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Best approximation and intersections
of balls in Banach spaces

David T. Yost

Let £ be a Banach space, M a closed subspace of E with the
3-ball property. It is known that M is proximinal in F , and
that its metric projection admits a continuous selection. This
means that there is a continuous (generally non-linear) map

T : E~>M satisfying |x-n(z)|| = d(x, M) for all x in E .
Here it is shown that the same conclusion holds under a much
weaker hypothesis on M , which we call the 1%-ball property.
We also establish that if M has the 1%-ball property in E ,
then there is a continuous Hahn-Banach extension map from M* to
E* |

Introduction

Let M Dbe a closed subspace of a Banach space E . This paper
clarifies the relationship between approximative properties of M , and
intersection properties of balls pertaining to M . Recall that M is
said to be an L[-summand (respectively, an M-summand) of E if there is a
linear projection @ from E onto M such that |jz| = ||@x] + [lz—@x|

, the
polar of M , is an L-summand of E* , then M is said to be an M-ideal

(respectively, |lz| = max{{lqx]], |lz-@zf]} )} for all x € E . 1If u°

in EF . We say that M has the n-ball property in EF if given =n
closed balls B(ai, ri] such that M n B(ai, ri) is non-empty for each
n n

7 ,and N B(a., r.] has non-empty interior, then M n N B(a., r’.] is
5 =2 v
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non-empty. These notions were introduced by Alfsen and Effros [1], who
showed that an M-ideal has the n-ball property for every ~n and,
conversely, that any subspace with the 3-ball property is already an
M-ideal.

Let H(*) denote the family of all closed, bounded, convex, and non-
empty subsets of a given Banach space. The metric projection
P=P,:E>HM V {#} is the set-valued map defined by
P(a) = M n B(a, dla, M)) . Thus P(a) is the set of points in M which
are nearest to a . M is said to be proximinal in E if Pla) # § , for
all a €E . Then a proximity map T : E + M is any (not necessarily
continuous) selection for P . Note that P{a+x) = P(a) + x whenever
x €M . We say that a selection T is quasi-additive if

m(a+x) = M(a) + x whenever x € M .

Alfsen and Effros [1, Corollary 5.6] and Ando [Z2, Theorem 2.1]
independently showed that every M-ideal is proximinal. Holmes, Scranton,
and Ward [é, Theorem 2.2] improved this by showing that the metric

projection onto an M-ideal admits a continuous, homogeneous selection.

We will say that M has the 1%-ball property in E if the

conditions a, €M, MnN B(az, er #@ , and ”al—a2” <r +r, imply

that ¥ n B(al, rl) n B(a2, r2) # @ . After translating and scaling it is

evident that this is equivalent to requiring M n B(0, 1) n B{a, r) # @
whenever M n Bla, ») # § and llall < r + 1 . Our main result is that
every subspace with the 1%-ball property is proximinal, and that its
metric projection admits a continuous, homogeneous, quasi-additive
selection. In Section 2 we give examples of closed subspaces of Banach
spaces which possess the 1%-ball property. Not all of these subspaces are
M-ideals, so our result has wider applicability than that of [6]. We also
show that if M has the 1%-ball property in FE , then there is a
continuous, homogeneous map ¥ : M* > E* such that each Y(f) is a norm
preserving extension of f . Under additional hypotheses, we are able to
establish the Lipschitz continuity and linearity of certain proximity maps

and Hahn-Banach extension maps.

Except when specific mention is made to the contrary, scalars may be

real or complex. By C(X, E) we denote the Banach space of continuous
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functions from the compact, Hausdorff space X into the Banach space E .
If S is a sequence space, then S(E) will denote the Banach space of all

sequences (:cn) from E such that the sequence [|lxn|l) is in S .

B(E, F) is the space of bounded, linear operators from E to F , and

K(E, F) 1is the subspace of compact operators. We use dH for the
Hausdorff metric on H(E) ,
dy(4, B) = sup({d(z, 4) : = € B} u {d(z, B) : = € A})

By Michael 's Selection Theorem we mean [I], Theorem 3.2"].

