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SPATIAL BRANCHING PROCESSES AND SUBORDINATION

Dedicated to Professor Fukushima on his 60th birthday.

JEAN BERTOIN, JEAN-FRANCOIS LE GALL AND YVESLE JAN

ABSTRACT. We present asubordination theory for spatial branching processes. This
theory is developed in three different settings, first for branching Markov processes,
then for superprocesses and finally for the path-valued process called the Brownian
snake. As a common feature of these three situations, subordination can be used to
generate new branching mechanisms. As an application, we investigate the compact
support property for superprocesses with a general branching mechanism.

1. Introduction. The goal of thiswork isto develop a subordination theory in the
context of spatial branching processes. This theory appliesin particular to the measure-
valued branching processes called superprocesses. One of the most interesting features
of subordinationisthat, starting from a superprocesswith agiven branching mechanism,
it can be used to generate other superprocesseswith different branching mechanisms.

We present our subordination theory in three different settings, first for branching
Markov processes (where the branching phenomenon occurs only on a discrete set
of times), then for superprocesses and finally for the path-valued process called the
Brownian snake. These three cases are presented in Sections 2, 3, 4 respectively. There
are obvious connections between the three situations. However, we believe that it is
interesting to treat each case separately in detail. The case of branching Markov processes
is elementary in the sense that the relevant objects can be defined and understood very
easily. However, the key ideas of our subordination procedure are present in this discrete
setting and the explicit formulas derived in that case are already nontrivial andinteresting.
Thetreatment of superprocessesisformally very similar to the case of branching Markov
processes. Thisisnot surprising since superprocesses can beviewed aslimitsof branching
Markov processes. Weobtainin particular asimpleformulafor the branching mechanism
function of the subordinate superprocess, and, on a number of examples, we show how
this formula can be used to get explicit calculations. However, the theory here is much
less elementary as we need to use the machinery developed for studying superprocesses.
In particular the exit measures studied by Dynkin [9], [11] play a fundamental role.
Finally, the case of the Brownian snake correspondsto a special case of superprocesses
(namely superprocesseswith afinite-variance branching mechanism). One advantage of
the Brownian snake isthat it givesamore trgjectorial understanding of the basic objects
such as the exit measures. Our subordination theory for the Brownian snake also yields
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a path-valued process approach for superprocesses with a (rather) general branching
mechanism, including the §3-stable branching. Until now, such an approach was only
available for finite-variance superprocesses[17].

Let us now explain the basic ideas of our subordination method for branching pro-
cesses. We start from a cadldg Markov process ¢ = (&t > 0) with values in a Polish
space E. We assumethat ¢ has aregular recurrent point r and denoteby L = (L.t > 0) a
local time of ¢ at r. Consider a branching Markov process with spatial motion ¢ where
all particles start at r. This meansthat at time t = 0 we have afinite number of particles
located at r, that start moving independently with the law of the Markov process &,
die at rate A > 0 and give rise when they die to new particles (according to a certain
reproduction law), which in turn move independently with the law of ¢, die at rate A,
etc. For each particle alive at t we can consider the total local time at r accumulated by
this particle and its ancestors up to time t. For every s > 0, denote by Xs the number
of particles which (at any time) have accumulated a local time s at the point r. Then,
(Xs, s > 0) isaso a(continuous-time) branching process, corresponding to the evolution
of a population where the individuals die at a new rate A and with a new reproduction
law. Both X and the new reproduction law can be evaluated explicitly.

At this stage, we have not constructed the spatial motions of the individuals of this
new branching process. Thisis however easy to do. If wewant the new spatial motionsto
be given by another independent Markov processy with valuesin E’, we simply replace
the process (.t > 0) by the pair ((,71,).t > 0). We then consider instead of Xs the
random measure Ys which is defined as the sum, over all particles having accumulated
alocal time s, of the Dirac masses at the positions in E’ of these particles. A detailed
account of this constructionisgivenin Section 2 (for technical reasons, we usethetriple
(¢, L,7) rather than the pair (£,7.)).

L et us now briefly explain the analogous construction for superprocesses(Section 3).
We consider again the Markov process ¢ and denote by Py the law of ¢ started at x € E.
If » isameasureon E and g anonnegative measurablefunction on E we denote by (i, g)
theintegral of g with respect to 1. We introduce a branching mechanism function of the
type
1) W(U) = au+ bu? + /(O (€~ 1+un(ds)

where a,b > 0 and n is a measure on (0, c0) such that f(s A s?)n(ds) < oo. The
superprocess with spatial motion ¢ and branching mechanism ¢ is the Markov process
(Zs, s > 0) with valuesin the space M (E) of al finite measures on E, whose transition
kernel can be described asfollows: If P, denotesthe law of Z started at 1 € M¢(E), then
for any bounded nonnegative measurable function g: E — R,

E.(exp—(Zt,9)) = exp—(u, ),

wherethe function (vi(x),t > 0, x € E) isthe unique nonnegative solution of the integral
equation

@ w0+ Ex( [ (v o(69) ds) = Ex(a(c0).
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The case 1/(u) = bu? correspondsto the finite-variance superprocess.

Loosely speaking, Zs is uniformly distributed on a cloud of infinitesimal particles
that move independently according to the law of ¢ and are (continuously) subject to
a branching mechanism governed by the function . This interpretation suggests that
it should be possible to adapt the construction explained above for branching Markov
processes. However, it is not clear how to measure the “number of particles’ that have
accumulated a local time s at the regular point r. The right tool for this is the notion of
exit measures[9], [11]. More precisely, we first replace the process ¢ by the pair (¢, L),
taking valuesin E x [0, co), and we define Xs asthe total mass of the exit measure from
the open set E x [0, ). The process (Xs, s > 0) is a continuous state branching process
whose branching mechanism function fp can again be computed rather explicitly. By a
trick similar to the one we used in the discrete case, we can also construct a superprocess
with spatial motion y and branching mechanism @7; (X then correspondsto the total mass
process of this superprocess). We have treated a number of examples that show that the
function 17; can effectively be computed. For instance, if £ isastable Lévy processon the
real linewith index o € (1. 2] and y(u) = cu™*? for 3 € (0. 1], then ¢(u) = c'ut*80-1/),

In Section 4, we present our subordination procedure from the point of view of the
Brownian snake. The usual Brownian snakewith spatial motion ¢ [17], [18] isaMarkov
process W = (Ws, s > 0) in the space of E-valued stopped paths. The connection with
superprocesses can be stated by saying that the process W generates the historical paths
of a superprocess with spatial motion ¢ and branching mechanism v (u) = 2u? (see [17]
for more precise statements).

For definiteness, we specify the process ¢ as follows. We let S = (S.t > 0) be
a subordinator in R, and define ¢ as the associated residual lifetime process: ¢s =
inf{S —s,S > s}. We consider the regular point r = 0 and the corresponding local
time is Ls = inf{t,S > s}. Let ¥ be as previously an independent Markov process
with values in E’. Our main result says that the Brownian snake with spatial motion
(&,70) is connected to a superprocess with spatial motion v and with a new branching
mechanism ¢ in much the same way as the usual Brownian snake is connected to the
finite-variance superprocess. Moreover, the function @7; is expressed explicitly in terms
of the Lévy measure of S(see Theorem 8). In particular, if Sisastable subordinator with
index o € (0, 1], then ¥ (u) = cut*.

Aninformal description of our construction can be given asfollows. For every s > 0
we consider a path 7 of the Markov process 7 stopped at a random time s, and
simultaneously a path S9 of the subordinator S stopped at the same random time 7s.
The jumps of S should be interpreted as point masses distributed along the path ¥,
and in particular §9 =: (s is the “total mass’ of the path 7. In contrast with the usual
Brownian snake, it is the total mass process ((s. s > 0), and not the “lifetime process’
(ns, s > 0), that evolvesaccording to the law of reflecting Brownian motion on R... Thus,
between timessand s’ > s, the path Y will first be “erased” from itstip in such away
that its total mass becomes infis« ¢, and then it will be extended (with a creation of
point masses on the new part of the path) in order to arrive at a total mass equal to {y.

https://doi.org/10.4153/CJM-1997-002-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-002-x

SPATIAL BRANCHING PROCESSESAND SUBORDINATION 27

The pathsy® generated in thisway are the historical paths of a superprocesswith spatial
motion y and branching mechanism . Theinstants of occurrence of point massesalong
the paths Y correspond to discontinuity times for this superprocess.

