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VECTOR FIELD ENERGIES AND CRITICAL
METRICS ON KAHLER MANIFOLDS

TOSHIKI MABUCHI

Abstract. Associated with a Hamiltonian holomorphic vector field on a com-
pact Kéhler manifold, a nice functional on a space of Kahler metrics will be
constructed as an integration of the bilinear pairing in [FM] contracted with the
Hamiltonian holomorphic vector field. As applications, we have functionals fi, ¥
whose critical points are extremal Kahler metrics or “Kahler-Einstein metrics”
in the sense of [M4], respectively. Finally, the same method as used by [G1] al-
lows us to obtain, from the convexity of o, the uniqueness of “K&hler-Einstein
metrics” on nonsingular toric Fano varieties possibly with nonvanishing Futaki
character.

§1. Introduction

The purpose of this paper is to define, with applications to the study
of critical metrics, some functional associated with a Hamiltonian holomor-
phic vector field (see the key observation stated below). Throughout this
paper, we fix once and for all an n-dimensional compact complex connected
manifold M with a Kihler class k € HY (M, R). The Albanese map of M to
the Albanese variety Alb(M) induces a complex Lie group homomorphism

aps : Aut®(M) — Aut®(Alb(M))(= Alb(M))

between the identity components of the groups of holomorphic automor-
phisms of M and Alb(M). Then the identity component G := Ker" aps of
the kernel of ays is a linear algebraic group (see [Fj]). Let K be the set of
all K&hler metrics on M in the Kéahler class x, where a K&ahler metric and
the associated Kahler form are used interchangeably. For each w € K, we

write w as _
w=+v-1 Zgagdza A dzP
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42 T. MABUCHI

in terms of a system (2!, 22,...,2") of holomorphic local coordinates on M.

Put A, := [;,w" = £"[M]. To each complex-valued smooth function ¢ on
X, we associate a complex vector field gradS ¢ on M of type (1,0) by

dp 0
_ Ba V¥
gradw Q= Z 5 PWCE R

Consider the complex Lie subalgebra g of HY(M, O(TM)) corresponding to
the complex Lie subgroup G of Aut®(M). Let g, be the space of all complex
smooth functions ¢ € C*°(M)c on M such that gradS ¢ is a holomorphic
vector field on M and that [, ¢pw" /A, = 0. Then we have an isomorphism
of complex Lie algebras

by * gw = gv 90 A LLU(SO) - gradw 907

where g, has a natural structure of a complex Lie algebra in terms of the
Poisson bracket by w. Put £, := {¢ € §.; ¢ is real-valued on M} and &, :=
Ly (%w) Then the real Lie subgroup K, of G generated by the Lie subalgebra
£, of g is nothing but the identity component of the group of the isometries
in G of the compact Kahler manifold (M,w). Put Ky := {w € ;V € &,},
V € g. Fix an element w in Ky by assuming Ky # 0. Put

Wy = w + V—1 90, € C®°(M)g.

By sending v to wy, we have a surjection of Ky = {v € K; wy, € Ky } onto
Ky, where K denotes the set of all ¢ € C°(M)g such that wy € K. Given
a one-parameter family ¢, € Ky, a <t < b, we say that {1;;a < t < b} is
a smooth path in Ky, if the map of M x [a,b] to R sending (z,t) to ¥y (z)
is C*°. For such a smooth path {¢y;a <t < b}, we put Oy = (0/0t) (1)) for

simplicity. A key observation is!

PROPOSITION A. Let V be a holomorphic vector field belonging to g
such that Ky # 0. Then there exists a functional 0y, : Ky — R satisfying
the equality

d .
(1) G = [ edut/a. a<e<h

for every smooth path {tr;a <t < b} in Ky, where we set wy := Wy, and
the functions oy € Ewt; a<t<b, on M are such that V = gradw V¢

My sincere gratitude is due to Prof. Ryoichi Kobayashi who invited me to present
this key observation in a lecture at Nagoya University in 1997. Arguments as in the proof
of this were also used independently by [GC].
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For Wi, Wy € g, we put (Wi, Wa), = [y, 15 (W)t (Wa)w™ /Ay,
which is independent of the choice of w in K, and will be denoted also
by (Wi, Wa), (cf. [FM]). Such independence plays a crucial role in [FM],
and Proposition A above gives some explanation for this independence (see
(3.3)). Moreover, for V' as above, 7, satisfies (cf. §3)

d
(1.2) E{nv(gfw’)} =2Im (V,W)y, forall We (V) andw € Ky.

where 3(V') is the centralizer {W € g;[W,V] = 0} of V in g, and for any
2z € C, Rez and /—1 Imz denote the real part and the imaginary part of
2z = Rez 4+ +/—1 Imz, respectively. Let K denote the nonempty subset of
K consisting of all w € K such that K, is maximal compact in G. Then

Proposition A allows us to construct functionals, iy, : Ky, = R, i: K — R
and 7 : K — R, such that?

(1) all critical points for fiy and fi are both extremal K&hler metrics;

(2) the set of the critical points for o consists all “Kéhler-Einstein metrics”
on M,

where for the functional fi, the pair (M, k) is assumed to be quantized
(cf. §5), and for the functional o, the cohomology class k is assumed to
be 2wy (M)gr. Note also that, in (2) above, M possibly has nonvanishing
Futaki character, where the terminology “Kéhler-Einstein metric” is used
in the sense of [M4]. We also have (see Propositions 5.7 and 6.5 and nearby
arguments):

THEOREM B. The functionals i and U are G-invariant.