1. Existence of continuous selections
We establish the results stated in the abstract.
CLEMMA 1.1. Suppose M has the 1%-ball property in E . Then
(i) M is proximinal in E ,
(ii) for all a, b € E we have dH[a-P(a), b-P(b)) = 3d(a-b, M) .
The constant 3 1is, in general, best possible.

‘ Proof, (Z) Let a €E , 6 =d(a, M) . We inductively construct a

sequence (xn) C M satisfying

-n
(1) len-xn+l|| =2
and
(2) Iz, ~all =8 + 27" .

Obviously a suitable xl exists. Suppose :rn is given, and satisfies

(2). Then we have x €M, Mn B(a, 6+2‘n'1) # @ and

le -all < & + 21 4 2™ | Since M has the lk-ball property,

-n -n-1 . . .
Mo B[xn, 2 ) n B(a, §+2 ) # @ . Any point Z, 4 in this intersection
will satisfy (1) and (2).
The induction completed, (1) implies that (z ) is Cauchy, and hence

converges to some x € M . Then (2) yields |lxafl =6 . Thus Pla) # ¢ .
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(i1) Let a, b € E with d(a-b, M) < € . It suffices to show that,
given x € P(a) , we can find y € P(b) with [(a—x)-(b-y)l < 3e . If
b €M, then P(b) = {b} and we must take y = b . Then
la—x-b+yll = lla=x|l = d(a, M) = d(a-b, M) < € as required. If b § M , then
§ =d(b, M) >0 . Choose 3z €M with |la-b+z| < € . Then z+x € M ,
M nB(b, 8) #9 dy (i), and

lz+c-bll = lla-b+z| + |lxc=all < € + d(a, M) < 2e + &
Since M has the 1%-ball property, we can find
y € M nB(b, 8§) n B(z+x, 2¢)
Clearly y € P(b) . Finally
la~x-b+yll = lly-(z+z2){ + lla-b+zll < 2¢ + € .
To show that this estimate is sharp, consider the real Banach space

E =1.13) (that is, E = R3 , with the sup norm), with M the one-
dimensional subspace spanned by (1, 1, 0) . It is elementary to check
that M has the 1%-ball property in E . Let a = (0, 0, 3) ,
b =(1, -1, 2) , and x = (-3, -3, 0) . Then

P(b) = {(x, A, 0) : =1 =X =1}

and so d(a-x, b-P(b))

3. Now « € P(a) , so dH(a-P(a), b-P(b)] >3 .

1. !/

But d(a-b, M) = [la-bl|

We remark that if M has the 2-ball property in FE , then the
estimate of Lemma 1.1 can be sharpened to dH(a—P(a), b—P(b)) < dla-b, M)

The preceding example then shows that the 1%-ball property is strictly
weaker than the 2-ball property.

THEOREM 1.2, If M has the 1lk-ball property in E , then

(i) there is a continuous, homogeneous map  : E/M + E
satisfying Y(a+M) € atM and |Wa+M)| = |a+M|| for all
a €F,

(ii1) there is a continuous, homogeneous, quasi-additive
proximity map W : E> M,

(ii1) there is a continuous, homogeneous Hahn-Banach extension
map Y : M* > E* |

https://doi.org/10.1017/50004972700010972 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700010972

Intersections of balls 289

Proof. (i) Define n : E/M - H(E) by nl{a+M) =a - PM(a) . Since

M is proximinal, 7N is well-defined. By Lemma 1.1, n 1is continuous
with respect to the Hausdorff metric on H(E) , and is therefore lower
semicontinuous. Michael 's selection theorem ensures the existence of ¢ ,
a continuous selection for 0 . An argument of Kadison [see 11, p. 376]
shows that { can be chosen homogeneous. Clearly ¥ has the stated

properties.

(i2) Let ¢ be given by (7), and define w by w(a) = a - Y(a+tM)
Then 7 is continuous, homogeneous, quasi-additive, and satisfies

m(a) € Pla) for all a €E .

