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Best approximation and intersections

of balls in Banach spaces

David T. Yost

Let S k a Banach space, M a closed subspace of E with the

3-ball property. I t i s known that M i s proximinal in E , and

that i t s metric projection admits a continuous select ion. This

means that there i s a continuous (generally non-linear) map

•n : E -*• M satisfying ||X-TT(X)|| = d(x, M) for a l l x in E .

Here i t is shown that the same conclusion holds under a much

weaker hypothesis on M , which we ca l l the 1%-ball property.

We also establish tha t i f M has the 1%-ball property in E ,

then there i s a continuous Hahn-Banach extension map from M* to

E* .

Introduction

Let M be a closed subspace of a Banach space E . This paper

c la r i f i es the re la t ionship between approximative properties of M , and

intersection properties of ba l l s pertaining to M . Recall that M i s

said to be an L-summand (respectively, an Af-summand) of E if there i s a

linear projection Q from E onto M such that ||x|| = ||<2x|| +

(respectively, ||x|| = max{||@e||, ||x-Qx||} ) for a l l x € E . If M° , the

polar of M , i s an L-summand of E* , then M i s said to be an M-ideal

in E . We say that M has the w-ball property in E i f given n

closed ba l l s Sfa . , r.) such that M n B[a., r . ) i s non-empty for each

n n
i , and D B[a., r.) has non-empty i n t e r i o r , then M n (1 B[a., r.) i s

i l % % i % v
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non-empty. These notions were introduced by Alfsen and Effros [/], who

showed that an M-ideal has the n-ball property for every n and,

conversely, that any subspace with the 3-ball property is already an

M-ideal.

Let H(') denote the family of all closed, bounded, convex, and non-

empty subsets of a given Banach space. The metric projection

P = PM : E •* H{M) u {0} is the set-valued map defined by

P(a) = M n B(a, d(a, M)) . Thus P(a) is the set of points in M which

are nearest to a . M is said to be proximinal in E if P{a) t 0 , for

all a € E . Then a proximity map ir : E •* M is any (not necessarily

continuous) selection for P . Note that P(a+x) = P(a) + x whenever

x € M . We say that a selection IT is quasi-additive if

Tr(a+x) = Tr(a) + x whenever x £ M .

Alfsen and Effros [J, Corollary 5.6] and Ando [2, Theorem 2.1]

independently showed that every M-ideal is proximinal. Holmes, Scranton,

and Ward [6, Theorem 2.2] improved this by showing that the metric

projection onto an A/-ideal admits a continuous, homogeneous selection.

We will say that M has the 1%-ball property in E if the

conditions a. € M , M n B(<2p, r j + 0 , and ||a.,-aj| < r. + *•„ imply

that M n £?(a , r ) n B[a2, i*J * 0 • After translating and scaling it is

evident that this is equivalent to requiring M n S(0, l) n S(a, r) ̂  0

whenever W n B{a, r) t 0 and ||a|| < r + 1 . Our main result is that

every subspace with the 1%-ball property is proximinal, and that its

metric projection admits a continuous, homogeneous, quasi-additive

selection. In Section 2 we give examples of closed subspaces of Banach

spaces which possess the 1%-ball property. Not all of these subspaces are

M-ideals, so our result has wider applicability than that of [6]. We also

show that if M has the 1%-ball property in E , then there is a

continuous, homogeneous map *l> : M* •* E* such that each ty(f) is a norm

preserving extension of / . Under additional hypotheses, we are able to

establish the Lipschitz continuity and linearity of certain proximity maps

and Hahn-Banach extension maps.

Except when specific mention is made to the contrary, scalars may be

real or complex. By C(X, E) we denote the Banach space of continuous
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functions from the compact, Hausdorff space X into the Banach space E .

If S is a sequence space, then S(E) will denote the Banach space of all

sequences (x ) from E such that the sequence (||x ||) is in S .

B{E, F) is the space of bounded, linear operators from E to F , and

K{E, F) is the subspace of compact operators. We use dn for the
ti

Hausdorff metric on H(E) ,

dH(A, B) = sup({d(x, A) : x € B] u W(x, B) : x € A}) .

By M i c h a e l ' s S e l e c t i o n Theorem we mean i l l , Theorem 3 . 2 " ] .

1 . Existence of continuous se lec t ions

We establish the results stated in the abstract.