From moduli-theoretic points of view, this G-invariance would be one of
the most important properties featuring the functionals ji and © above. By
the convexity of 7, the method used by Guan in [G1] for extremal Kahler
metrics now implies

THEOREM C. (see [M5] for a more general case) Let M be a nonsin-
gular toric Fano variety, defined over C, possibly with nonvanishing Futaki
character. Then “Kdhler-Einstein metrics” (cf. [M4]) on M in the class
2mey (Mg is unique, if any, up to the action of G = Aut®(M).

2An important point is that both ji and © are defined “globally” on K without speci-
fying any maximal compact subgroup of G. Such a condition of globality has never been
studied seriously by any other authors.
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§2. Proof of Proposition A

For each V € g, let Vg denote the real vector field V + V on M corre-
sponding to the holomorphic vector field V' on M. Then the one-parameter
group exp(tVr), t € R, on M generated by the vector field Vg comes
from the action on M of the one-parameter group exptV, ¢t € R, in G.
Hence, if there is no fear of confusion, we use exptV and exp(tVx) inter-
changeably. Assuming Ky # 0, let w € Ky . Then the one-parameter group
Py := {exp(tVk);t € R} has a compact closure Py in G, since Py is closed
in the compact group K. Therefore

(2.1) Ky = {y € K:Vey = 0} ={y € K is Py-invariant}.

For w as above, let o(w) and O, be respectively the corresponding scalar
curvature and the Laplacian on functions defined by

Bo Bo 0
o)=Y PRy =Yl
a,f a,B

where >, 5 R,5dz% A dz? denotes the Ricci form R(w) := /=100 logw"
for w. For each wy, € Ky, its scalar curvature o(wy) and Laplacian U, are
denoted sometimes by (1) and Oy respectively. To each pair (i1,12) €
Ky x Ky, we associate Ey (¢/, ") € R by

(2.2) Ev (") = /ab </M @t%wgt/An) dt,

where {1;;a < t < b} is an arbitrary piecewise smooth path in Ky, satisfying
Yo = and 1y, = 1", and the functions ¢; € &,,, a <t < b, on M are such
that

V = gradgt o

with wy := wy,. Now by setting 7y, (wy) := Ev(0,v), we can easily reduce
the proof of Proposition A to showing the following theorem:

THEOREM 2.3. Ev(gb’,w”) above is independent of the choice of the
path {{Py;a <t < b}, in Ky, and therefore well-defined. In particular,

(2.4) Ev(¥,9')+ Ev (¥, 4") + Ev(@",¢) =0 for all ,¢', 4" € Ky;
(2.5) Ey(,9 +C) =0 forallyp € Ky and all C € R.
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In view of the assumption w € Ky, we have V = gradggb for ¢ =
1;1(V) € &,. Then the following lemma is essential in the proof of Theorem

2.3:

LEMMA 2.6. (cf. [FM;p.208]) The equality o = ¢+ +/—1V 1y holds for
alla <t <b.

By using this lemma, we shall now prove Theorem 2.3.

Proof of Theorem 2.3. Define a map ¥ = ¥(s,t) of the rectangle R :=
[0,1] x [a,b] to Ky by W(s,t) := sy for (s,t) € [0,1] x [a,b]. Since {1)y;a <
t < b} is piecewise smooth, there exists a partition a = ayp < a1 < az <
... < a, = b of the interval [a,b] such that {¢y;a,—1 <t < a;} is smooth
for each i € {1,2,...,r}. We then divide the proof of Theorem 2.3 into the
following two steps:

Step 1: For simplicity, put ws; := wy(sy) for each (s,t) € R. Then by
Lemma 2.6, we have V = grad’ , ©(s,1), where ® = ®(s,t) is defined by

D(s,t) == p+/—1VU(s,t) € &, ,. Here, ®(1,¢) = ¢+ +/—1 Vi)y = ;. The
purpose of this step is to show that

(27) / ([ eciciia)ar= [ ([ o5ug/a.)as

1

t=a,

i=a;

Let © = ([, @Vwi/AL)ds + ([, PVl /A,) dt, where Uy := 9V /s
and ¥, := 0¥ /0t. Moreover, we put 5 := 90®/0s and &; := 9P/0t. For
a suitable orientation of the rectangle R, its boundary OR is written as a
sum 1 + Y2 — Y3 — Y4, where

71 = {(8,@1-71);0 <s< 1}7 V2 = {<17t);ai—l <t< ai}?
v3 = {(s,0;);0 <5 <1}, Y4 :={(0,0);ai—1 <t < a;}.