(7i1) We claim that n° has the 1%-ball property in E* . So let

P aB(f, ) #8, Ifl <z +1 . To show that M n B(O, 1) n B(f, 7) # @
it suffices, by [7, Theorem 1.2], to show that |f(aé)| < ”al” + r”a2H

<
vhenever a ta, €M . If Ha2H < Haln then

IF(a) | = (ee)llayl = flayll + rla,ll -

So assume Ha2H > HalH and fix € >0 . Since a*a, € M n B(ae, Hal”+e),
the 1%-ball property gives us some

a € M0 B(0, llayll-lall) 0 Blay, lla, lI+€)

vow lflMll = d(f, ¥°) < » , so

If[a2)| = |f(a)—f(a-a2)|

1A

rllall + (r+1)lla-a,l

r(llayli-llay ) + (r+1) (llay ll+€)

A

Letting € + 0 establishes the claim.

From (7) we obtain a continuous, homogeneous map ¢ : E'*/MO + E*
satistying (red®) € pa® ana ()l = a(f, #°) = lIf|M] for all
f € E* . Identifying E”‘/M0 with M* completes the proof. //

If PM(a) is a singleton for each a € E , then M is said to be a

Chebyshev subspace of E . In this case the proximity map is unique and is

usually referred to as the metric projection. Let us say that M is a
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semi-L-summand in & [7, Section 5] if M is Chebyshev in E and the
metric projection m : E + M satisfies |zl = [[m(z)|| + |lz-m(x}|| for all
x € E . It is routine to check that every semi-L-summand (aq fortiori,

every L-summand) has the 1%-ball property.
THEOREM 1.3, Let M be a semi-L-summand in E . Then
(i) the metric projection w : E +M is a contraction,

(i1) there is a linear Hahn-Banach extension map § : M* > E*

and a linear proximity map P : E* + M° R

(Zit) 40 s the range of a norm one projection on E** .,

Proof. (Z) Fix a, b € E and assume without loss of generality that
Im{a)=all = |w(b)-b|| . Since M is Chebyshev, 7 must be quasi-additive.
Thus w(m(a)-b) = w(a) - m(b) and so

Im(a)-n(p)|| = [In(a)-bl - lIn(b)-bl|
w(a)-all + lla-bll - lIm(B)-b|
la-bll .

A n

1A

(i7) We have just shown the existence of a Lipschitz continuous
retraction of E onto M with Lipschitz constant 1 . The existence of
§ follows from [9, Theorem 3 (a)]. If Pf =f - ¢{(f|M) then P is

linear and |If-Pfll = lif|Mlil = d{f, MO) for all f € E* .

00

(Zi1) Define @ : E** > M by QF = F o (I-P) . //

Lima [7, Section 6] calls M a semi-M-ideal in E if MO is a semi-
L-summand in E* , and shows this is equivalent to M having what he calls
the 2-ball property. The reader is warned that the definition of the
2-ball property used in [7] is, formally at least, weaker than that which

we employ.
COROLLARY 1.4. Let M be a semi-M-ideal in E .

(i) The Hahn-Banach extemsion map ¢ : M* >~ E* <is uniquely
determined and satisfies |W(F)-¥(g)ll = 2llf-gll for all f, g € E* . The
Lipschitz constant 2 can not, in general, be decreased.

(ii) P s the range of a norm one projection on E* .
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0 o .
Proof. (i) Again we identify E*/M and M* . If w : E* >+ M is

0 s o
the (unique) metric projection, then  : E*/M - E* satisfies
w(f+Mo) =f ~-u(f) . Pix f+Mo, g+M0 € E'*/MO . Adding a suitable element

of Mo , we may assume that w(f-g) = 0 . Then

|lfg-n(F)+wm(g)ll = 2lf-gll
2d(f-g, M%) = 21 (Fa%) ~(gnO) 1 .

To show that the estimate is sharp, let E be the real Banach space 11(3)

and take M = {(x, y, 2) : x+y+z = 0} . Then E* =7 (3) and M =R1 .