LEMMA 1.1. Suppose M has the 1%-ball property in E . Then

(i) M is proximinal in E ,

(ii) for all a, b € E we have dR{a-P{a), b-P(b)) 5 3d(a-b, M) .

The constant 3 is, in general, best possible.

' Proof, (i) Let a € E , 6 = d{a, M) . We inductively construct a

sequence [x ) c M satisfying

(1) II «

and

(2) ||xn-a|| < « + 2"" .

Obviously a suitable x.. exists. Suppose x is given, and satisfies

(2). Then we have x € M , M n B[a, 6+2~n~1) # 0 and

\\xn-a\\ < S + 2~
n~1 + 2~n . Since M has the 1%-ball property,

M n s U , 2""l n s(<z, 6+2~n~1) * 0 . Any point x^+1 in this intersection

will satisfy (l) and (2).

The induction completed, (l) implies that (x ) is Cauchy, and hence

converges to some x € M . Then (2) yields ||x-a|| = 6 . Thus P(a) + 0 .
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(ii) Let a, b € E with d{a-b, M) < e . I t suffices to show that,

given x £ P[a) , we can find y € P(b) with \\{a-x)-{b-y)\\ < 3e . If

b € M , then P(b) = {b} and we must take y = b . Then

||a:-a;-k+#|| = \\a-x\\ = d{a, M) = d{a-b, M) < e as required. If fc ^ M , then

6 = d(b, M) > 0 . Choose s € M with | |a^+s| | < e . Then z+x € M ,

M n B(b, 6) t 0 by (i), and

+ ||a:-a|| < e + d{a, M) < 2e + 6 .

Since M has the 1%-ball property, we can find

y € M n 5(fc, 6) n B(g+a;, 2c) .

Clearly y € P(2>) . Final ly

i/-(x+s)|| + ||a-2>+3|| < 2c + e .

To show tha t t h i s estimate i s sharp, consider the rea l Banach space

E = ^ ( 3 ) (that i s , E = P , with the sup norm) , with M the one-

dimensional subspace spanned by ( l , 1, 0) . I t i s elementary to check

tha t M has the 1%-ball property in E . Let a = (0, 0, 3) ,

b = ( 1 , - 1 , 2) , and x = ( -3 , - 3 , 0) . Then

P(b) = {(X, X, 0) : -1 5 X 5 1}

and so d[a-x, b-P(b)) = 3 . Now x € P{a) , so dH{a-P{a), b-P(b)) > 3 .

But d(a-b, M) 5 \\a-b\\ = 1 . / /

We remark that if M has the 2-ball property in E , then the

estimate of Lemma 1.1 can be sharpened to dj,\a-P^a), b-P(b)) 5 d(a-b, M) .

The preceding example then shows that the 1%-ball property is s tr ict ly

weaker than the 2-ball property.

THEOREM 1.2. If M has the 1%-ball property in E , then

(i) there is a continuous, homogeneous map ty : E/M •*• E

satisfying ty(a+M) i a+M and \\ty(a+M)\\ = \\a+M\\ for all

a € E ,

(ii) there is a continuous, homogeneous, quasi-additive

proximity map ir : E •*• M ,

(Hi) there is a continuous, homogeneous Hahn-Banach extension

map ty : M* -*• E* .
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Proof, (i) Define n : E/M •* H(E) by r\(a+M) = a - P..{a) . Since
M

M i s proximinal, n. i s well-defined. By Lemma 1.1, n i s continuous

with respect to the Hausdorff metric on H(E) , and i s therefore lower

semicontinuous. Michael ' s selection theorem ensures the existence of \\> ,

a continuous selection for n. . An argument of Kadi son [see 77, p . 376]

shows that t|i can be chosen homogeneous. Clearly \p has the stated

propert ies .

(ii) Let <jj be given by (i), and define TT by ir(a) = a - ty(a+M) .

Then H i s continuous, homogeneous, quasi-additive, and sa t i s f i e s

v{a) € P(a) for a l l a € E .

(Hi) We claim that M has the 1%-ball property in E* . So let

M° n B(f, r) t 0 , ||/|| < r + 1 . To show that M° n B(0, l) n B{f, r) * 0
i t suffices, by [7, Theorem 1.2], to show that \f[a^ \ 5 ||a,|| + r||a2||

whenever a +a € M . If ||a || < ||a,|| then

| / ( a 2 ) | 5 (2.+l)||a2l| < 11^|| +r||a2ll -

So assume | |a j | > ||a || and fix E > 0 . Since a +a2 d M n B[a , ||a ||+E) ,

the 1%-ball property gives us some

a € M n s ( o , |J-c=ĉ |J—Mcz-̂ lO " s ( a 2 > I k J I + e ) .