Then by the Stokes theorem, [,dO = [,,0 = f71+72773774
the pullback of © to 74 vanishes. Hence, |’ R dO is just

1
—/ O + @——/ </ @\Ilswg/A,Q)ds
13—7 Y2 0 M 1
+/ Z (/ @t¢tw$/f4n) dt.
a M

i—1

©. Moreover,

t=a,

t=a,
i
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Thus the proof of (2.7) is reduced to showing the vanishing d® = 0 on
the rectangle R. In terms of a system of holomorphic local coordinates

(21, 2%,...,2"), we write the Kihler metric wy, = Wy (5,1) = Wit in the form
wy =V —1 Z 9 4502% N 2.
a7ﬂ

Then for (1, (s € C°°(M )¢, we can define the Poisson bracket [(1, (2]w of (1
and (2 relative to the Kéhler metric wy, by

o [ OC1 O 0¢G 0
G, Gl = v—lzgéi <5’%8% - 8—;8%>
a,B

Let (,)y @ AY(M)c x AI(M)c — C*°(M)c be the pointwise Hermitian
pairing associated with the Ké&hler metric wy,, where A9(M)c denotes the
space of all complex-valued smooth g-forms on M. By a straightforward
computation,

0

a n n
d® =ds N dt/ {% (PVwy /Ax) — g (@WSWQ/AK)}

M

=ds A dt/ {(®,0; — D, T,) + T, (O T,) — dT, (OgVy)} il /A,
M
=/—1ds A dt/ (U, (VW) — U, (VU)} i /A
—|—d5/\dt/ {—( ),0W,), + (0 (®Wy),0W,), } wi/Ax.

On the other hand, by V = gradg ®, we obtain
— (0(®Wy),0,), + (9 (W), 09,
= V10, U]y — (T0P, 0Vy), + (L,0P, OVy),,
= V_I{®[T,, U]y — Uy (V) + T, (VIy)}

These together with Vgyy = 0 (see (2.1)) show the vanishing of dO© as
follows:

dO = v —1ds A dt/ DU, U |gwy/Ax
M

= V/—1ds A dt / (@, 0] Ul /Ay
M
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=V —1ds A dt/ (VY)W Ak
M
— /ds A dt / (Vath )Wl /A, = 0.
M

Step 2: Consider the equality (2.7) for i = 1,2,...,r. By adding them up,
we obtain

[ ([ i [ ([ stin)

Therefore, the left-hand side is independent of the choice of the piecewise
smooth path {¢;;a < t < b} in Ky, as long as 1, = ' and ¢, = ¢".
Then (2.4) is now immediate. For (2.5), let ¢y := ¢ + tC, where t € [0, 1].
Put w; := wy, for simplicity. For each ¢, consider the associated ¢; € Ewt
satisfying V = gradgt w¢. Then,

E(,y +C) = /01 /M o, JA, = C'/O1 (/M gotwf/AK> =0.

§3. An application to the study of the bilinear pairing (, ). on £©

Let V € g be such that w € Ky # 0. We put V9 := (g7 1),V =
Ad(g~1)V for all g € G. Let wg and w; be arbitrary elements in Ky. We
choose a smooth path {¢; € Kyia <t < b} in Ky such that the corre-
sponding path w; := wy,, a <t < b, connecting wy and wq in Ky satisfies

t=b

t=a

/ Yl JA =0 for all ¢.
M

For each t, we can write V = gradgt ¢ for some unique p; € %wt. On the
other hand, for every g € G, we see that g*wg, g*w1 € Ky g, because the con-
dition V € &, always implies V9 € £,,. Now, g*w; = g*w + v/ —109(g* 1),
a <t <b,isapath in Cys connecting the metrics g*wg, g*w; and satisfying
fM(g*lbt)g*UJ?/An = 0 for all ¢t. In view of V9 = gradg*w g 1 € By, We
see that

b .
(3.1)  Eyg(g*wo,g*wi) =/ (/Mg*sot g*¢tg*wF/An) dt

b
_/ (/ ©; Uy wt"/AK) dt = Ey(wp,wr).
a M
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Consider the algebraic subgroup Z(V) := {g € G; V9 = V} of G. Obviously,
Z(V) has the Lie algebra 3(V'). We now claim that

LEMMA 3.2. Ey(wg,g*wo) = Ey(wi,g*wr) for all g € Z(V) and wy,
wo € Ky .

Proof. By g € Z(V'), we have V9 = V. Hence by (3.1), Ey(g*wo, g*w1)
= Ev(wo,w1) = Ev(wo,g"wo) + Ev(g*wo, g*w1) — Ev (w1, g*w1). Then the
required equality Ey (wg,g*wp) = Ey (w1, g*w1) follows immediately.

For a maximal compact subgroup K of G, let wg, wi € KX, where
ICK denotes the set of all K-invariant elements in IC. Let ¢ denote the Lie
subalgebra of g corresponding to the Lie subgroup K of G. Then &,, =
£, =t Let V, W e, where t is a maximal toral subalgebra of £. We first
observe that wg, w1 € Ky . Moreover, we can write

V = gradgi v, and W = gradgi w;, 1=0,1,

for some v;, w; € Ewi. Put g; := exp(tv/—1 W) = exp{t(v/—1 W)g}. This
g: belongs to Z(V) for all t € R. Write gfw; = w; + v/—1 90¢; for some
smooth one-parameter families {1;+;t € R} of real-valued C* functions on
M. Note that
(Vit)j=0 = 2w; + Cj, i=0,1,

for some constants C; € R. Now by Lemma 3.2, Ey(wg,giwy) =
Ey(w1,giw) for all t. Differentiating this with repect to ¢t at t = 0, we
obtain

(3.3) /vou)owg/A,.c = / viwwi/Ag.
M

M
Recall that the identity (3.3) is the key point in proving the well-definition
of the bilinear pairing € x €€ 5 (V, W) — (V, W), € C (cf. [FM];§1), where
€ denotes the complexification of £ in g.