Webelievethat this construction will be useful toinvestigate path propertiesof general
superprocesses, in the same way as the usual Brownian snake has proved a powerful
tool for studying super-Brownian motion (see e.g. [21]). As a typical application, we
give in Section 4 sufficient conditions that ensure that the compact support property
holds for superprocesseswith a (rather) general branching mechanism. We refer to [4],
[5] (Chapter 8) and [6] for previous results about the compact support property and the
continuity properties of the support process.

Let usfinally mention arelated previouswork of Kaj and Salminen[16], who consider
for aone-dimensional branching Brownian motion started at the origin, the number X, of
particlesthat hit eachlevel x > 0. They prove that the process (X«, X > 0) isabranching
process, compute its offspring distribution and also investigate scaling limits of X. Via
the famous L évy theorem relating the supremum of linear Brownian motion to its local
time at O, the results of [16] correspond to a special case of the situation treated in
Sections 2 and 3 (in this special case, the process ¢ is reflecting Brownian motion, see
subsection 3.2.2).

ACKNOWLEDGMENT. We thank the referee for his careful reading of this paper.
2. Discrete branching.

2.1. Notation. Let E be a Polish space. We denote by M,(E) the space of finite point
measureson E. Asin Section 1, we consider aBorel right Markov process ¢ = (&,t > 0)
taking valuesin E. We denoteits law started at £ = x by Py. We will assume moreover
that the sample paths of ¢ are right-continuous and have left-limits (cadlag).

Let I be asub-critical probability measure on N, that is >, nM(n) < 1. The moment
generating function

(s = 3 sMn). se(0.1]
neN
is then a Lipschitz function which satisfies ﬁ(s) >s.

For every parameter A > 0, one can construct a branching Markov processletting the
paths of ¢ branch at rate A with reproduction law M. This processis viewed asaMarkov
process Z = (Z;,t > 0) taking valuesin My(E); in particular the mass process (Z, 1) is
a Galton-Watson process on N. For every u € My(E), we denote by P, the law of Z
started at Zp = p. For every measurable function f: E — (0, 1], put g = — logf and

d[f](X) = E5, (exp{—(Z.9)}). x€E.

whereéy standsfor the Dirac point massat x. Thelaw of Z is determined by the branching
property
3 E.(exp{—(Zw+,-9)} | Zy-- .. Z4,) = exp{(Z,.log ®[f])}
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(forevery 0 <t; <-.- <tyandt > 0) and by the equation

@ A1) = Ex(1(6) + A [ {A(@0[1(E9) — ddlfI(E)} ds)

which has a unique solution, thanksto Gronwall’s lemma. Equation (4) can be deduced
from the moreintuitive identity

©) A0) = Ex(e (0 + A [ €M1 (@14[11(c5) o)

which is obtained by considering the first branching time. A detailed argument for the
derivation of (4) will be given in a more general context in the proof of Lemma 1. We
sometimes call Z the branching Markov process associated with (1, A, €).

2.2. Exit measure. Our next goal is to associate with every closed set F C E an exit
measure, which, informally, is obtained by freezing each particle asit entersF. Togivea
rigorous definition, wefirst introducethe so-called historical process. For everyt > 0, let
D be the space of cadlag paths w: [0,t] — Eand D = J;5¢ D;. The set Dy is naturally
identified with E. Wewill refer to D asthe space of finite paths. Replacing ¢ by the path
valued process (<, t > 0), where <t = (£5,0 < s < t), one can construct a branching
Markov processH = (H;,t > 0) taking valuesin the space of point measures on finite
paths. Assuming that Hy is supported on E = Dy, the measure H; is supported on D for
every t > 0. Wedenoteby p: D — E the function that maps afinite path on its endpoint,
i.e. p(w) = w(t) for w € Dy. If p(u) stands for the image of ameasure . under p, then the
process p(H) = (p(Ht).t > O) is distributed as the branching Markov process Z. With a
slight abuse of notation, we still denote by P, the law of H started at Ho = p.

For every closed set F C E, denote by D the subset of D consisting of finite paths
for which the lifetime coincides with the first passagetime in F

Dr = J{we Dy :w(s) € Ffor 0 < s<tandw(t) € F}.
t>0
Thesetof times T = {t > 0: Hy(Dg) > 0} isas. finite. Wethen definethe exit measure
Zr by
Zg = D(Z 1p, - Ht)-
IETF

where 1p_ - H; stands for the restriction of the point measure H; to De.
For every measurablefunctiong > 0 on E, wewriteforf =e9

Pe[f](X) = Es (exp{—(Zr,9)}) and Ug[g] = — log(Pk[f]).

Notethat Ugg = g on F. Thefollowing property of branching typeisintuitively obvious,
though the formal proof is quite tedious. A closely related result is stated as Proposi-
tion 2.1 in Chauvin [3]. Given a decreasing family of closed sets Fy C Fy_1--- C Fy,
we have for every measurable functiong > 0

(6) [E,,(exp{—(ZFk. g>} | e yennns ZFl) = exp{_<z':k—1' UFk[g]>}'
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In particular, (6) implies the simple identity
M Ur,(Ur,) = Uk,.
(write E,,(exp —(Zr,, 9)) = E,.(E.(eXp—(ZF,. 9) | Zr,))).
Denote by T = inf{t > 0, ¢&; € F} thefirst passagetime of ¢ in F. By considering

the first branching time, one gets that for every measurable function f: E — (0, 1] and
everyx € E

®) Pel1109 = Eu (7 T1(er,) + [ A (elf1(c9)) ds).

LEMMA 1. Assumethat Py(Tr < 00) = 1 for every x € E. Then we have

Pe[f1(9) = Ex(f(cr) + X [ {A(@rI1(c)) — PrlfI(cs)) ds).
ProOF. Set D = F¢, and introduce the Poisson and resolvent kernels
HEF(9) = Ex(exp{—ATe}f (¢.)
VP10 =E( [ et (e ds).

We rewrite (8) as
©) ®e[f] = HEf + AVD (F(Pe[f])).

Hence,
(1 — AVD)PE[f] = HEF + AVR(F(PE[f]) — Pe[f]).

Applying (A — X")VD,, we get by the resolvent equation and the Markov property
(AVD — NVD)De[f] = HEF — HEF+AVD (A(De[f]) — Pe[f]) — AVD (M(De[f]) — Pe[f]).
Thenlet \' — 0+, notethat \'V21 — 0 (since T < oo a.s.); we obtain
HEF + AV (M(®e[f]) — Pe[f]) = HEF + AV (M(Pe[F])) = De[f].
by (9). This establishesLemma 1. n

We can apply Lemmalwithg = A, f = €. Sincel1(s) > s, we get de(e™) > e
and it follows that

(10) E5 (2. 1)) = limA 65 (1~ ep—(Ze. 1) < 1
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2.3. Subordination. We assume from now onthat r € E isaregular recurrent point for
&, and that it has zero potential; see also the remark at the end of this subsection when
the latter assumption is relaxed. We denote by T, = inf{t > 0, & = r} the first hitting
time of r. Notice that T, = Ty P, as. sincer isregular. Let L = (L.t > 0) bealocal
time at r (so that L is a continuous additive functional that increases only when ¢ =r,
and L., = oo as)andrs =inf{t: L; > s} theinverselocal time. Finally, we denote by
P the excursion measure of ¢ away from r associated with L (as usual this excursion
measure is normalized so that E, (exp—A71) = exp(—E}* (1 — exp—AT;)), and by mthe
occupation measure under P*, that is

(11) ) = E; ([ HE P ds).

It iswell-known that mis o-finite and invariant, seee.g. [7], p. 122.
Animportant rolewill be played by the function * defined asthe moment generating
function of (Zy,y, 1) under Ps,:

P9 =5 (570 Y) = D0, se (0.1,

Lemma 1 with f = sentailsthe identity

(12) () = s+ AEX([)“ (A(s5©) - P4} o).
By (8) we have aso
(13) P9 = Ex(se T+ [ A5 () dt).