Now ||/|«|| = d[f, M°) < r , so

l/(«2)l = \f(a)-f{a-a2)\ s 2>||a|| + (r+l)

< rdlagll-ll^ll)

Letting e -*• 0 establishes the claim.

From (i) we obtain a continuous, homogeneous map \\> : E*/M •* E*

satisfying *(/+M°) € f+M° and ||*(/+W°)|| = d[f, M°) = ||/|«|| for a l l

f (. E* . Identifying E*/M with M* completes the proof. / /

If ^ ( a ) is a singleton for each a £ E , then A/ is said to be a

Chebyshev subspace of E . In this case the proximity map is unique and is
usually referred to as the metric projection. Let us say that M is a
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semi-i-summand in E [7, Section 5] if M is Chebyshev in E and the

metric projection IT : E •* M satisfies |k|| = ||TT(X)|| + ||x-ir(x)|| for all

x € E . I t is routine to check that every semi-L-summand (a fortiori,

every £-summand) has the 1%-tall property.

THEOREM 1.3. Let M be a semi-L-swmand in E . Then

(i) the metric projection TT : E -*• M is a contraction,

(ii) there is a linear Hahn-Banach extension map ty : M* ->• E*

and a linear proximity map P : E* •*• M ,

(Hi) M is the range of a norm one projection on E** .

Proof, (i) Fix a, b € E and assume without loss of generality that

||iT(a)-a|| S ||TT(&)-&|| . Since M is Chebyshev, ir must be quasi-additive.

Thus ir(Tr(a)-b) = ir(a) - ir(fo) and so

||Tr(a)-ir(i)|| = Ma)-b\) - ||ir(i)-*||

5 ||ir(a)-a|| + \\a-b\\ - Mb)-b\\

2 ||a-&|| .

(ii) We have just shown the existence of a Lipschitz continuous

retraction of E onto M with Lipschitz constant 1 . The existence of

<f> follows from [9, Theorem 3 (a)]. If Pf = f - Hf\M) then P is

linear and ||/-Pf|| = ||/|W|| = d[f, M°) for a l l f e ff* .

(Hi) Define Q : E** •* M°° by QF = F o (I-P) . / /

Lima [7, Section 63 calls M a semi-W-ideal in E if M is a semi-

i/-summand in E* , and shows this is equivalent to M having what he calls

the 2-ball property. The reader is warned that the definition of the

2-ball property used in [7] i s , formally at least, weaker than that which

we employ.

COROLLARY 1.4. Let M be a semi-M-ideal in E .

(i) The Hahn-Banach extension map if; : M* •*• E* is uniquely

determined and satisfies \Mf)-i\>{g)\\ 5 2\\f-g\\ for all f,g£E*. The

Lipschitz constant 2 can not, in general, be decreased.

(ii) M is the range of a norm one projection on E* .
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Proof, (i) Again we identify E*lM and M* . If TT : E* •* M i s

the (unique) metric projection, then \p : E* /M •*• E* sa t i s f ies

y[f+M°) = f - -nif) . Fix f+M°, g+M° i E*/M° . Adding a suitable element

of M , we may assume that Tii.f-g) = 0 . Then

\\ = \\f-g-*lf)Mg)\\ S 2\\f-g\\

= 2d{f-g, M°) =

To show that the estimate is sharp, l e t E be the rea l Banach space I-,(3)

and take M = {(x, y, z) : x+y+z = 0} . Then E* = ^ ( 3 ) and M = P i .

I t i s easy to verify that M i s a semi-L-summand. In E*/M , l e t

/ = (0, 2, 2) +F1 and g = (-2, 0, -2) + Rl . Then ||/-g|| = 1 .

Routine checking gives TT(O, 2, 2) = ( l , 1, l ) and

ir(-2, 0, -2) = ( - 1 , - 1 , -1) . Thus i|)(/) = ( - 1 , 1, l ) ,

= ( - 1 , 1, -1) and so U(f)-ty{g)\\ = 2 .