Remark. Let W € 3(V) and V € g with Ky # 0. Let w be an arbitrary
element of Ky . Put g; := exptWg and wy := gjw, t € R. Then we can write

V = gradgt v, and W = gradgt w;

for some v, € €, and w, € §,,. Write w; = w++/—1 D, for some smooth
one-parameter family {¢y;t € R} of real-valued C*° functions on M. Then

Yy = 2Imw; + C;
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for some real constant Cy. Then by the definition of the functional 7y, we
have the following equality (see also (1.2)), which is an important ingredient
of the proof of (3.3):
d * n
anv(gtw) = 2Im [ vww!/Ax = 2Im(V,W),, teR.
M
Remark. Let V € g be such that w € Ky # 0, and let Ry de-
note the multiplicative group of all positive real numbers. Put ey (g) :=
exp(Ey (w, g*w)). Then ey : Z(V) — R, defines a character of real Lie
groups as follows:

log(ev(9192)) = Ev(w,(9192)"w) = Ev(w,g59iw)
= By(w,gjw) + Ev(giw,g59iw) = Ev(w,giw) + Ev(w,gsw)
= logey(g1) + logev(g2),

ie., ev(g192) = ev(g1)ev(ge) for all g1, go € Z(V). Thus, ey : Z(V) — R
is a group character of real Lie groups.

§4. Functional /i;, whose critical points are extremal Kéahler
metrics

In this section, we fix an element w in IC. Then the group K, (see §1)
is maximal compact in G. The extremal Kéahler vector field V,, € ¢, (cf.
[FM]) is defined by

Vo = gra‘dg(prw O'(CU)),
where pr,, : L2(M,w)p — Rk, is the orthogonal projection from the space
L?(M,w)gr of all real-valued L?-functions on the Kihler manifold (M,w)
onto its finite-dimensional subspace R@ &, := {¢ € C®(M)g; gradS ¢ € g}.
Then the orthogonal complement (R®E, ) of R@E,, in L?(M,w)g is exactly
the kernel of pr,,. In this section, we fix an element w in /C, and put

Vi=YV,.

Then w belongs to Ky obviously. Let KS be the reductive algebraic sub-
group of G obtained as the complexification of K, in G. The corresponding
Lie subalgebra of g will be denoted by £C. Obviously, V € &, C €€ c 3(V).
We first observe that

LeEMMA 4.1. Z(V) is connected.
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Proof. By the Chevalley decomposition of G, we write G as a semi-
direct product KS x U, where U is the unipotent radical of G. Let u be
the Lie subalgebra of g corresponding to U. Then every element of Z(V') is
written as k(exp W) for some k € K§ and W € u. By KS c Z(V), we see
that expW € Z(V), i.e., V.= {expad(W)}V. Then Jordan’s normal form
of the linear map ad(W) of g onto itself allows us to obtain W € 3(V'). Now,
kexp(tW) € Z(V) for all 0 < ¢ < 1. Thus, Z(V) is connected.

We now put Hy = {w' € K;V,» = V}, where V,, € £, denotes the
extremal Kéahler vector field of w’. Then Hy is a nonempty subset of K
satisfying

we {J e, =t} C Hy C Ky.
Let Hy denote the set of all P € Ky such that Wy € ’Hv By a piecewise
smooth path in HV, we mean a piecewise smooth path in Ky sitting in Hy .
For each ¢ € ’HV, we take an arbitrary piecewise smooth path {¢y;a <t <

b} in Hy such that e = 0 and v, = 1. Then the restriction to Hy of the
K-energy map p: L — R (cf. [M1]) is given by

42) ple) == [ b{ /M<o<wt>—cﬁ>¢tw?/Aﬁ}dt, b ey,

Where we put w; = wy, for simplicity, and Cy is the real constant
Juo 1 O(w)w™ /A, The set of the critical points for 41 just consists of all Kéhler
metrlcs in Ky of constant scalar curvature. Define fi;, : Hy — R by

(4.3) oy = 1y,

where 7, is as in the introduction. For each ¢, we write V = gradgt ¢, for
some unique ¢; € &,,. By pr,, o(w;) = C, + ¢;, we see from the equalities
(1.1), (4.2), (4.3) that

(4.4)  fy(wy)

=~ [ ([ totn - oo bt ) . e,

for {¢y4;a < t < b} as above. Let ' € Hy. Since o(w') — pry o(W') is
a K -invariant function, w’ can be perturbed in Hy to the form w’ +
V—1e 90{o (') — pr (')}, where e > 0 is sufficiently small. Since the
equality o(w') = pry, o(w’) holds if and only if ' is an extremal Ké&hler
metric, (4.4) above implies that
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PROPOSITION 4.5. An element w' of Hy is a critical point for the func-
tional fi, : Hy — R if and only if ' is an extremal Kdhler metric.

Remark. The functional fi;, above was obtained by the author in 1994,
though the result was unpublished. A little afterwards, Simanca (see [S1])
obtained a similar result. Guan [G1] studied such a functional independently
and successfully, applying it to the uniqueness (modulo connected group
actions) of extremal Kéhler metrics in a Kéhler class of a nonsingular toric
variety.