Introduce an independent Borel right process with cadlag paths, ¥ = (¢, t > 0),
taking values in a Polish space E’. We will write E’ for expectations relative to the
process?. We now replace ¢ by & = (.t > 0), & = (gt. L(t), %_(t)), and denote by Z the
corresponding branching Markov process. For every u > 0, theexitmeasure Zy,y .y o)
isas. supported on {r} x {u} x E/, provided that Z; is supported on E x [0, u] x E'.
Therefore, under the latter assumption, we can define arandom measure Z, on E’ by

5 ®6u®Zy = Z{r}x[u.oo)xE/-
The function (X introduced above can also be written in terms of Zo: For any y € E/,
PX(8) = Espnyy (87

We can now state the main result of this section.

THEOREM 2. Lety € E'. Under Ps,,,,, Z = (Zu, u > 0) isabranchingMarkov process
on E' started froméy, associated with the Borel right process, with branching rate

(14) A=Er@a-e?T)
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and reproduction law [ characterized by its generating function

(15) fie9 = Y K = ﬁ +s se(0.1]
keN

where

(16) A = [(A( ( £() — X(s)) m(dx).

REMARK. Thefinitenessof X follows from excursion theory: As we already pointed
out, \ isthe Laplace exponent, evaluated at A, of the inverselocal time (75, s > 0). The
fact that A(s) < oo for every s € (0, 1] will be established in the course of the proof of
Theorem 2.

LEMMA 3. Let A and A be defined by formulas (14) and (16). Then,
A= lim 1 Ef (1 Ec (ep{—AT). Tr > )
and
N H * &
A(s) = “121 TEF(#%(9—s T >e).

PROOF OF LEMMA 3. We use (11), then the Markov property under the excursion
measure and finally (12) to get

A® = & ([ (A(+©) - v )
= lim 1 )\E*(/ ( (£5(9)) — @E'(s)) dt, T, > 5)

c|0+
= &
= “chn TEF(p%(9 —s T >e).

The argument for X is similar. L]

PROOF OF THEOREM 2. The intuitive idea of the result is as follows. Under Ps, ,,
Z starts with one particle located at (r,0,y). Let ¢ be the first branching time, which
is exponentially distributed with parameter A. Then, the first branching time for Z is
the local time of the initial particle at time ¢, and is therefore exponentially distributed
with parameter X. Moreover, the branching distribution is the law of the number of
descendants of the initial particle that eventually come back to {r} x [0, c0) x E'. This
suggeststhe expression

(17) A(s) = Er(A_/O > dte*AtI:I(gpf‘(s))).

One can easily check that the latter formula is equivalent to (15). First, by standard
excursion theory, the right-hand side of (17) coincideswith

%E: (/OT Ae (5 (9) dt) = ; lim 1 &7 (/T A& (o4 (9) dt. T, > 5).
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Then, by the Markov property under the excursion measure and (13), the last displayed
guantity can be written as

% 'ifg TEX(0%(9) —SEc.(e7T). Ty > €) = = (A(9) + Xs).

>

by Lemma 3.

For the rigorous proof, we will use adifferent argument that can be generalized to the
continuous branching case treated in the next section. Let f: E' — (0, 1] beameasurable
function and for (x, u,y) € E, set

PLIFIY) = Egpo,, (€XP{(Zu. l0g T }).

Recall that 7 stands for the inverse local time. We then apply Lemma 1 with F =
{r} x [u,00) x E'. Then T¢ = 7y~ =7, as. We can split [0, 7,,] into excursion intervals
and apply the compensation formula to obtain

¢L[f1(y):E'(f(vu))uEr@E'(/” (A (qfn[f]ms))—¢§S_L(S)[f](ms>)}ds)
100 AE( 3 [M(A(®FL104) - Sil1100) ds)

( O<v<u o=
(f(vu)ﬂ / Er / {A(SEL0) — D10V} ds) dv)
Ey(fow+2 [ L{A(®LIA00) — @10 mc dv).

Moreover, by (7) appliedto F1 = {r} x [0, 00) x E' and F, = {r} x [u, 00) X E/, we have

(18) ®f1Y) = P (DUFY))-

sinceL; = 0on [0, T;]. Recall that A\ has been defined by (16). We thus get

(19) GLI) = Ey(F0u) + [ A@LLI100) av)

Next, note that N
(20) Ps,((Zo. 1) = 1) > Ex(exp{—AT:})

since <20. 1) = 1 when there has been no branching before time T;. This entails
¢X(8) — s < Ps,((1. Zo) # 1) < Ex(1 — exp{—AT,}).

Thefiniteness of A then follows from Lemma 3 (and A< 00).
Moreover, by Lemma 3 again,

o Ef(e5(9 — sEc (67T > ¢)
5T B (A Ece )T > o)
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The functions in the right-hand side are moment generating functions since the coeffi-
cients of their series expansion are nonnegative (use (20) for the coefficient of s) and
their value for s= 1is 1. Also their limit is trivially bounded from below by s. It easily
follows that thislimit is the moment generating function of a probability measure on the

integers, 1. Note that [T is sub-critical since [1(s) > s. We can then rewrite (19) as

@) @) = Ey(f0u) + X [{A(@LI100) — SO0} dv).

We thus recover an equation of the type (4). It is then easy to complete the proof of
the theorem. For 0 < tp < t; < --- < t;, we can apply (6) to the branching Markov
process Z and the closed sets F; = {r} x [ti, 00) x E'. For g = —logf we get

IE(S(r‘O.y)(eXp_<Ztk‘, g> | zh* cee fztkq) = eXp_<2tk—1‘ UFk(g)>
where, using the additivity property of the local time,

Ur (9))

—logEs,, ,(exp—(Z,.9))
- Iog |E5(r,o_y) (eXp - <2Ik—tk,1ﬁ g>)
—log @ ,[f1(Y):

This gives both the Markov property of Z and (using (21)) the fact that the Laplace
transform of its semigroup has the desired form. ]

REMARKsS. 1. It is straightforward to extend the result of Theorem 2 to the case
when theinitial value of Z isn ® 6o ® dy, for any point measure on E. The conclusion
is the same, except that the initial value of Zq is now random, Zo = (Zo, 1)6,, where the
moment generating function of (Z,. 1) is

Eyeies, (§2%) = exp( [ log(«(9) n(c))

2. When r has a non-zero potential, we may assume for the sake of simplicity that
thelocal timeis given by

t
Lt = /0 1{&:,—} ds.
We can follow the same calculation asin the proof of Theorem 2 after splitting the time-
interval [0, 7y_] into the excursionintervals of ¢ away fromr and {s <7, : {s=r}. We
then find that, in the preyious notation, Z is a branching Ma~rI§0v process under Ps, .,
with branching rate A + A and with reproduction law (AT + AT) /(A + X). Observe that
A + ) isthe value of the L aplace exponent of the inverse local time evaluated at \.

2.4. Example. We assume herethat £ isaresidual lifetime process. Specificaly, let Y
beaRadon measureon (0, co) with [(LAX)Y(dX) < co and S= (S, t > 0) asubordinator
with no drift and Lévy measure Y. Next, consider

&G=inf{S—t:S>t}, t>0.
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Theregular pointisr = 0 and the potential measure of ¢ killed when it hitsQis
To X
E(/O f(€0) dt) = /0 f(t) dt.

Suppose a'so that for some 3 € (0, 1]

r(s) = i(l — 9t +s

1+3 )

Fix s € (0, 1] and write g(x) = ¢*(s). Equation (12) isthen an integrated Ricatti equation

g(x) = s+ 1_);—5 /Ox(l — g(t))lm dt.

The solutionis

gx) =1— <1€)\ﬁx+ (1- s)*“)_l/ﬁ.

On the other hand, the occupation measure m under the excursion measure of ¢ is
m(dt) = Y{t)dt. where Y{t) = Y{(t. 00)).

We finally obtain by (16)

N oo/ BA —(1+6)/6 —
A(S):m-/o (fTﬁﬁ(l—s)*ﬁ) ) dt

and
Y = _ ey =y [ et
A= / Y(dt)(1 — &) = A /O Yt)e M dt.
3. Continuous branching.

3.1. Mainresult. Lety beanonnegativefunctionon [0, co) of thetype(1). Noticethat
Y islocally Lipschitz. One can find, in many different ways, a family (M., > 0) of
reproduction laws and afamily (., ¢ > 0) of positive constants such that

(22) v() = lim % (AL - 2u) - (1 - =W)).

uniformly on compact subsetsof [0, o). It isknown (see[12], Theorem1.3.1) that if Z(*)
denotes the branching Markov process associated with (1., 0., &) and with initial value
given by a Poisson distribution with intensity e 11, then ¢Z) convergesin law, in the
sense of finite dimensional distributions, towards the superprocess Z started at 1, with
spatial motion ¢ and branching mechanism ¢, whose law has been characterized in the
introduction.