1w (r+%) v (g+O)

It is easy to verify that Mo is a semi-L-summand. In E'*/M0 , let
f=1(0,2,2) +Rl and g =1(-2, 0, -2) +R1 . Then |f-g| =1 .
Routine checking gives w(0, 2, 2) = (1, 1, 1) and

(-2, 0, -2) = (-1, -1, 1) . Thus ®(f) = (-1, 1, 1) ,

vlg) = (-1, 1, -1} and so [W(f}-v(g)| =

N

(17) By Theorem 1.3 (7171) there is a norm one projection

000

Q : E*** > Let f+> f denote the canonical embedding of E*

into E*** . Since ? € MOoo whenever f € M0 , the required projection

is given by f i Q(%)|E . //

2. Examples

We give examples, mostly in spaces of operators and spaces of
continuous functions, of subspaces which have the 1%-ball property but are
not M-ideals. TFor some of these examples, previous authors ([3,

Corollary 3.19] and [72, 7.5.6]) have used ad hoc methods to establish the
existence of continuous proximity maps, or simply to establish
proximinality. The existence of continuous Hahn-Banach extension maps
seems to have gone unnoticed. Checking that these subspaces have the
1%-ball property provides a uniform, and often easier, method of
establishing such results. We also give some new example of M-ideals.
Lastly we consider the relationship between the n-ball property and

algebraic structure in subspaces of Banach algebras.

Let us say that a real Banach space E 1is a (real) Lindenstrauss

space if every collection of pairwise intersecting closed balls in £ ,
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whose centres form a compact set, has non-empty intersection.
Lindenstrauss [§, p. 62] showed that a real Banach E has this property if
and only if E* = Ll(u) for some measure U .

THEOREM 2.1. Let E be a real Lindenstrauss space, X and Y
compact Hausdorff spaces, and % : X » Y a continuous surjection. Let
Y* : C(Y, E) » C(X, E) denote the natural isometric embedding,

Yi*f = foy . Then M= P*C(Y, E) has the 1%-ball property in C(X, E)

Proof. Suppose we are given f € ¢(X, E) and r > 0 with
MNB(f,r)# @ and |fll =r+l . Define n : Y » H(E) vy

B(o, 1) n N B(f(x), r)
xéw—l(y)

nly)

B(0, 1) n{a € £ : F () < Bla, r)}
Clearly each n(y) 1is closed and convex. We must check that n(y) is

non-empty. Let y*g € M n B(f, r) . If T 5z, € w-l(y) then

1A

() -Fle < f(=) o)l + lgly)-flz))]
2”f‘¢’*9” = 2r )

and so B(f(xl), r) meets B(f(:z:2), r) . Since |Ifll = r+1 , B(0, 1)

1A

must meet each B(f(x), r) . Thus the family of balls defining n(y)

intersect pairwise. Since the collection of centres {0} u f(\b—l(y)) is

compact, we have n(y) # @ . We claim that n is lower semicontinuous.

So let GCE be open. Let y, € {y : n(y) meets G} be given, and
o € ly = nly

choose a € n(yo) NG . Then Jall =1, f[w—l(yo)) < B{a, r) and

B(a, €e) € G for some € > 0 . It follows from the compactness of X that
the map y w-l(y) is upper semicontinuous. Hence

v={y : f'(v.p_l(y)) < int Bla, r+e)} is an open set containing Yo - If

y € N, then Bf(a, £) meets B(f(.‘z:), r) for all x € w_l(y) . Clearly
B(a, €) meets B(0, 1) . Since E 1is a real Lindenstrauss space, we
deduce that n(y) meets B(a, €) , whenever y € ¥ . Thus -

N< {y : n(y) meets G} . It follows that {y : n(y) meets G} is open, and

this proves n is lower semicontinuous.
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By Michael's selection theorem, there is a continuous function
h :Y~+E satisfying h(y) € n(y) for all y . It is routine to verify
that y*h € M n B(O, 1) n B(f, r) . //

COROLLARY 2.2. Let X, Y, ¢, E be as in Theorem 2.1. Fix Yo € Y
and let M = {Y*f : f € C(Y, E) and f(yo] =0} . Then M has the 1%-ball
property in C(X, E} .

Proof. Let f, r, n be as in the previous proof. If
v*g € M n B(f, r) , then |f(z)] = ”f(x)—(w*g)(x)ﬂ < r vwhenever
x € w-l(yo) . Thus O € n[yo) . If we define nj : ¥+ H(E) by
no(y) =nly) for y #y, , and no(yo) = {0} , then n, will be lower
semicontinuous. The existence of a continuous selection for no shows
that M n B(O, 1) nB(f, r) # 9 . /!