(ii) By Theorem 1.3 ('iii/' there i s a norm one projection

y i—». y denote the canonical embedding of E*

into E*** . Since / E M whenever f (. M , the required projection

is given by f i-+ Q(f)\E . II

2. Examples

We give examples, mostly in spaces of operators and spaces of

continuous functions, of subspaces which have the 1%-ball property but are

not M-ideals. For some of these examples, previous authors ( [3 ,

Corollary 3.19] and [JZ, 7-5.6]) have used ad hoc methods to establish the

existence of continuous proximity maps, or simply to establ ish

proximinality. The existence of continuous Hahn-Banach extension maps

seems to have gone unnoticed. Checking that these subspaces have the

1%-ball property provides a uniform, and often easier , method of

establishing such r e s u l t s . We also give some new example of W-ideals.

Lastly we consider the relat ionship between the w-ball property and

algebraic structure in subspaces of Banach algebras.

Let us say that a rea l Banach space E i s a (real) Lindenstrauss

space i f every collect ion of pairwise intersect ing closed ba l l s in E ,
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whose centres form a compact set, has non-empty intersection.

Lindenstrauss [8, p. 62] showed that a real Banach E has th is property if

and only i f E* = L (p) for some measure \x .

THEOREM 2.1 . Let E be a real Lindenstrauss space, X and Y

compact Hausdorff spaces, and i|i : X •+ Y a continuous surjection. Let

ty* : C(Y, E) -*• C(X, E) denote the natural isometric embedding,

y*f = f o \j) . Then M = \p*C(Y, E) has the 1%-ball property in C(X, E) .

Proof. Suppose we are given / d C(X, E) and r > 0 with

M n B(f, r) * 0 and | | / | | < r+1 . Define T\ : Y + H(E) by

r\{y) = 5(0, 1) n n B[f(x), r)

= S(0, 1) n {a € E : /(*~1(i/)) c B(a, r)} .

Clearly each r\(y) i s closed and convex. We must check that T)(y) is

non-empty. Let \j)*g € M n B(f, r ) . If x , x d ty~ (y) then

\\g(y)-f{x2)\\

< 2r ,

and so B[f[x1), r) meets B[f[x^, r) . Since | | / | | 5 r+1 , 5(0, l )

must meet each B[f{x), r) . Thus the family of bal ls defining r\(y)

intersect pairwise. Since the collection of centres {0} u f[ty~ (y)) is

compact, we have T)(y) # 0 • We claim that n i s lower semicontinuous.

So l e t G c E be open. Let j / _ € {y : T\(y) meets G] be given, and

choose a € n(j/0) n G . Then ||a|| £ 1 , /|'l'~1(j/()) j c B(a, r) and

B(a, e) c G for some e > 0 . I t follows from the compactness of X that

the map y •—»• tp~ (j/) i s upper semicontinuous. Hence

^ = {h '• fU> (i/)) c i n t S(a, r+e)} is an open set containing y . If

y £ N , then S(a, e) meets S(f(x), r) for a l l x £ ty'^iy) . Clearly

B(a, e) meets 5(0, l ) . Since £ is a real Lindenstrauss space, we

deduce that n(y) meets B(a, E) , whenever y € N . Thus

N c: {y : r\(y) meets G} . I t follows that {y : r\(y) meets G} i s open, and

th i s proves r) i s lower semicontinuous.

https://doi.org/10.1017/S0004972700010972 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010972


I n t e r s e c t i o n s o f b a l l s 2 9 3

By Michael's selection theorem, there is a continuous function
h : Y •*• E satisfying h(y) € r\(y) for al l y . I t is routine to verify
that ifi*h Z M n B(0, l ) n B(f, r) . / /

COROLLARY 2.2. Let X, Y, \ji, E be as in Theorem 2 .1 . Fix yQ € Y

and let M = {^*f : f € C(Y, E) and / (« ) = 0} . Then W has the 1%-ball

property in C(X, E) .

Proof. Let / , r , n he as in the previous proof. If
ij)*g € M n B(/, r) , then ||/(x)|| = ||f(x)-(i|>*3)(x) || S r whenever

* « ijj~1(^o) . Thus 0 € n(yQ) • If we define nQ : Y

1Q(i/) = n(y) for y * y0 , and nQ(y0) = {0} , then n0 will be lower

semicontinuous. The existence of a continuous selection for r\- shows

that M n B(0, l ) n B(f, r) / 0 . / /

COROLLARY 2.3. /In;, closed subalgebra of C(X, R) has the Xh-ball
property.