Simultaneously with the superprocess Z, we can construct, for every closed subset F
of E, the exit measure Zr. The intuitive idea is the same as in the discrete setting, but
the rigorous construction is much more involved (see [12]). For simplicity, we consider
only closed sets F such that Py(Tr < co) = 1 for every x € E. Then, the exit measure Zr
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isarandom measure on E which satisfiesthe following properties. For every measurable
function g: E — [0, 00),

(23 E,(exp{—(Zr.9)}) = exp{—(u. Ueld])}.
where

Ue[g](x) = —log(Es (exp{—(Zr.9)})). Xx€E
solvesthe equation
(29 Urlal9 + B [ (Urlal(€9) ds) = Ex(alcr,)).
The bound Ur[g](X) < Ex(g(¢t,)) easily implies

(25) E.((Zr.9)) < E.(0T,)).-

The analogue of (6) holds (see [12], Theorem 1.1.3): If Fy C Fy_1--- C Fpisa
decreasing family of closed sets, then

(26) Es (&Xp{—(Zr O)} | Zrys - Zr ) = exp{—(ZF ,, UROD)}-

This property is known as the special Markov property for superprocesses.

These properties being granted, it is now fairly easy to follow the route described in
Section 2. Supposethat ¢ hasaregular recurrent point r of zero potential (seetheremark
at the end of this section for the case when r has a positive potential). As previously, we
denote by m the occupation measure under the excursion measure P* of ¢ away fromr
(the latter is specified by the normalization of thelocal timeL). For u > 0, set

V(U) = Uy [ul(¥) = — log 5, (exp{—u(Z ;. 1)}).
By (24), v* satisfies the identity

@7) u=vie) +E( ] " (W) ds).

As in the previous section, we introduce an independent Markov process 7, and the
process ¢ = (£,L.7.). We denote by Z the superprocess with spatial motion ¢ and
branching mechanism . Let usfix x € Eandy € E'. By (25), for every s > 0, the exit
measure Z (s )< 9ivesnomassto {r} x (s, o0) x E, Ps,, as. Hence, Ps,,, as.,
we can define arandom measure ZS by the formula

Or @6s® ZS = Z_{r}x[&oo)XE"

A similar argument showsthat Zo = (Zo. 1)dy, Ps,,o,, 5. Also notethat thedistribution of
(Zo, 1) underPs,,,, coincideswith thelaw of (Z . 1) under P;,, by asimple* projection”
argument. We havein particular Zo = bys Psoy S

The main result of this section is:
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THEOREM 4. Under Py Zisa superprocess started at 6y, with spatial motion ¥
and branching mechanism ) given by

(28) D(u) = /E ¥ (V(u))m(dx) = Lim TEf(u—veu).e <T).
The function fp is of the type
(29) B(u) = Bu+ /(O_DO)(e-ut — 1+ ut)A(dt)

whered > 0 and fiis a measure on (0, co) such that J(t A t?)fi(dt) < oo.

PrROOF. Wehavealready noticedthat@;(r‘o_y)(zo o) =lLed <ty <tr<--- <t
Then (26) (applied to the superprocess Z and the closed sets Fi = {r} x [ti, 00) x E)
and a simple translation argument give, for every measurable function g: E' — [0, 0o),

Eseop @P—(Z4,-0) | Zyyo.... 2y, ) =exp—(Z, . O, [d]).
where, forx e E,ye E,t > 0,
Odl(y) = — 10gE;,,,, (€xp{—(Z:. g)}).

It remains to check that the function (t,y) — U{ [g](y) solvesan integral equation of the
type (2) where v is replaced by the function ¢ defined in the theorem.

By (24) (with F = {r} x [t,00) x E') and the same argument as in the proof of
Theorem 2, we have

E;(900) = Oilgly) + E: @ Ey( [ 9(0F [al01,) ds)
= Glg0) +Ej(E( 3 [ w(0lgow) os))
= Uital) + B[ [, E7 () w(0Fulal0w) ds) au)
= O1alo) + By ([} [ v(Trulelr))midx) ).
Moreover, using the remarks preceding the statement of the theorem,

Esgeoy (€XP—(Z1.9)) = Eso,, (Eseo (exp—(Z:.g) | Z_{r}x[O.oo)xE’))
= Es,o, (€Xp—(Z0. Uf[d]))
= Eiay (€P(—(Z0. 1T{[GI)) )
= exp—v(0{[dl¥)).

which gives the identity ) )
UTdlty) = v (Ul ))-
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It follows that
~ t~  ~
(30) E;(900) = Uilal®) + Ej( /) $(0Lulal(w) du)

where .
) = L (vi(w)midx)

isasin the statement of the theorem. We have thus derived the desired integral equation
for U{ [g](y). Using (11), (27) and the Markov property under E*, we have also

B0 =Er(f) v(ew)ds) = tim T ([ v(v) dse <)

e

= Ijlrg TEF(Uu—Vve(u).e <T).

To complete the proof, we have to check that 17; can be written in the form (29) (at
the present stage, we do not even know that ¢(u) < oo for every u > 0). It follows
readily from (23) that for every closed set F, the mass of the exit measure, (Zf, 1), has
an infinitely divisible distribution. Applying thisto F = {r}, we seethat

V(U) = uay + ./(o_m)(l — &) y(clt)

for some ay > 0 and some measure iy on (0, 0o) with [(1 A t)ux(dt) < co. On the other
hand, we know from (25) and the definition of v* that

(V)'(0) =E5,((Zr. 1)) <1

and therefore
ag + /(0 tud) <1 forallx € E.

Using the second expression for ¢ in (28), we have
" — * _ _ oAl
P(u) = Isllrg TE; (u uag. .(Om)(l e e (dt), T, > 5)
— . ~ _u‘[ _ ~
= lim | (uag + /(Om)(e 1+ ut)ng(dt))
where
5 =Er (1 —a — /(Om) tue (dt). T, > 5) and () = E; (e (dt). Ty > ¢).

From the last expression for ¢(u), we see that either ¥(u) = oo for every u > 0 or
¥(u) < oo for every u > 0. The first case cannot occur, because otherwise the equation
(30) written with g = A > 0 could have no solution. Thus ¥ (u) < oo for every u > 0.
By a standard argument (see e.g. Gnedenko and K olmogorov [15], Section 19) v(u) has
necessarily an expression in the form (29). n
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REMARKS. 1. More generally, if 1 isafinite measure on E, then one can check that
Theorem 4 remains valid under P,cs,xs,, but the initial value of Z is now zdy, where
Zp > Olisarandom variable with Laplace transform

—10GE iy, (XD —uzo}) = [ V(Wn(e).

2. When r has a non-zero potential, we assume as usual that the local time L is
simply the time spent at r. A straightforward variation of the argument in the proof
of Theorem 4 shows that linder P50y Zisa superprocess with spatial motion v and
branching mechanism ¢ + 1.

3.2. Examples. We now present detailed calculations in some special cases to obtain
explicit expressions for the functions v* and ¥ which appear in Theorem 4. We will
always suppose that the measure-valued process Z is governed by a stable branching,
viz

b = ku”?

for someg € (0,1] andk > 0.
3.2.1. Residual lifetime process. We assume herethat ¢ is asin subsection 2.4. Fix
u > 0 and write g(x) = v*(u). Equation (27) is then an integrated Ricatti equation
X L g
g(x) +k /O gt dt = u.

The solutionis

g0 = (Bloc+ u) 77,
Recall that the occupation measure m is m(dt) = \_((t) dt, where V‘(t) = Y((t, 00)). We
finally obtain by (28)

d(u) = k /O YO (3Kt + u) " D/5 g,

REMARK. If wehad takentheageprocess,inf{t—S; : S; < t}, instead of theresidual
lifetime, then equation (27) would have given

u=gx + % :" g(t)* 1Y) dt.

This does not seem easy to solve except for 3 = 1 and \?(t) =t for somep € (0.1) (in
other words, ¢ is astable (p) age-process). Indeed, we deducethat in that case,

g'(x) — kg(9)? — pg(¥)x * +upx 1 =0
and putting g = —f'/(kf), we obtain
" — pf’ /x = kupf /x.