COROLLARY 2.3. Any closed subalgebra of C(X, R) has the 1%-ball
property.

Proof. This follows from the Stone-Weierstrass Theorem and Theorem
2.1 (for subalgebras containing the constant functions) or Corollary 2.2

(for subalgebras not containing the constants). //

It follows from [7, Theorem T7.6] that any closed subspace of C(X, R)
with the 2-ball property must be an ideal. Thus the examples given by the

preceding results will not, in general, be M-ideals.

PROPOSITION 2.4, Let E be any Banach space, X a compact
Hausdorff space, Y a closed subset of X, n €N . Then
M={f €Cc(x, E) : flY = 0} has the n-ball property in C(X, E) .

Proof. Suppose that we have M n B(fi, ri] #@9 for i =n, and

n n
int N B(f,, r,) #@ . Define ¥ : X +H(E) by ¥(z) = n B(f.(z), r.) .
i=1 7 T i=1 A T

Clearly each ¥(x) is closed, convex,and has non-empty interior. Hence
Y(x) = int P(x) for all z € X . Now let G be any open subset of E ,
and let x € {x : P(x) meets G} . Then int w‘xol meets G , so we can

find a € int w(xo) NG . Then IIa-fi(xo) | <r, for each i . By

continuity, x, has a neighbourhood ¥ such that x € N = Ha-f%(x)" <r.,
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for all © . Then a € P{x) wvhenever x € N , so

N < {r : P(x) meets G} . This proves that ¥ is lower semicontinuous.

Fix z €Y . If g € MnB(fi, ”i) . then

This proves that 0 € Y(x)

Now define n : X > H(E) by nlz) =¢(x) for = §Y , and
n(xz) = {0} for x € Y . Since Y is closed, it is easily shown that n
is lower semicontinmuous. Let f € C(X, E) be a continuous selection for

n
n. Then FeéMNn N B(f., r.) . //

=1 ¢t
We note that Corollary 2.3 fails in spaces of complex-valued

functions.

PROPOSITION 2.5. A closed *subalgebra A in C(X, C) has the 1%-
ball property if and only if it is an ideal.

Proof. That ideals have the 1l%-ball property is immediate from
Proposition 2.4, with E =@ . Suppose now that 4 is not an ideal. We
assume that 4 does not contain the constant functions. (If 1 € 4 , the
result follows from a simplification of the following argument.) By the
Stone-Weierstrass Theorem, there is a compact Hausdorff space Y , a

continuous surjection ¢ : X > Y and a point yo € ¥ such that

A= {p*f: fec(y, @) and f(yo) = 0} . If the restriction of ¥ to

X\w-l(yo) is injective, it can readily be shown that A4 is an ideal.
Thus we may find distinct x, z, € X such that wcro) = wﬁxl) # Yy - Let
Yy = wﬂxl] , and construct contimuous functions a : X R , b : Y >R

satisfying -1 <a¢ =1, 0=Db =1, aﬂrn) = (-1)" and b(yn) =n

(n =0,1) . Then lla~ip*p|| = Ve <1 +% , iP* €A , and

A nBla, 1) # # . However A n Bla, 1) n B(iY*b, %) = @ , which shows that
A does not have the 1l¥-ball property. For suppose Y*f € A n B(a, 1)
Then, for n =0, 1 , If‘(yl)ill = [(9*f) [xn)-a(xn)l = W*f-all =1 . Hence

flyy) =0 . But then I*f-ivdl = |fly)-vly,)l =21>%.  //
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By Proposition 2.k, co(E) is an M-ideal in I _(E) if E is finite
dimensional. It is useful to know that this is true for arbitrary E .

LEMMA 2.6. For any Banach space E , c,(E) is an M-ideal in
1(E)

Proof. If z = (z(n)) ¢ 1 (E) and co(E') n B(x, r) # ¢, then

3
limsupllz(n)ll < » . Suppose N B(z., r.) # ¢ and cO(E’) n B{x., r.) # ¢
i=1 FAGIE A i 71
3
for each 7 . Then for all € > 0 , n B(xi, ri+e) contains a sequence
=1

with only finitely many non-zero terms and so meets cO(E') . Although

formally weaker than the 3-ball property, the property just established

does characterize M-ideals [7, Theorem 6.9]. //

COROLLARY 2.7. For any Banach space E , K(E, ¢,) is an M-ideal
in B(E, co) .