§5. Functional [ : £ — R for a quantized pair (M, k)

Throughout this section, we assume that the pair (M, k) is quantized,
i.e., there exists a holomorphic line bundle L over M such that

(1) the Kéahler class  in the introduction is 2wy (L)g;

(2) the G-action on M lifts to a holomorphic G-action on L preserving
set-theoretically the image of the zero section of L.

For instance, if M is a Fano manifold, then the pair (M,c;(M)g) is
quantized by choosing the anticanonical bundle K ]\_41 as L. The main pur-
pose of this section is to define a functional f : L — R for each quantized
pair (M, k) from the functionals fiys : Hys — R, g € G, (cf. §4) glued
together.

Let u be the Lie subalgebra of g corresponding to the unipotent radical
U of G, where we write G as a semi-direct product KS x U. Take a C-
basis {V1,)2,...,YVm} for u. Furthermore, let {X;, X,..., Xy} be an R-
basis for €,, which is naturally regarded as a C-basis for ££. We choose
1 < k € Z such that L®¥ is very ample. Let {0g,01,...,0,} be a C-basis
for S := HO(M,L%F). Note that, via the U-action on L, the unipotent
group U acts naturally on S, which induces an infinitesimal action of u on
S. Since U is unipotent, we may assume that

0 if1<j<mand\=0;
Yjon = Al . :
> =0 binu oy ifl<j<mand1<A<r,
for some complex numbers b;» ,, € C. To each real number 0 < e < 1, we

associate a Hermitian metric he on L by

T

he = {;0 Paa) = Y (Eo)Ean)

A=0

-1
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Let w(e) denote the Ricci form R(h.) := /—190log h. for (L, h.). We then
have w(e) € K. The infinitesimal action of }; on h, is given by

(5.1) Vihe = —12{ 3 o))
A=0
r A—1

= _5hg{ Z Z 5**#*1()].7)\’“(5#(7#)(5>\5>\)}_
A=1 p=0
For each ¢ € {1,2,...,¢} and j € {1,2, ..,m}, consider the functions &; €
Ew(s) and 1; € gu(e) such that grad () fz X; and gradc(g) n; = Yj. Then §;
is real-valued, where 7); is possibly complex-valued. By grad® (&) gl(yjhe) =

V=TV (cf. [M3)),
(52 Vi = bk — /Mh;(yjhg){w(e)}"/Am

Put vy := *oy and Cp := PRFAEE DI Zz;}) b x.2}/2. Moreover, let

a; x,, denote the complex number 6)‘*“*1bj7)\7u or 0, according as A > p or

A < p. We then put w; \ =370 _ga;, v,

Schwarz inequality allows us to estimate the absolute value |hZ1(Y;he)| of
“1(Yjhe) as follows:

In view of (5.1), the Cauchy-

’hil(yh )‘2 2 ’ Z;:l wj,)\’D)\P 52 (Z;:l wj)\u_)j)\)(zgzl ’U)\Q_})\)
s hoo i )? SNOONE
A=0 YAUA A=0 YAUX
Zr W 1D roor
< <3_2 A=1 ])\7]7)\ < <3_2 ‘a,)\ ‘2 < (005)2'
zr NG s\ 1
A=0 PATA A=1p=0

This together with (5.2) implies |n;| < 2Cpe for all j. Now for i €
{1,2,...,4} and j, y/ € {1,2,...,m}, the bilinear pairings (X;,Y;),
(Y}, Vjr)x on g (cf. [FM]; p.208) are estimated by

@ef = | [ emtotea
| ey ian [ ke /A,
M M

(X, &) /M 0P {w()}" /Ay < ACREX(X:, Xo),e

IN

IN

D)l = ' [ mntw@ya,

< /M iy {w(©)}"/Ax < AC2E?
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where (X;, X)), = [, &{w(e)}"/A. > 0 is independent of the choice of
e (cf. [FM;p.208]). By letting ¢ — 0, we have (X;,V;)x = (V;,Vjr)x = 0.
Hence,

THEOREM 53. u = {Ze€g;(Z, W), = 0 forall W eg}.

Remark. Let g?tt o (W, Wh,...,W,) — (Wo, W1, Wa,...,W,), € C
be the symmetric C-multilinear form as defined in [FM; p.209], where g is
an arbitrary positive integer. Then by the same argument as above, we can
easily show that u = {Z € g;(Z,Wh,...,W,), = 0 for all (Wy,...,W,) €
g’}.

For each w’ € K, let f, denote the real-valued C'*° function on M such

that o(w’') — C;, = O, fr. The associated Futaki character F,;, : g — C is
defined by

F (W) := (\/—_1)1/]\4(14/];,)00’”/Am W eg.

This F, depends only on x and is independent of the choice of w’ in K.
Each element W in g is written as gradg, ¢ for some unique ¢ € g,. Then

(5.4) F (W) = /M<o<w'> o) /Ay,

in view of the computation in [FM; (2.1)] (see also [LS]). We now consider a
one-parameter subgroup g; := exp(tZgr), t € R, of G, under the assumption
that

(5.5) wek and Zejz(V).