The latter equation can be solved in terms of modified Bessel functions.
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3.2.2. Reflecting Brownian motion. Assume now that ¢ is a reflecting Brownian
motion in [0, co). Writing again g(x) = V*(u), we have that equation (27) reads

g(x) + 2k /0 “(tA X)) dt = u.

It follows that g is a non-increasing function and it is then clear that g(co) = 0. The
integral equation givesg” = 2kg®*!, then 2g'g” = 4kg'g’*!, and finally there exists some
real number ¢ such that

4k
(gl)Z - ﬁ n Zg(f+2 +c.

It follows that g is the inverse function of

(%) :./x“(;—fZg“Hc)l/st 0o<x<u

The function f must be defined for al x € (0. u] and satisfy f(0+) = oo, which forces
¢ = 0. Hence

_L1\B*2 82 e - K a2
f(x)—ﬁ » (X812 —uh/?), g(x)—(ﬂ ﬁ+2x+u “2) )

On the other hand, the occupation measure under the Brownian excursion law is simply
the L ebesgue measure and equation (28) gives

- l—k " —2(3+1) /8
() = —0
= [ k(ﬂ%ﬂwu )
RemMARK. If we had taken a Brownian motion on a finite interval, say [0. a], with
instantaneousrefl ection at the boundary points, we would have gotten the same equation,
except that the boundary condition g(co) = 0 would have been replaced by g'(a) = 0.
The solution would have satisfied

A 4y \L2
X:L?X)(m§* 2+c) ds

k
= | — yt*8/2
a ¢ﬁ+2u ’

for some non-zero constant ¢ which can be specified by the latter condition. For example,
if 3 = 1, the solution would have involved Weierstrass functions. These calculations are
closely related to Neveu [22].

3.2.3. Useof thescaling property. Wewill show herethat ¢ can be specified upto a
constant factor when the Markov process € satisfiesa certain scaling property. Typically,
supposethat ¢ takesvaluesin [0, 00), that for somer > 0

(3D) the Py-law of (\ép—,t > 0)isPy. VA >0

and for somep < 1
(32) m(dt) =t " dt.
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(in fact, it can be seen that (32) always holds under (31)). We claim that then
(33) I(U) = cul oD/

for some constant number ¢ > 0.
To establish (33), we first consider a discrete branching Markov process associated
with (M., 0. &) asdescribed in Section 2 and the beginning of subsection 3.1. We choose
M. =N independently of ¢, with
1
1+3

asin subsection 2.4, and 0. = £~°. Then, (22) holds with
U(U) = (1 +B) M,

Denote by n®) the mass of the exit measure at {0} for this branching Markov process.
L oosely speaking, the scaling property (31) impliesthat if we modify the space-scale by
afactor A = 1/x and the time-scale by a factor x*, then the law of the spatial motion
of each particle is unchanged, while the branching rate becomesx’c, = o_, /5. In other
words, we have the identity

M(s) = (1—9" +s,

M), p; ) @ () py).
Let ¥ be the cumulant of n® under Ps,, so that
Es (exp{—un®}) = exp{—x ()} = exp{—x"""DW)}. u>0.
Next, consider an independent Poisson variable N(e) with parameter e 2, so that
5_1(1 — exp{—/-i(g'x)(UE)})
571(1 —exp{—+ S)('/M’l)(UE)}).

According to Theorem 1.3.1 of Dynkin [12], the distribution of en®) under Py.)s, con-
verges as ¢ — O+ towards that of the mass of the exit measure at {0} of a superprocess
started at oy, with spatial motion ¢ and branching mechanism . We thus have in the
notation of the previous subsection

—log Engoys, (exp{—usn})

V¥(u) = lim e (1- eXp{—/i(SX?U/d”l)(UE)})
= Iirg (x”/ﬁn)_l(l - exp{—;f,(”*l)(ux’//ﬁn)})
n—0+

= X—l//Bvl(UXv/B).
Equation (28) now gives
oW = @ [T er(dw)
=@A+p)? /0 * t—pt—l/(13+1)//3(Vl(utz//d))b’ﬂ dt

_ 1, 3+1+6(0=1) /v [*° «—p—r(B+1) /B (\ L7 /By BT
= (1+ B) tul ol //O s’s /B(vs/%)) " ds
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which proves (33).

Let usdiscusssome special cases. First, if ¢ isaBessal processof dimensiond € (0, 2),
thenv = 2, p = 1 — d and ¢(u) = cut*?@9/2_ For d = 1, ¢ is areflecting Brownian
motion and this agreeswith subsection 3.2.2. Next, if £ isthe age process or the residual
lifetime process associated with a stable subordinator with exponent o € (0, 1), then
v =1and p = . It follows that ¢(u) = cu*?, which agrees with subsection 3.2.1.
Finally, it isimmediate to adapt the argument leading to (33) to processestaking values
in (—oo,00). If € isastable Lévy process of index o € (1,2], thenv = o, p = 0 and
¥(u) = cut*B-1/2) The Brownian case « = 2 of course agrees with subsection 3.2.2.

4. SubordinationviatheBrownian snake. Inthissection, weshow that thegeneral
subordination method for superprocessesthat isdevelopedin Section 3 canbeinterpreted
in terms of the path-valued process called the Brownian snake. We treat only a special
situation, corresponding to the residual lifetime process of subsection 2.4. Thiscaseis
already interesting as it yields a path-valued process approach for superprocesses with
arather general branching mechanism, including the 3-stable branching mechanism for
1 < 8 < 2. The usua Brownian snake [17], [18], [13] applies only to the case 3 = 2.
This section can be read independently of the previous ones, although ideas are similar.
In subsection 4.1 below, we state some basic facts about the Brownian snake, which are
mainly simple extensions of resultsin [17], [18].

4.1. The Brownian snake with a discontinuous spatial motion. Let & be as in the
previous sections a cadlag Borel right Markov process with valuesin a Polish space E.
We denote by de a (complete) metric on E compatible with the topology on E. We may
and will assume that the process ¢ is defined on the Skorokhod space D([0, o), E). The
mapping X — Py is then measurable from E into the space of all probability measures
onB([0. o). E).

A killed path in E is a cadlag function w:[0,{) — E, where { = {(w) € (0, 00) is
called thelifetime of w. Note that the limit w(¢—) need not exist. It is also convenient to
agree that every point x of E is akilled path with lifetime 0. We let W be the set of all
killed paths and, if w,w’ € W , we define

dw.w) = de(W(O.W(0) + 1 ¢+ [ (diweu. wl) A 1)

where w<,, stands for the restriction of w to [0, u], and d, denotes the distance on the
Skorokhod space D, = D([0, u], E) (defined asin [2], p. 111 for instance). In particular,
if x. X' € E, d(x. w) = dg(x. w(0)) +¢(w), d(x. X) = de(x. X). It is easy to check that d is
adistance on W and that (W , d) is a Polish space.

We can then define the Brownian snake with spatial motion & in much the same way
asin[17] (wherewe dealt with acontinuous spatial motion and considered stopped paths
instead of killed paths). Let us fix x € E and denote by W the set of all killed paths
with initial point x. Let w € W, with lifetime ¢ > 0. 1f 0 < a < ¢, and b > a, we let
Qap(W, dw') be the unique probability measure on W, such that
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(i) ¢ =b, Qap(w,dw’) as.
(@ii) w/(t) = w(t), vt € [0,a], Qap(w, dw’) as.
(iii) thelaw under Qap(w, dw’) of (W(a+1),0 <t < b—a)isthelaw of ({0 <t <
b — a) under Pyy.
In particular, Qo o(w, dw’) = §x(dw’) and Qo p(w, dw’) isthelaw of (¢, 0 <t < b) under
Py. Thelatter law will be denoted by P.°(dw’). By convention, we also set Qo (X, dw’) =
P2(dw’).
Denoteby 65(dadb) thejoint distribution of (infjo.g 3. 3s) when 3 isaone-dimensional
reflecting Brownian motion with initial value 8o =¢ > 0:

(dadb) = 2(C+b— 2a) eXp_((g+b—2a)2

v 2ns? 2s
+ (2/79)"/? exp—(

) 1(0<a<(/\b) dadb

¢+
2t

00 tu(ca) o

PrROPOSITION 5. There exists a continuous strong Markov processin W, denoted by
(Ws, s > 0), whose transition kernels are given by the formula

Qs(w, dw’) = /[000)2 65(da db)Qa p(W. dw').

