MEASURABLE COVER FUNCTIONS
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1. Introduction. Let p* be an outer measure on (X, S)
with ¢- algebra S and let My be the inner measure induced

by p*. A set M is a measurable cover of a set A C X if
ACM, M is measurable, and p*(M-A) = 0. We assume that

every subset of X has a measurable cover; this holds, for
example, if p* is the outer measure induced by a measure
which is o- finite on X [2, theorem C, p.50]. For each

x ¢ X and each A C X, D(x, A) is a non-negative real number
with the properties:

(i) if ACBC X and xe¢X, then D(x, A) < D(x, B);

(ii) if A is a measurable subset of X, then D(x, A) >0
for almost all xe¢ A and D(x, A) = 0 for almost all x ¢ A;

(iii) if M is a measurable cover of AC X and x ¢ X,
then D(x, A) = D(x, M).

It is easily seen [1, theorem 1'1] that, for each A C X, the set
AU{x | D(x,A) > 0} is a measurable cover of A.

2. Measurable Cover Functions. Let f be a real-valued
function with domain X and, for each real number a, let M(a)
be the measurable cover of {x , f(x) > a} as above. For each
xeX, let f(x) be the supremum of {a I x € M(a)} . The
function f will be called the cover function of f.

THEOREM 1. If f is a bounded real-valued function,
then f is a measurable function and f(x) > f(x) for all x e X.

Proof. The set {a | x € M(a)} 1is not empty, since
X e M(a) if a< f(x) and is bounded above by any upper bound
for f. Thus, f(x) is defined for all x, and because

x e M(a) if a < f(x), f(x)< .f-(x) for all x. For each real number vy,
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(x| f(x.) >y} = U n M(a),
n=1

where the intersection is taken over all rational numbers a
such that a< y +1/n. Thus, f is measurable.

THEOREM 2. Let f be a bounded real-valued function.
If h is a measurable function such that h(x) > f(x) for all x,
thenh(x)zi(_x) for almost all x. Thus, if f is measurable,
then f(x) = f(x) for almost all x.

Proof. For each real number r,
{x | h(x) < r < £(x)} € M(r) - {x | f(x) > r}.
so the result follows from the definition of 'measurable cover'.

THEOREM 3. Let f be a bounded real-valued function
and let €¢> 0 be a real number. Then

by ({x | f(x) +e<f(x)}) = o0,

Proof. Suppose that there is a measurable set E such
that p¥ (E) > 0 and f(x) + €< f(x) for all xe¢ E. Then a
contradiction to Theorem 2 can be obtained by considering
the function h defined by:
E(x)— e if x ¢ E;
h(x) =¢ _
f(x) if x ¢ E.

3. Examples. In the following three examples,
X =[0, 1], p* is Lebesgue outer measure, and A is a
non-measurable subset of [0, 1] constructed by partitioning
[0, 1] with the relation 'a is related to b if a - b is
rational' and then choosing one and only one member from
each of the resulting equivalence classes. For each positive
integer n, the set An is A+ r o the addition being modulo 1,

where (r ) is some enumeration of the rational numbers in
n
[0, 1] with r, = 0. The sets {A } are disjoint, each of them
n

has inner measure 0, their union is [O, 1], and, for each
n, p*(An) = H*(A'l) > 0.
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Example 1: We give an example of a function f such that
My ({xlf(x) < f(x)} )> 0. For each xe¢ [0, 1] let f(x)=1-1/n
o0

if xe¢ A . Since {x|f(x)>1-1/n} = U A, wehave
n o r=n+i r

p*(M(1 - 1/n) > p*(A,) so that “*(nq M(1 - 1/n) > p*(A,).
0

If xe noi M(1 - 1/n) then xe M(a) for all a< 1, so that
o0
{x|Hx)>1}2> 1 M1 - 1/n). From this u ({x|f(x)>£(x)})

> p¥(A) > 0.

Example 2: This example shows the difficulty in
generalizing the concept of cover function to non-bounded
functions: we construct a finite-valued function f such that
pk({x | x ¢ M(a) for every a})> 0. Define f by f(x) =n

o0
if xe A . Then {x]f(x) >n} = r:\1{+1 A S0 that
pE{M(n)) > w* (A1) for all n, and the stated condition follows

immediately from this.

Example 3: It is easily seen that if {fn} is an

increasing sequence of bounded functions which converges
to a bounded function f, then {fn} converges almost

everywhere to f. We now show that 'increasing' cannot be
replaced by 'decreasing' in this statement. For each
positive integer n and x [0, 1] we let

)
[1 if xe U A
m=n m
f (x) =
n
lO otherwise.

The sequence {fn} is obviously decreasing and converges

to 0 for all x. We show that fn(x) =1 for all n and x.
n-1

First, it is easy to see that the difference set of Y A
m=1 m

contains just a finite number of rational numbers, so that
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n-1
[2, p. 68] the inner measureof \J) A is 0. Therefore
m=1 m
0

[0, 1] is a measurable cover for U A and so
m=n M

e} -
D(x, U A ) =1 for all x. From this f (x)=1 for
m=n M n

all n and x.

4. Applications to Local Measurability: In this section
we consider the case in which X is the set of real numbers,
p* is Lebesgue outer measure, and D(x, A) is the strong
upper density of A at x. Thus, in addition to the conditions
of § 41, D satisfies:

(iv) if A, B are sets of real numbers and x is a
real number, then D(x, AUB) < D(x, A) + D(x, B).

Let f, g be real-valued functions of a real variable and
let x be a real number. We define d(f, g) to be
d(f, g) = D(x, {y , f(y) # g(y)} ) and let CX be the class of

those functions such that there is a measurable function g

with the property d(f, g) = 0. The class C 1is discussed
X

extensively in [3],where it is referred to as the class of
locally measurable functions.

THEOREM 4. é bounded real-valued function f is in
CX if and only if d(f,f) = 0.

Proof. Let f ¢ CX and let g be a measurable function
such that d(f,g) = 0. Let M be a measurable cover of
{y l f(y) # gly)} . Then D(x,M) = 0. Let h be the function:

Hy) if yeM;
h(y) =
gly) if yg M.

Then h is measurable and h(y) > f(y) for all y, so that

a(f,f) = D(x, {y | £y) < £(y) })
< D(x, {y | f(y) < h(y) })
< D(x, {y | fly) < h(y) }NAM) +

D(x, {y | f(y) < h(y) }N\ M)
0.

i
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If d(f,f) =0, then f eCX because f is measurable.

THEOREM 5. Let f be a bounded real-valued function.
Then {x | f ¢ Cx} is a measurable set.

Proof. Let F = {y | f(y) # f(y)}, let A={x]f «C_}

and let M be a measurable cover of F By the preceding
theorem, A = {x l D(x,M) =0}, so that, by (ii) of § 1,
A =M, modulo a null set.
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