Since g is a direct sum ES, @ u as a vector space, Z is written as a sum
X +Y for some X € Eg/ and Y € u, where there uniquely exist £ € %g/
and n € ﬁw/ such that X = grad(C Eand Y = grad(c,n Note also that
wy 1= giw' is written uniquely as wy, for some smooth path {¢¢;t € R} in
K satisfying S Yyl = 0 for all t € R. Then ¢, = 2Im(€ + 1) at t = 0.
Since o(w') — pr, o(w') € (R ® &)L, we obtain

([ totwn —pra,otwo} i /a) .

=2 ([ (o) = pro)} (€ + me" 4, )

— 2t [ {ol) —pr o)} 0 /A,).
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On the other hand, by Theorem 5.3, [}, pr,, o(w')nw'" /A, = 0. Further by
(5.4) and [N1], [, o(W)n'"/Ax = [,(0(W) — Co)nw'™ /A = F(Y) = 0.
Hence,
(5.6) </ {U(wt) — pr,, U(wt)} @btwf/AK) = 0.

M

|t=0

Let V and fty : Hy — R be as in the previous section. For each g € G,
the extremal Kihler vector field for g*w is V9 := (¢7!).V = Ad(g~H)V.
Replacing V' by V9 in the definition of Hy , we obtain

Hyo = {w' € KV =V},

which is just the pullback ¢*Hy of Hy via g. Then the corresponding func-
tional which replaces fiyy will be denoted by 19 : H,,, — R. We can actually
define 19 : Hy,y — R by

(g = v (W) for all W' € Hy,

where by (3.1), the functionals 49 and fi,4 1= p + 1y, on Hy,, differ just
by a constant. Hence, if V91 = V92 for some g1, g2 € G, the corresponding
functionals 9%, 192 differ by a constant. Obviously, i, is just fi;, if e is the
unit of G. Note that Hyq N Hyg = 0 if VI # V92, In view of

K = U Hyag,

geG

the functionals 9 : Hys — R, g € G, glue together to define a G-invariant
functional i : £ — R on K satisfying the equality

fireyy = i, for all g € G,

if we can show Proposition 5.7 below. Here, the G-invariance of ji means
that the equality fi(g*w’) = fi(w’) holds for all pairs (¢,w’) in G x K.

PROPOSITION 5.7. If g€ Z(V), then fi9 = [iy,.

Proof. 1f g € Z(V'), then V9 = V| and hence Hys = Hy. Let 6 be an
arbitrary element of Hy . It then suffices to show fiy(¢g*6) = iy (6) for all
g € Z(@). Take an arbitrary element X in 3(V'), and we put h; := exp(tXg)
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and wy := (h)*0 for each t € R. Since Z(V) is connected, the proof is
reduced to showing the following infinitesimal equality:

d .
Zpv (@) = 0.

For some smooth path {¢;;t € R} in K satisfying S 1&,%}1&"/14,.c =0,t€eR,
the Kahler form w; above is written as wy, for each ¢. Moreover, we write
X as gradS, ¢, for some ¢y € gu,. Then by (4.4) and (5.6), we have the
following identity as required:

jﬂv(wt =0 = </ {o(wr) U(wt)}%wf/fln) = 0.

|t=0

For every quantized pair (M, k), we can thus define a G-invariant func-
tional 4 : K — R as above. By [C1], all extremal Kahler metrics in the
cohomology class k belong to K. On the other hand, the definition of
shows that

THEOREM 5.8. An element ' of K is a critical point for the functional
j: K — R if and only if W' is an extremal Kdhler metric.

Remark. In this remark, we delete the assumption that the pair (M, )
is quantized. Suppose that the Kéhler class x admits an extremal Kéahler
metric w. Let V := V,, be the associated extremal K&hler vector field. Then
by [C1; (3.9)]3, the subgroups Z(V) and KS of G coincide. Hence, in this
case, the functionals 19 : Hys — R, g € G, glue together to define a G-
invariant functional & : X — R such that Theorem 5.8 above is valid even
when the pair (M, k) is not necessarily quantized.

66. Functional 7 whose critical points are “Ké&hler-Einstein
metrics”

Throughout this section this section, we assume that the Kahler class
k in the introduction is 27c; (M)g. Moreover, the anticanonical line bundle
K]T/[1 of M is chosen as the line bundle L in §5. Since the G-action on M
naturally lifts to a G-action on Ky, the pair (M, k) is quantized in the

3In the decomposition h = a@ ¢ e m o ZA>O b =ao b, @ ZA>O b in [C1;
(3.9)], note that the vector spaces &' ®@ma Y, b, by, ¥ & m are respectively g, 3(V),
.o Vv-18, = EE in our notation.
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sense of §5. By () # K C K, we fix first of all an element w in K. Then we
have a unique element 6 of K such that R(f) = w. As in [BM1] (see also
[BM2] ), we assign to each pair (¢',6"”) € K x K a real number N(¢',0") € R
by

.o = | b { | Buin R(@)”/Aﬂ} i,

where {u;;a <t < b} is an arbitrary piecewise smooth path in K such that
the associated path 0 := w,,, a <t <b, in K satisfies 8’ = 0, and 6" = 6.
Let D, : K — R be the functional in [D1] (see also [DT] ) defined by

n—1 .
D,() == -1 Z Z+ i /M O NOY AW AW JA,
1=0

_ /M YW /A, — log (/M efw“”w”/An),

where for each w' € K, the function f,, € C°(M)g is defined by the
equalities R(w') = ' + V=180f., and [,,(1 — el )w'™ /A, = 0. For each
Y € K, let % denote the unique element in K defined by R(0Y) = wy. It is

easy to check that

Dy(¥) = N(8,6%).
Define a functional v : K — R by setting v(wy) := Dy (¢)) = N(6,60%) for
each 1 € K. Given a pair (w',w"”) € K x K, let us consider an arbitrary
smooth path {1;;a <t < b} in K such that o’ = w, and w” = w,, where
we set wy := wy,, a <t < b, for simplicity. Then