Proof. This follows from the natural identifications
x(E, cg) = colE*) and B(E, ey) = {(r,) €1 : f, > 0 weak*} . //

PROPOSITION 2.8. K[Zl) has the 1%-ball property in B(Zl)

Proof. Recall that for any operator matrix q = (aij) € B(Zl) we

co o o (=]
have |la|l = sup g laijl and a € K(Zl) < lim sup P> Iaijl =0 . Fix
J=1 ¢=1 N g=1 1=n

a € B(Zl) with lall £ »+1 , and K(Zl) nBla, r) #+ § . We assume that

lall > r , otherwise 0 € k(2;) n B(0, 1) n B(a, r) .

(=]
Fix je€N. 1f Y |a.,.|Sr,put «,.=0 for all % . Other-
L iJ id
=1 .
wise choose n =n(j) and 0= )\=<1 sothat Ala .|+ ) J|a..|l=r
ng . 1J
1=n+l
Putti ..=a,., T L < . = - . .. =
ing =z, aw or i<n, =z (1 k)anJ and :1::1,‘7 0 for
o© oo
i>n,wehave Y J|z..|= Y la..|-r.
=1 Y o W
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It follows that & € B(zl) with flzll < llal -» <1 . For each g ,
oo

3 = A .. . . = . = .
either z,. =0 forall i, or igl |aw-xw] r . Hence [la—x| <r

We must show & € K(Zl) . Fix € > (¢ . Eince K(Zl] meets Bla, r),

there is a finite rank operator in B(aq, r+g) . Thus, for some W ,
o o (o]
sup 9. la..| <r+€e. Fix j. It ¥ la..|<=r , or if N > n(j) ,
j=1i=y * i=1 v
o o] Lo~
-— - y -
then iEN lxwl =0 . If ¥ =n(j) then i; wal = iglv Iaijl -r<e.
oo oo
Thus sup 2. |x..| < & , as desired. //
g=1 i=n *J

If £ and F are separable sequence spaces (that is, co or Zp R

l1sp<w® ),what is the largest value of n such that K(E, F) has the
n-ball property in B(E, F) ? Hennefeld [5] showed that K(Zp) is an

M-ideal in B(Zp) if 1 < p <o, Minor modifications to his argument
yield that K(Zp, Zq) is an M-ideal in B(Zp, Zq) if 1<p<g<w,

By [713, Theorem 6.2] K(Zl) fails the 2-ball property in B(Z We

1)
show that K(Zl, Zp] fails the 1%-ball property in B(Zl, Zp) if
1<p<w ., 8Since K(E, F) = B(E, F) 1in all the remaining cases [10,
Proposition 2.c.3], this completely answers the question.

For any matrix a = (aij) € B(Zl, Zp) we have

o [ 1/p o ®

llall = sup { . lai,lp and aq € K(Zl, 1.} < lim sup ) lai.lp =0 .
=1 li=1 ¥ p no =1 i=n Y

Choose A so that 1< AP < 2P_1 and put alj =X for all j , ajJ: =1

for j#1 , and a;; = 0 for all other (Z, j) . It is easy to verify’

that |lall < 2 and that K(Z Z) n Bla, 1) # § . However

l’

b4
k(2 zp) n B(0, 1) n B(a, 1) =@ . To see this, let

l’
x € K(Zl, Zp) n B{a, 1) . Then xjj +0 as j > , and
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«©

Az P + |J1=c..|P = Y la

P < ;
Jo S =1 for all .
1d it T & | I

iJ  id

> A

. i = A > .
Y , so =l 1

Thus

8

We finish by considering subspaces with the n-ball property in Banach
algebras. It is known [73, Theorem 5.3] that the M-ideals in a C*
algebra are precisely the closed two-sided ideals. We give a short proof
of this fact. For elementary C* algebra theory, we refer the reader to

[4, Chapter 5].