If (s denotesthe lifetime of W, the process ((s, s > 0) is a reflecting Brownian motion in
R:.

Loosely speaking, the path W is erased from its tip when the lifetime (s decreases
and, on the other hand, it is extended (independently of the past) when (s increases, using
the law of the underlying spatial motion ¢ for the extension. It is easy to check that a.s.
for every s < &/, the killed paths Ws, Wy coincidefor t < m(s, s') := inf(ss; ¢ (they also
coincideat t = m(s, ') provided that m(s, s) < (s A ().

The proof of Proposition 5 is much similar to that of Theorem 2.1 in [17]. The
process (Ws) is constructed from the Kolmogorov extension theorem. The existenceof a
continuousversion is much easier here than in[17], where we used adifferent (stronger)
metric. Indeed, the form of the metric d showsthat, for a < ¢,

dw.w) < [¢={[+|cA¢ —a.  Qap(w,dw) as.
and therefore, if (85, s > 0) is as previoudly,
 Qstw. ) dw. w')* < Gu(El| s — fol"] + EL|Bs A o — inf 5:[']) < /2

so that the classical Kolmogorov lemma yields the desired result. Finally, the strong
Markov property is proved by the same argument asin [17].

We may and will assume that the process W is the canonical process on the space
C(R+, W,) of all continuous functions from R, into W,. We also let Ci (R+, W) be the
subset of C(R.., W) determined by the condition Ws = x for slarge enough (equivalently
(s = Ofor slarge). We denote by P, the law of (W) started at w.
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It is clear that x is a recurrent regular point for W. We denote by Ny the associated
excursion measure. Thelaw under Ny of (G, s > 0) isltd’smeasureof positiveexcursions
of linear Brownian motion. We assumethat Ny is normalized so that

1
Nx(supés > ¢€) = 2"
>0 £

Wealso set o = inf{s > 0.¢ = 0}, which represents the duration of the excursion. Then,
for any nonnegative measurable function G on W,,

(34) Ny [ dsGwe) = [~ dtEL(G)

(see[18] Proposition 2.4).

Let D be an open subset of E such that x € D and let F = D°. We may construct the
exit local time of W from the set D along the lines of [18], Section 3. Forw € W, or
w € D([0, 00), E), we set 7(w) = inf{t > 0.w(t) ¢ D}. In order to avoid trivialities, we
assumethat Py(T < 00) > 0. Then, asin Proposition 3.1 of [18], one easily seesthat, if

Us = (cs - T(Ws)) ns = inf {L ‘/Ot 1)<,y du > S}.

the process (U,.. s > 0) is under P,, a reflecting Brownian motion in R.. From this it
follows that the limit

+

1 s
D — 1
Ls = L'[Q - ./o 1w <gu<rwg)+e} AU

exists for every s > 0, Py, a.s. and Ny a.e., and defines a continuous increasing process.
By passing to the limit in (34) (see [18], Proposition 3.4 for details) we get that for any
nonnegative measurable function G on W,

(35) Ny [ dLEG(W) = ER(G)

where ED denotesthe law of (¢5,0 < s < 7) under Py(- N {7 < 00}).

Before introducing the exit measure in the Brownian snake setting, we make an
additional assumption:

(H) For every y € D, the process ¢ is continuousat s =7, Py as. on {r < oo}.

This assumption is not really necessary, but it simplifies the theory and will hold in the
applications we havein mind.

For everyw € W, set W = limg;, w(s) = w(¢(—) when the limit exists, and otherwise
W = d, where 9 denotes a cemetery point added to E as an isolate point. By convention,
>“<A = X. By using (H) and (35) applied to the function ®(w) = 1 ,p(W), we get that
W; € 9D, dL? ae., Ny a.e. The exit measure from D, denoted as Z¢ (recall that F = D€,
we use a hotation different from [18], [19], but which is consistent with the previous
sections), is the random measure on 9 D = 9 F defined by

(Zr.g) = [ dL2g(We).

Asan immediate consequence of (35) we have, for any bounded function G on 9 D,

(36) NX(<Z|: 4P>) = EX(W(67)1{7<00})
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PROPOSITION 6. Let ¢ be a bounded nonnegative measurable function on o D, and
for every x € D set
U() = Ny(L — exp—(Zr. ).
Then,
(37) U = Ex(p(6)Lrcnep) — 2 ] dtu(&o?)-

For the proof, see Theorem 4.2 of [18]. Our setting is more general than in [18], but
the arguments are exactly the same. The connections between the Brownian snake and
superprocesses (see below and [17]) show that (37) may be interpreted as a special case
of (24).

The last ingredient that we need is the special Markov property for the Brownian
snake (which is closely related to the formula (26) for superprocesses). We first define
the excursions of W outside D. By the properties of the Brownian snake, the set

{8.7(Ws) < (s} = {8, 7(Ws) < 00}

is open Ny a.e. We denote by (a, by), i € | its connected components. For every i € |,
the paths Ws, s € (a;, b)) must coincide up to their exit time from D (see the proof of
Proposition 3.1 in [18]). Denote by 7' their common exit time and by x' their common
exit point. We defineW' € Cy(R+, W) by

WL(t) = Wea s (7' +1).

foro<t< C'S = ((a+9Ab — 7.

Let Ck(R+. W) = Uyee Ck(R+, Wy), which is equipped with the topology of uniform
convergence with respect to the metric d. The measure "6y iS a point measure on
Ck(R+. W), that accounts for the behavior of the paths W; after their exit time from D.
The goal of the special Markov property isto explicit the conditional distribution of this
point measure knowing the o-field that contains the information given by the paths Ws
before they exit D.

To definethe latter o-field, we set for every s > 0

ws=inf{t. [ UL oo} > s}

and WP = W,_. Under Ny, the process (WP) is continuous a.e. It is obtained by removing
the values of W over all intervals (a;. by), and pasting together the remaining pieces. We
let EP be the o-field generated by (W2, s > 0) and by the collection of al setsthat are
negligible for every measure Ny, y € E.

PROPOSITION 7. Therandommeasure Zg is EP-measurable. If G is any nonnegative
measurable function on Cx (R+, W,),

Nx(exp— STGWY) | ED) =exp— /ZF(dz)NZ(l —e©).
il
In other words, conditionally given EP, 3~ 6, (dW) isa Poisson measure on Ci (R+, W)
with intensity J Zr(dZ)N(dW).
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See[19] for the special casewhen ¢ isBrownian motionin RY and [20] for the general
statement.

We finally explain the connections between the Brownian snake and superprocesses
[17]. We assume for simplicity that ¢ has no fixed discontinuities (for every x € E,
t > 0,s— & isPy as. continuous at s = t). By replacing the underlying process (£¢)
by (t, &), we can easily extend the definition of the exit measure to space-time domains
D C [0.00) x E. For every t > 0, denote by Z; the exit measure from the domain
[0,1) x E (notice that assumption (H) holdsfor this special domain). In this special case,
the exit local time LY coincideswith the usual local time of the process (¢s) at level t. As
an immediate consequenceof (35), we get that Z; is a.e. supported on {t} x E. Therefore
we may and will identify Z; with a random measure on E.

The laws under Ny, X € E of the process (Z;,t > 0) are the canonical measures of
the superprocess with spatial motion ¢ and branching mechanism (u) = 2u? (see [5],
Chapter 3 and [14], Section 4 for canonical measures of superprocesses). This means
that, if 11 is afinite measure on E and Y"i¢; 6y (dW) is a Poisson measure on Cy (R+, W)
with intensity | u(dX)Ny(dW), the process

Xe=Y3 Z(W), (t>0). Xo=p
iel
isasuperprocesswith spatial motion ¢ and branching mechanism v, started at 1. In fact,
the (time-homogeneous) Markov property follows from Proposition 7 and, on the other
hand, if f isabounded nonnegative measurable function on E,

E(exp—(X:. 1)) = &xp— [ p(dNx(1 — e # 1) = exp—(u, ),

where, by Proposition 6, the function u(X) = Nx(1 — exp—(Z.f)) is the (unique)
nonnegative solution of the equation

(39 () = Ex(f(60) — 2Ex( [ dhun(n)?).

