experimentally

Is it a model consisting of abstract variables that cannot be
experimentally measured biologically pertinent?

No

5 To represent mechanistically a complex biological process Is it a nonidentifiable model useful? Yes
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determinant of the FIM implies minimizing the volume of the
confidence intervals (see Supplementary Material S3). The
FIM was obtained by symbolic manipulation using the
Matlab® Toolbox IDEAS (Muñoz-Tamayo et al., 2009), which
is freely available at http://genome.jouy.inra.fr/logiciels/
IDEAS. The OED problem was solved using the Nelder–Mead
Simplex method implemented in Matlab®.
The optimal sampling times were: t0= 0.1 days,

t1= 7.5 days, t2= 29 days, t3= 100 days. For comparison,
we calculated the confidence intervals obtained from an
equidistant sampling time setup (t0= 0.1 days, t1= 33.4 days,
t2= 66.7 days, t3= 100 days). Figure 4 displays the obtained
optimal sampling times, together with the sampling times from
the equidistant strategy. Table 4 shows the comparative
results. Optimal sampling times obtained from OED provide
substantially a better accuracy of the estimation than equidi-
stant sampling times. For k1, k2, the standard deviations from
the OED are only 5% of the standard deviations provided by
the equidistant sampling setup. For k3, the standard deviation
from the OED is 50% of that obtained with the equidistant
sampling setup.
This example illustrates the capabilities of OED and the

interest of incorporating this tool into our modelling practice
when data have not been collected yet. Optimal experiment
design allows maximum exploitation of experimental data
for model calibration, and avoid pitfalls from applying tra-
ditional experiment designs without cautious analysis. In
fact, it is common practice to use factorial designs for
defining an experimental setup. If the levels are not chosen
adequately, the factorial design can lead to practical iden-
tifiability problems such a singular FIM (see Muñoz-Tamayo
et al., 2014 for an illustrative example). If this occurs, the
reliability of the parameter estimates cannot be assessed
given that confidence intervals computation requires the FIM
to be invertible (see Supplementary Material S3).
It goes without saying that the identification of model

parameters is a very challenging problem, where difficulties
are encountered even for models of moderate complexity. In
the case of a complex model, one may wonder, however,

about the practical relevance of providing a result about the
identifiability of the model, given that identifying the para-
meters of the model from actual noisy data is already extre-
mely difficult. In this respect, by studying the parameter
sensitivities of a collection of 17 models of biological systems,
Gutenkunst et al. (2007) have elaborated the concept of
sloppiness, that establishes that some parameters (sloppy)
can change by orders of magnitude without affecting sig-
nificantly the model output. Sloppiness is related to the con-
dition number of the FIM (Supplementary Material S3) and
results from high differences between the eigenvalues of the
FIM. The parameter identification of a sloppy model data
suffers from high uncertainty as a result of a singular
(ill-conditioned) FIM. The authors claimed that sloppiness is a
universal property of systems biology models and suggest that
modellers should focus on predictions rather than on identi-
fying the actual values of the model parameters. Given this
work, it may seem tempting to desist from any efforts to look
for an accurate parameter identification. Nevertheless, the
notion of sloppiness has been subject of debate and its value
as conceptual tool has been questioned. In the comprehensive
work of Chis et al. (2016), it has been demonstrated that
sloppy models can be identifiable and that OED can sub-
stantially improve the practical identifiability of models, even
if they are complex. Chis et al. (2016) suggested that OED
should be performed on the basis of classical criteria such as
maximizing the determinant of the FIM instead of looking at
minimizing model sloppiness. Accordingly, addressing para-
meter identifiability in complex models is not a hopeless quest
when the adequate tools are deployed.

Conclusions

This article was centred on introducing and discussing the
mathematical tool of structural identifiability analysis, which
has been seldom applied in animal science modelling. This lack
of pervasiveness in our domain is probably due to the mathe-
matical technicalities which identifiability analysis relies on.
These technicalities are beyond the academic background in
animal science. However, this hurdle can be overcome by
adopting a practitioner perspective and capitalizing on existing
dedicated identifiability software that should facilitate the
application of identifiability analysis in our domain. By using
illustrative examples, we attempted to open a window towards
the discovery of a powerful tool for model construction and

Figure 4 Lactation model of Dijkstra et al. (1997). Equidistant sampling
times (■), v. sampling times obtained from optimal experiment design ( ).

Table 4 Accuracy of the parameter estimates of the lactation model of
Dijkstra et al. (1997) for an equidistant sampling strategy and a sam-
pling strategy obtained by optimal experiment design (OED)

Accuracy of the estimation (±2 SD)

Parameters Equidistant strategy OED strategy

k1 0.035 0.0014
k2 0.055 0.0028
k3 0.0002 0.0001

Muñoz-Tamayo, Puillet, Daniel, Sauvant, Martin, Taghipoor and Blavy

710

https://doi.org/10.1017/S1751731117002774 Published online by Cambridge University Press

http://genome.jouy.inra.fr/logiciels/IDEAS
http://genome.jouy.inra.fr/logiciels/IDEAS
https://doi.org/10.1017/S1751731117002774


experiment design when the identifiability question is relevant.
Overall, identifiability analysis is relevant when the purpose of
the model construction is the prediction of variables that cannot
be measured, and when we are interested in knowing the
actual value of the model parameters. Finally, the success to
getting the most out of structural identifiability analysis in
animal science modelling relies on a constructive dialog
between experimenters and modellers.
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