LEMMA 2.9. Let J be an M-swmmand in a unital C* algebra A .
Then J 18 an tdeal in A .

Proof, let @ =I - P, where P is the M-projection onto J . We
first note that if f € A* is positive, then so are P*f and @*f . For

[(P*AY (L) ] + [(@*A) ()] = lle*fll + llg*sll = Iifll
£(1) = (P*A)(1) + (@*H(1) .

IP*7ll and  (@*F)(1) = llg*Fll .

1A

Hence (P*f)(1)

Now let p =P(l) . If f € A* is positive, then
flp) = (P*f)(1) =2 0 . Hence p is positve. We show that ap% € J for
all a €4 .

Let f € A* be positive. Using the Cauchy-Schwarz inequality, we

obtain

A

(@*) (aa*) (¢*F) (p %)
=0,

I7(el@®) 12 = [(e*) (@) 1

Thus Q(ap%) lies in the kernel of every

[}
o

since (@*f)(p) = flgp)
positive functional on A4 . It follows that Q(ap%) =0, so ap% €J .

Thus ap € J = P(4) for all a € A . Similarly a(l-p) € @(4) for
all a . It follows that Pag =ap for all a , so J =P{A) =Ap is a
left ideal. A similar argument shows that J is a right ideal. //

PROPOSITION 2.10, Let A be a C* algebra, J a closed subspace
of A. Then J 1is an M-ideal if and only if J is an ideal.

Proof (ONLY IF) . 1If JO is an L-summand in A* , then JOo is an
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M-summand in the unital C* algebra A** . By Lemma 2.9, JOO is an

ideal in A** . Hence J = J00 NnA is an ideal in 4
. . . 00 R .
(IF) If J is an ideal in A , then J is a weak* closed ideal

in the W* algebra A** . Thus JOO = A**p for some central projection

p . Straightforward calculations show that 4** = JOO ® A**(1-p) , and

that the two subspaces are weak® closed complementary M-summands. Taking
polars, we deduce that JO is an [L-summand in A% . //

It is natural to ask to what extent the previous result can be
generalized to Banach algebras. Smith and Ward (13, Theorem 3.8] showed
that in a commutative, unital Banach algebra, every M-ideal is an ideal.

By showing that K[Zl) fails the 2-ball property in B(Zl) , they gave a

non~-commutative counterexample to the converse problem. Commutative
examples are easily obtained by giving a suitable Banach space the zero
product, then adjoining an identity. We give a less trivial counter-

example.

_ Let A be the disc algebra [4, p. 6] and take
J={f ea: f(0) =0} . Clearly J is an ideal in A . Using the
maximum modulus principle, it is easily shown that PJ(f) = {f-f(0)} , for

all f € A . Consideration of the balls B(0, 2) and B(f, 1) , where

flz) = 32 + 22 - 1 , shows that J fails the 1%-ball property.

In fact, the disc algebra even contains a non-proximinal ideal. This
time, take J = {f € 4 : f(0) = f(1) = 0} . Obviously J is an ideal in
A . Let f(z) =1 -2z . For any g € J we have, by the maximum modulus
principle, |if-gll > |f(0)-g(0)| =1 . Fix € > 0, and let
g(z) = a(z-1)/(1+e-z) . Then g € J and ||f-gll = (l+€)/(1+(s/2)) . Thus
d(f, J) =1, but P(f) = J n B(f, 1) is empty.

Smith and Ward [13, Theorem 3.6] also showed that every M-ideal in a
unital Banach algebra is a subalgebra. This is not so for subspaces with
the 1%-ball property, even in commutative Banach algebras. Let T denote
the circle group, and let S = {3 € M: 0 < arg 2 < W} . With convolution

as multiplication, Ll(ﬂj is a commutative Banach algebra. Now

M={f ¢ Ll(TT): fls = 0} is an L-summand, and so has the 1%-ball
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property in Ll(ﬂW . If a €M is defined by a(S) = {0} and

a(T\s) = {1} then a® §M . Thus M is not a subalgebra. Although

Ll(ﬂﬁ is not a unital Banach algebra, a unital example is easily obtained

via the adjunction of an identity.
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