4.2. Subordination. We now assume that ¢ is the residual lifetime process of subsec-
tion 2.4, & = inf{S — t,S > t}, where Sis a subordinator. However, we alow the
subordinator S= (S.t > 0) to have a nonzero drift. Specifically, the Laplace transform
of S isgiven by

Eo(exp—AS) = exp—tn()).

where .
1) =bA+ [~ Vidh)(1 — "),

whereb > 0, [(1 A h)Y(dh) < co. The local time of ¢ at 0isL; = inf{s,S > t}. To
avoid trivial cases, we also assumethat b > 0 or Y{(0, c0)) = oo, which implies that the
process (L¢) is continuous.

Asinthe previoussections, let ¥ bean independent cadlag Borel right Markov process
with values in a Polish space E’. We assume here that ¥ has no fixed discontinuities.
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We can apply the construction of subsection 4.1 to the Markov process &; = (&t Lt, TL,),
taking valuesin E = R+ x R x E’. Wewrite E for expectationsrelative to the process €.
To simplify the notation, we set 'y = 7y,.
_ Following subsection 4.1 we denote by (Ws) the Brownian snake with spatial motion
¢ Forw € W, we write w(t) = (&(w). Ly(w), T(w)). For every h > 0, let Dy, be the
domain Dy, = R+ x [0,h) x E/, F, = Df, and let m,(w) be the exit time from Dy, for a
killed path w:
Th(w) = inf{t, Li(w) > h}.

As previously, we also write 7, for the exit time from Dy, of the process €.

Note that assumption (H) holds for the domain Dy, essentially because has no fixed
discontinuities. We can thus define Zg, and, by formula (36), we havefor a € Dy,

Na((ZF,.9)) = Ea(9(&r))-

Thisformulamakesit clear that Zr, isas. supported onthe set {0} x {h} x E'. Therefore
there exists a random measure Z;, such that Zg, = 6o ® 6n @ Zh, Na a.e.

THEOREM 8. The laws of the process (Zt,t > 0) under the measures Ng,), Yy € E’
are the canonical measures of the superprocess with spatial motion v and branching
mechanism

~o 2pV?
(V) = 2bv? + (00) Y(dp) T+ 2

Equivalently, for y € E' and 0 < h < t, for every bounded nonnegative measurable
function f on E/,

N0y — exp—(Z;. 1)) = w(y)

and

(39) Noy (1 —exp—(Zi.f) | Z,.0 <u<h)=1—exp—(Zn, Vin),

where the function (vt(y),t > 0,y € E’) is the unique nonnegative solution of the
equation

Wi = Ej(f00) — By( [ dud(vi-u0))-

REMARK. Theorem 8 can beviewed asaspecial caseof Theorem4 above (take3 = 1
in the explicit calculations of subsection 3.2.1). However, it is not so easy to identify
the objects defined in terms of the Brownian snakewith the corresponding quantities for
superprocesses, and therefore we present adirect derivation of Theorem 8. Moreover the
snake approach is crucial in the applications developed in subsection 4.3.

ProoOF. Fora=(a,l,y) € Dy, set
Un(@) = Na(1 — exp—(Zy. 1))
and v, (y) = un(0, 0. y). By Proposition 6, with a slight abuse of notation,
(40) (@)= Ea(f (1)) — 2Ea( [ dun(&)?)
= Ey(f(m) — 2Ea( [ dtun(&e, L T?).
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We are mainly interested in vy(y). A trivia translation argument gives u,(0,l.y) =
Un—1(0,0,y) = v (y). We will now check that un(a, 1. y) can be expressed in terms of
un(0, 1, y).

Let D}, = (0.00) x [0.h) x E, F}; = (D};)° and let 7; denote the exit time from Dy;.
Noticethat, for a € D}, i <, P, as. It follows from (35) that the measure dsL 2 is N,
a.e. supported on pathsw such that 7; (w) < ¢(w). By decomposing Z, accordi ng to the
different excursions outside D} and using the special Markov property (Proposition 7),
we get for (e, 1.y) € Dy,

N(oly) (1 — exp—(Zp.f))

N(a,|_y)(N(a,|_y)(1— exp_<2h,f> | ED;))
= Neaty(1 — exp—(Zg;. Un)).

On the other hand, by (36), ZF; = <Z|:; 1>6(0~|qy), N(oz.l,y) a.e.

We then make the following simple observation. If D’ = (F')¢, D” = (F")¢ are two
domains with respective exit times 7/, 7/ and if a € D’ D" issuchthat ' = 7"/, P, as,,
then Zr = Zg», No a.e. Thisfollows from the approximation of the exit local time given
in subsection 4.1, since we have 7’/(W,) = 7/(W,), du a.e,, N, ae.

The residual lifetime process started at o > 0 hits 0 at time «. Therefore, for a =
(v, 1,y) € Dy, the exit time from Dy, coincides P, a.s. with the exit time from the space-
time domain [0, &) x E. By the previous observation, ZF; =Z,, Njae,whereZ,isas
in the final remark of subsection 4.1. On the other hand, by a well-known formula for
the Brownian local time under the 1td6 excursion measure, we havefor A > 0,t > 0,

A
1+2)t°

Na(l— exp—A(Z;, 1)) =

By combining the previous results, we get

Un(et. 1Y) = Nty (L — exp—(Zp. 1)) = Ngiyp(1 — exp—un(0. I, YLk, 1))

_ un(0, 1, y)
1+ 2aun(0.1,y)"

We can now prove that the function vi(y) solves the integral equation of Theorem 8.
We start from (40) and we evaluate

_ X —
Ewoy) ( /07 dtUh(ét)Z) .
From our construction, FT(O,o,y) (mh = &) = 1for every h > 0. Therefore, for any function

g,
" g = b(/oh dsg&) + > /: dtg(t).

s<h§ <S

I:T(o,o,y) as. We then get
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Eoy ( /(: ' dtuh(é_t)z)

= bE(o.o.y) ( /Oh dsun(0. S“Ys)z) + E(0,0.y)< <h§<& /: dtun (&t Lt-,“/L‘)z)
. s<h& <5

s<

_ 0.7 ’
‘ /0 " ds’hfs(ws)z) +Eoy) (Sdé:ds /si dt( 1+ 2(;:(— t)SU:(()l S VS)) )

(
(
( dom-s07) + (./ s v [} dt(M”
(

bE! /oh dSVh—s(Vs)Z) + E(o_o_y)( h§<ss /Si dtun(Ss — t, 5«75)2)

bE

bE

y
li
y
li
y 0 1+ 2tun(0.s,7Vs)
li

bEy /Oh dSVh—s(Ws)z) * E;’(/Oh ds/wdp)%)
= S5 csion-s09).

The integral equation for vi(y) follows using (40). The uniqueness of the nonnegative
solution to this integral equation follows from Gronwall’s lemma.

It remains to establish (39). We rely on the special Markov property (Proposition 7).
Notice that (Zu. 0 < u < h) ismeasurablewith respect to EPr. Then, by considering the
contributions to Zt coming from the different excursions outside Dy,, we get

Noay(® = ep—(Z:.1) | E%) = 1 - exp{— [ Zu(dy Nony)(1 — ep—(Z:.1)]
=1-— exp—@h- u(0.h,-))
=1-— eXp—<Zh. Vt7h>-

REMARK. The function fp can be expressed in the usual form for branching mecha-
nism functions. Notice that, for every p > 0,

2 _ o da

1+2pv “Jo 4p2?

e /@) (e — 1+ av).

Therefore, the function ¢ of the theorem can be expressed as
D(v) = 2bV? + /0 “Y(da)(e ™ — 1+ av).

where
Y (do) = ( /0 > %e‘“/ (Zf’)) da.

If (dp) denotes the image of the measure p~1Y{dp) under the mapping p — (2p)~1,
we have aso Y'(da) = (% Jv(dp)e~*") da. We see that we get only a special class of
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measures Y (dar), namely those measures which are absolutely continuous with respect
to Lebesgue measure and whose density is the Laplace transform of a measure v on R
such that [v(dp)(p~1 A p~?) < oo. The 3-stable branching mechanism, for 1 < 3 < 2,
is obtained by the choice b = 0 and Y{dp) = cp~" dp.

4.3. The compact support property. Let JJ be the branching mechanism function in
Theorem 8 and let (Z;,t > 0) be a superprocess with spatial motion ¥ and branching
mechanism 1. We say that the compact support property holds for this superprocessif,
for every t > 0, the topological support of Z; iscompact a.s., for any choice of theinitial
value i € Ms(E').