Proof. This follows from the Stone-Weierstrass Theorem and Theorem
2.1 (for subalgebras containing the constant functions) or Corollary 2.2
(for subalgebras not containing the constants). / /

It follows from [7, Theorem 7-6] that any closed subspace of C[X, F)
with the 2-ball property must be an ideal. Thus the examples given by the
preceding results will not, in general, be W-ideals.

PROPOSITION 2.4. Let E be any Banach space, X a compact

Hausdorff space, Y a closed subset of X , n € H . Then

M = {f £ C(X, E) : f\Y = 0} has the n-ball property in C(X, E) .

Proof. Suppose that we have M n s ( / . , r.) # 0 for i < n , and

n n
int 0 B[f., r.) * 0 . Define * : X + H(E) by \j>(x) = fl B ( / . (x ) , r.) .

i=l i=l *• v

Clearly each <j>(x) is closed, convex,and has non-empty interior. Hence

= int ty{x) for a l l x € X . Now le t G be any open subset of E ,
and le t x 6 {x : ty(x) meets G} . Then int I | ) ( I J meets G , so we can

find a i int \l>(xQ) n G . Then ||a-/\ (x^ || < rv. for each i . By

continuity, xQ has a neighbourhood N such that x € N •* ||a-/.(x)|| < r . ,
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for a l l i . Then a € ifi(x) whenever x € N , so

N c {x : 4>(.x) meets G) . This proves that iji i s lower semicontinuous.

F i x x 6 Y . I f g. $ M n B(f r.) ; t h e n

This proves that 0 € tfi(x) .

Now define n : X -»• #(£) by r\(x) = \l>(x) for x $ Y , and

n(a;) = {0} for x € Y . Since 7 is closed, i t is easily shown that n

is lower semicontinuous. Let / £ C{X, E) be a continuous selection for

n

n . Then f i M c\ n B ( / . , r.) . / /
i=l *" 1

We note that Corollary 2.3 fails in spaces of complex-valued

functions.

PROPOSITION 2.5. 4 closed *subalgebra A in C(X, (I) has the Ik-

ball property if and only if it is an ideal.

Proof. That ideals have the 1%-ball property is immediate from

Proposition 2.k, with E = (I . Suppose now that A is not an ideal. We

assume that A does not contain the constant functions. (If 1 £ A , the

result follows from a simplification of the following argument.) By the

Stone-Weierstrass Theorem, there is a compact Hausdorff space Y , a

continuous surjection ty : X -*• Y and a point y € Y such that

A = {ty*f : f € C(Y, 1) and /(#0) = o} . If the restriction of i> to

(j/nJ i s in jec t ive , i t can readily be shown that A i s an ideal .

Thus we may find d i s t i nc t x , x € X such that ty[x ) = 4>[x ) # y . Let

y = ty[x ) , and construct continuous functions a : X -+V. , b : Y ->• F

satisfying -1 5 a < 1 , 0 5 i ) 5 1 , a ( z ) = (-1)" and b{y ) = n

(n = 0, 1) . Then \\a-ity*H < V2 < 1 + % , ti|>*2> e 4 , and

4 n S(a, 1) * 0 . However /I n S( a , l ) n B(iiJ>*Z>, %) = 0 , which shows that

A does not have the 1%-ball property. For suppose ty*f £ A n B(a, l ) .

Then, for n = 0, 1 , l/Q/^ill = |(i|>*f) (xj-afcj | < l|^/-all - 1 • Hence

0 . But then \ty*f-iVb\\ 2 1/^)-**^) I = 1 > * - / /
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By Proposition 2.1*, eQ(£) is a n M-ideal in lm(E) if E is finite

dimensional. It is useful to know that this is true for arbitrary E .

LEMMA 2 . 6 . For any Banach space E , eQ(j?) i s an M-ideal in

IJE) .

Proof. I f x = (x(n)) S. lm(E) and eQ(E) n B(x, r) * 0 , then

3
limsup||a:(rt)|| S r . Suppose 0 B[x., r.) t 0 and oAE) n B[x., r.) # 0

3
for each i . Then for all £ > 0 , D B[x., r.+e) contains a sequence

i=X ^ t

with only finitely many non-zero terms and so meets co(£) • Although

formally weaker than the 3-ball property, the property just established

does characterize M-ideals [7, Theorem 6.9]. / /

COROLLARY 2 . 7 . For any Banach spaae E , K{E, eQ) is an M-ideal

in B[E, aQ) .