(6.1) iy(wt) = —/ (1 —efor)ypwl /A,  a<t<b,
dt M

and the set of the critical points for v consists of all Kéhler-Einstein metrics
on M. Let W € gand ' € K. Then W = gradg, ¢ for some ¢ € g... By
the same computation as in [M4; §2], we obtain

02 [ Q-elye /A = [ (o) = mes /A = Fu),

where for x as above, we have C,, = n. As in the last section, let V' denote the
extremal Kéhler vector field V,, of (M,w). Define a functional oy, : Hy — R
by

by = v + ny.
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Then by [M4; 2.1], we see that V = gradS, pr,, o(w:) = gradS, pr,, (1—efe).
It now follows from (1.1) and (6.1) that

63) vl = = [ {(= ) —pr, (1 - R}t /A,

for all @ < ¢t < b. Recall that an element w’ of K is called a “Kahler-Einstein
metric” if 1 — efo’ € £, (cf. [M4]). We now obtain

PROPOSITION 6.4. An element W' of Hy is a critical point for the
functional o, : Hy — R if and only if ' is a “Kdhler-FEinstein metric” in
the sense of [M4].

For each g € G, the extremal Ké&hler vector field for g*w is V9 :=
(g71)V = Ad(g~!)V. Furthermore, H,,, = {w’' € K;V,y = VI} = g*Hy.
In view of (3.1), we can define the corresponding functional 79 : Hy,, — R
by

V(g*w') == Dy (W) for all w’' € Hy.
Then 29 depends smoothly on g € G, where 9 coincides with 7, if g is the
unit e of G. Moreover, if V9! # V92, then Hy4, NHyg, = 0. In view of

K = U Hys,
geG

the functionals 29 : Hys — R, g € G, glue together to define a G-invariant
functional 7 : L — R on [ in such a way that

~

19|va = Y, for all g € G,

if we can show Proposition 6.5 below, where the G-invariance of  means
that the equality 7(g*w’) = 0(w’) holds for all pairs (¢,w’) in G x K.

PROPOSITION 6.5. If g€ Z(V), then 09 = iy,.

Proof. Let X € 3(V) and 6 € Hy. Put w; := (exptXg)*0, t € R. As in
the proof of Proposition 5.7, it suffices to show

d .
v (@i=0 = 0.

Here, w; is written as wy, for some smooth path {i;;t € R} in K, where
Joy it /A = 0 for all t. Moreover, write X as gradgt ¢y for some ¢y € g, -
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By (6.2), the arguments deducing (5.6) is valid even when we replace o(w’)
and o(w;) respectively by 1 — efo’ and 1 — efet. Therefore,

6 ([ {a-et-pa-eofie/a) <o

|t=0
Then by (6.3) and (6.6), we obtain the following required identity:

oo =— ([ {a=et-pr -t dup/a)  —o

|t=0

Recall that all “Ké&hler-Einstein metrics” in the cohomology class
belong to K (cf. [M4;84]). From the definition of the functional o above, we
further obtain:

THEOREM 6.7. An element o' of K is a critical point for the functional
U: K — R if and only if o' is a “Kdahler-Einstein metric” in the sense of

IM4].

§7. Convexity of © applied to the proof of Theorem C

For each maximal compact subgroup K of G, let KX and KX denote
the set of all K-invariant elements in K and K, respectively (cf. §3). Then
K is written in the form

K = Uk KX,

where the union is taken over all maximal compact subgroups K of G. For
such a K, we always have K # (), and there exists an element w of K such
that K,, = K. Let ¢ be the Lie subalgebra of g corresponding to the Lie
subgroup K of GG. Then

KK = {wpp e K5} = {W ety =€} € Hy C K,

where V := V), is the extremal Kahler vector field of the Kéhler manifold
(M,w). Note that, on KK the functionals 7 and 7y coincide. We induce
connections on KX and K respectively from the connections (cf. [M2]) on
K and K. The purpose of this section is to show that the functional ¥ is
convex when restricted to . As an application of the convexity, we also
show the uniqueness of “Kéhler-Einstein metrics” (see [M4]) for toric Fano
manifolds, modulo connected group actions, by the method as used by [G1]
for extremal Kahler metrics.
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Fix an arbitrary element wy of K. Let ¢ be a K-invariant element
in C®°(M)gr such that [;,¢ wi/Ax = 0. For an 0 < ¢ < 1, choose a
smooth path ¢ = {¢y;—e <t < ¢} in KX such that ¢t|t:0 = ( and that
S Ywi*/A, = 0 for all t, where the associated path

(7.1) Wi 1= W, —e<t<e,

in KX passes through wy at ¢t = 0. We now consider the smooth one-
parameter family ¢ of C'*° functions on M defined by

Y= {y;—e <t <e}

Let us write wy = 3, 5(9¢)azd2® A dz® by using a system (z',...,z") of
holomorphic local coordinates on M. To each smooth one-parameter family
n = {m;—e <t <e} of C* functions on M, we put

D . 1 3 (9¢ (97]t (9¢t (97/]t
_ ﬁa t ° 2 < <
(at“)t m 2 E (gt) (9 o 3 3 9 : —& t E.