THEOREM 9. Let fp be asin Theorem 8. Assumethat

(i) either b > 0, or b = 0 and there exist two positive constants ¢;, p < 1 such that,
for everyr € [0, 1],

L7 YanhAn = et

(i) there exist three positive constants ¢y, k, p, withp > 2ifb > 0,pp > 2if b =0,
such that, for everyy € E/, t € [0, 1],

Ey(sup de(y.7s)) < cat.
0<s<t

Then the compact support property holds for the (7. ¢)-super process.

REMARK. For the 8-stable branching mechanism, condition (i) holdswith p = 3 — 1.
The compact support property will then hold provided that (ii) is verified with some
p>23—1)L

ProOF. Werely on Theorem 8, but write Y; = Zt and Ny instead of N(g o) to simplify
notation. By the canonical representation for superprocesses, Z; has the same law as
Yierl Yi(wi), where Sig ., (dW) is a Poisson measure with intensity f 1(dy)Ny(dW). We
then observe that in the sum i, Yi(wi) there is only afinite number of nonzero terms.
Thisfollows from Lemma 3.4 of [5] if we can check that, for someé > 0,

(41) liminf A0 > 0.

When b > 0, thisis obvious. Otherwise, we write
’~ _ o0 dh 2 1/V 2 l+p
0w =27 [ e Y(Ih 00) 2 5 [ dhiv([h 00)) = Gew™.

by assumption (i).

It is therefore enough to check that the support of Y; is compact Ny a.e., for every
y € E. Recall that for w € W, we write w(t) = (&(w). Le(w), T(w)) for t < ¢(w). We
also set F(w) = limy Me(w) if the limit exists, F(w) = o otherwise. By convention, if
w = (o, 1, y) isatrivia path, wetake " (w) = y. By our construction of the exit measure,
we have
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(42) (Yoo = [ dLDo(F W)

and we already know that (W) # 9 for ae. s € [0, 0], Ny ae. Wewill prove that much
more holds.

LEMMA 10. Under the assumptions of Theorem 9, the mapping s — I (W) takes
valuesin E’ andis continuous Ny a.e.

Theorem 9 immediately follows from Lemma 10. Simply observe that, by formula
(42),
supp(Yy) C {F(We).0 <s <o}

and the latter set is compact by Lemma 10.

PROOF OF LEMMA 10. By assumption (ii) and the Kolmogorov lemma, the processy
has continuous paths. From the construction of the Brownian snake, and the continuity of
thelocal timeL, it followsesasily that Ny a.e. for every s € (0, o), themappingt — 't(Ws)
is continuous on [0, ¢s). We also know that for each fixed s, this mapping has a limit at
t=¢(, Nyae on{s<o}. Set

FWe) = (M(We). 0 St< Q). T(We) = (M(We).0 <t < )

where ' (Ws) = I (Ws). The mapping s — (W) takes values in the set of E/-valued
killed paths, equipped with the metric d defined in subsection 4.1. On the other hand, for
each fixed s, [“(Ws) is (Ny ae. on {s < ¢}) astopped path in the sense of [17] (afinite
path in the sense of subsection 2.1), that is a continuous mapping w from some compact
interval [0, (] into E'. Following [17], the set of all E'-valued stopped pathsis equipped
with the distance

d*(w.w') =[¢ = ¢ + ilgde (WA Q. W (EAC)).

and is a Polish space for this distance.

Let us check that the process I'*(Ws) has under Ny a version that is continuous for
the metric d*. For technical reasons, we first consider rational values of s. We may
argue under the conditional distribution of (Ws. s € @.) under Ny knowing the process
(és-s > 0). We denote this conditional distribution by ©{). Under (), (Ws.s € Q)
is a time-inhomogeneous Markov process whose transition kernel between times s and
' iS Qmss).,» With m(s,s) = infis¢y¢n (notice that m(s,s') < ¢s for every rational
0 <s< s <o,Nyae). Theprevious description of ©{ immediately follows from the
form of the transition kernels of W. We may furthermore assumethat the mappings — (s
is Holder continuous with exponent % —cforeverye > 0. Forrationd 0 < o < 8 < 0,
the paths W, (t), W;(t) coincide for t < m := inf}, 5 ¢, and then behave independently
according to the law of the process¢. Thus,
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d*(r*(Wa), r (VVB)) = |G — Gl + §1U<l? dE'(rt/\g,(Wa)- i, (W/B))
=[G =Gl + s de (Tn(We). Fi(We))

+ sup der(Tm(Wp). Ti(Wp)).

m<t<¢

Set h = ¢, — m. From the behavior of the process g_ and the fact that W,,(t) is distributed
under () as atrajectory of ¢ started at (0. 0.y) and stopped at time ¢, we see that

95@)( Sup dE’(rm(Wa')~ rt(Wrx))k) < sup E(0,0,y’)( sup dE/(yl.Vt)k)
m<t<(, yeE o<t<Ly
< CzE(o.o.y)((Lh)p)-

by assumption (ii) and the independence of v and L. Write E for E(o,o,y) and let q be the
smallest integer greater than p. Then,

E((LP) < E((Lwe)”
and by awell-known argument,
E(Ln)?) <a (En)”.
Moreover,
E() = [~ dsP(Ln>9= [ dsP(s < h) = U([0.h),

where U denotesthe potential kernel of S If b > 0, itistrivial that U([0, h)) < h/b. If
b = 0, ageneral property of subordinators (see e.g. [1], Proposition 3.1) givesforh < 1

h c.,
U([o.h) < Cm < C_lh ,

by (i). Here, c is a constant independent of h.
By combining the previous bounds, we get, withp = 1if b=0,

95@)( sup dE/(Fm(Wa). Ft(Wa))k) <ChP" =C(¢G —m)” < C.(5 — a)pﬂ(%—s)_

m<t<¢,

provided that ¢, —m < 1. Here the constant C_. dependson ((s, s > 0) and on € but not on
the choice of «, 8in [0, g]. An analogous bound holdsfor the symmetric term involving
asupremum over {m <t < (3}. Wefinaly obtain, for 8 — o <6 =6(¢, s> 0),
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6545) (d*(l'*(Wa)_ r*(W{f)) k) <cl'(p-— a)pﬂ(%*f)'

We can choose e so small that pp(% — ¢) > 1 and then apply the Kolmogorov lemma.
Weget aprocess (I (s). 0 < s < ¢) whichis continuousin the space of E/-valued stopped
pathsand coincideswith (I*(Ws). 0 < s < o) for rational valuesof . It isthen easy to see
that (f(sz, 0 <s<o)isaversionof (IM"(Ws).0 <s<o).If F(s) = (ft(s).o <t< ZS)
we have(s = (s for every s € [0, o], Ny a.e. and, because we already know that the killed
paths I' (Ws) depend continuously on s, we have also

Fi(s) = M(We). VYVt e[0.4). Vs e [0.0],
Ny a.e. It follows that the limit
FOWG) = lim (W) = (9

existsfor every s € [0, o], Ny a.e., and definesa continuousfunction of s. This completes
the proof of Lemma 10. ]

REMARKS. (i) Under our assumptions, a general result of Fitzsimmons (see e.g.
Theorem 2.1.3 of [5]) showsthat the superprocessZ has a cadlag version. Dealing with
this version, the previous argument shows more precisely that, for every ¢ > 0, the set

U suppz;

t>e
is as. relatively compact. In fact, by the right-continuity of the mappingt — Z;, the
closure of this set coincides with the closure of

U suppZ.
t>e,teQ
Then, using the same argument asin the previous proof, we seethat it is enough to check
that
U suppY;
t>e,tcQ
is Ny a.e. relatively compact. However, this set is Ny a.e. contained in the compact set
{F(We).0<s<a}.
(i) Assume that v is Brownian motion in RY, or more generally a nice diffusion

process, so that assumption (ii) holdsfor every p with k = 2p. The argument of the proof
then shows that the mapping s — [ (Ws) is Holder continuous with exponent 4 —ofor
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every § > 0 (with p = 1if b > 0). Hence,

dim{I'(Ws),0<s<¢} <

ESHES

Let R denotethe range of Z, defined as usual by

R=U cI(U suppZt).

e>0 t>e

where cl(A) standsfor the closure of A. We get from remark (i) thatdimR < ‘;‘ ,as. This
bound is not sharp. However, aforthcoming paper of Delmas[8] showsthat the previous
arguments can be used successfully to investigate the Hausdorff dimension properties of
general superprocesses.
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