Then Bn = {(%n);;—e <t < e} is the smooth one-parameter family of
C*™ functions on M obtained as the covariant derivative of i along the path
¥ (cf. [M2]). In tangential directions of KX, the Hessian Hess? of ¥ at wy
is given by

d2
(7.2) (Hess D)y, (¢, ¢) = Wﬁv(wt)uzo

[ (0= ) = pry (1 = )} (G oo /A

For required convexity, it now suffices to show that (Hess0),, (¢, () above is
always nonnegative. For smooth one-parameter families { = {&; —¢ <t <
et,n={m;—e <t<e} of C* functions on M, we define

mwtzﬁﬁmw,

where wy, —e <t < ¢, are as in (7.1). For the extremal Kéhler vector field
V, there exists a one-parameter family ¢ = {¢y; —e <t < e} of real-valued
C° functions on M such that [,, ¢wi'/A. = 0 for all ¢, and that

V= gradgt ot —e<t<e.
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Then by [FM],we have ¢y = ¢9 + v—1 Vb Since 1, is a K-invariant
function, and since V' € &, it follows that (V + V)wt = Vgiy = 0, and
therefore

(7.3)  ér = V=1 Vil

_ Oy Oy 3¢t Ot . D
- Z (aza 98 | 9.8 aza>’ Le, 7¢=0

(see [G1]). On the other hand, by w; € KX, we have V = gradg, pr, (1 —
efer). Tt is now easy to check that ¢; = pr,, (1 —efer) for all t. For simplicity,
let 1 — ef denote the one-parameter family {1 — efer; —e <t < e} of C®
functions on M. Then by (6.3),

d f .
Lovlw) = —(1-¢ — 6,9,

We now put ¢; := ¥y + Cf, w/]f\l/ere each C; € Ris a L constant depending
smoothly on ¢ such that [,, @it = 0 for all ¢t. Here, w}! := eferw}/A,.. We

also let of, 0
G = Dt Y e
a?/a

(7.4)

Dz 928"

Consider the smooth one-parameter family ¢ := {¢; —¢ < t < €} of C®
functions on M. Then by (1 —ef — ¢, ), = (1 —ef — ¢, $),, replacing
¥ by ¢ in (7.4) and differentiating this with respect to t, we obtain

2
o) =~ (L —ef — 6, 26, — (2 (1 —ef ~9) )

Therefore, it follows from (7.2), (7.3) and (7.5) that

(7.5)

2

d D .
(Hess 9)u, (C,¢) = @ﬁv(wt)nzo + (1 -l = 5 )i

d? .
= WVV(wt)\t:O + (1- ¢, >> t=0
D . D

= (51—~ 9) ey = << 20— ), Bho
For simplicity, we put f; := f,,. Recall that fr = O, 9 — ¢ + By for some
constant B; € R (cf. [F1]). Let Re(...) denote the real part. Then by

D
~(5,(1 - )9,
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.1 3 8IL oft aiﬁt Of .
/M fi 5 aEﬁ(gt) ((%a 9.8 + P Prwy

and by [, ¢wp = 0, we now obtain
D s - .
—(5;0 =€) = | {=Re(@pr) = ¢} pref
M
= Re{/ - (ﬂt%‘i‘@t) @tUJN?} > 0,
M

since the eigenvalues of —LJ; are all real, and its first positive eigenvalue is
bouded from below by 1 (cf. [F2]). Thus (Hess )., (¢,¢) > 0, as required.

Remark. Let M be a nonsingular toric variety defined over C. By the
convexity of jiy along KX, [G1] shows that the extremal Kihler metrics
in each Kihler class are unique up to the action of G = Aut’(M). By
the convexity of 7 along K shown just above, we can similarly prove
in (7.6) the uniqueness of “Kéhler-Einstein metrics” up to the action of
G = Aut(M) when M is a nonsingular toric Fano variety.

(7.6) Proof of Theorem C. Let £ be the set of all “Kéhler-Einstein
metrics” (cf. [M4]) in the class 2meq (M)g. It then suffices to show that
£ is connected. Let wg, wi; € &. Replacing wy by g*w; for some g € G if
necessary, we may assume that both wy and w; belong to KX for some
maximal compact subgroup K of G. Since M is toric, the arguments as in
[G1] allows us to connect wy and w; by a geodesic wy, 0 <t < 1, in KX, In
view of the convexity of © along K, we have

d . d .
a’/(wt)u:o = %V(wt)\tﬂ = 0;
d2

Therefore, (w;) is constant on the closed interval {0 < ¢ < 1}. Then

it is easily seen that ©(wy) is a critical point of © for all ¢, and hence &£ is

connected. (In fact, the geodesic wy, 0 < ¢ < 1, can be written as*

wr = {exp(tZr)}* wo

“In relation to this expression, we here note that Theorem 3.5 in [M2] is true under

the additional assumption that Y is in the center of EE, though it is incorrect without
any such assumption.
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for some Z € \/—1 3(), where 3(¢) denotes the center of £. )
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