Proof. This follows from the natural identifications

K[E, e0) = cQ(E*) and B[B, CQ) = { ( / J € IJE*) : fn - 0 weak*} . / /

PROPOSITION 2 .8 . K.{l^) has the Ug-ball property in B[l^\ .

Proof. Recall that for any operator matrix a = [a. .) £ B[l ] we

CO OO CO 00

h a v e | |a| | = s u p £ | a . . | and a d K[l ) "=" l i m s u p Y \a..\ = 0 . F i x
3=1 i=X ^ X n̂ co j = 1 i^n ^3=1 i=

a € Bf^) with ||a|| S r+1 , and K[l^) n i5(a, r) * 0 . We assume that

||a|| > r , otherwise 0 € #(Z ) n B(0, l ) n B(a, r ) .

00

Fix j « M . If £ |a. . | £ r , put x. . = 0 for all i . Other-
i=l -̂̂  *"<?

OO

w i s e c h o o s e n = n(j) a n d 0 ^ X 5 1 so t h a t X\a . I + V l a . .1 = r .
J i=w+l 1<7

P u t t i n g x . . = a . . f o r i < n , x . = ( l - X ) a . and x. . = 0 f o r

oo oo

£ > n , we have £ |x. . | = £ \a..\ - r .
i=X v° i=X v°
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I t follows that x € B[l ) with \\x\\ £ ||a|| - r £ 1 . For each j ,

oo

e i ther x.. = 0 for a l l i , or £ \a. .-x. . \ = r . Hence ||a-x|| £ r .

We must show x € K[l ) . Fix e > 0 . Since K-[l,) meets B(a, r ) ,

there i s a f i n i t e rank operator in B(a, r+e) . Thus, for some N ,
OO CO 00

sup £ | a . . | < r + E . F ix j . I f £ \a..\ £ r , or i f tf > nO') ,
,7=1 i=N ™ t = l ^

OO 00 OO

then £ |x. .| = 0 . If N £ n(j) then £ \x. . | = £ |a. .| - r < e .

00 00

Thus sup £ \x. .\ < e , as desired. / /

If E and F are separable sequence spaces (that i s , e or 1 ,

1 £ p < °° ),what i s the l a rges t value of n such that K(E, F) has the

n-ba l l property in B(E, F) 1 Hennefeld [5] showed that K(l ) i s an

Af-ideal in B\l J i f 1 < p < °° . Minor modifications to his argument

yie ld that K(l , I ) i s an M-ideal in B[l , I ) if l < p < < 7 < ° ° .

By 113, Theorem 6.2] K.[l^) fails the 2-ball property in B ^ J . We

show that K[l , I ) fails the 1%-ball property in B[l , I ) if

1 < p < <*> . Since K(E, F) = B(E, F) in all the remaining cases 110,

Proposition 2.c.33, this completely answers the question.

For any matrix a = (a. .) € B[l , I ) we have
tj ± p

co I oo 'r

Hall = sup { £ |a. -|Pf and a € *(z j j *=» lim sup £ |a. . | p = 0 .
j=l [i=l ^ j L P ^

Choose A so t h a t 1 < X? < 2^-1 and put a, . = X for a l l j , a . . = 1

for j t 1 , and a . . = 0 fo r a l l o the r (i, j) . I t i s easy t o v e r i f y '

t h a t ||a|| < 2 and t h a t K[l , I ) n B(a, l ) * 0 . However

# ( £ , , I ) n S ( 0 , 1) n S ( a , l ) = 0 . To see t h i s , l e t

x € #(Z , I ) n S ( a , l ) . Then x. . •* 0 as j -»• °° , and
-L p JJ
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1 < 7 03 ^_-̂  ^d V3

Thus x . •*• X , so ||x|| 2 X > 1 .

We finish by considering subspaces with the «-ball property in Banach

algebras. I t is known C'3, Theorem 5-3] that the A/-ideals in a C*

algebra are precisely the closed two-sided ideals. We give a short proof

of this fact. For elementary C* algebra theory, we refer the reader to

[4, Chapter 5].

LEMMA 2.9. Let J be an M-swnmand in a unital C* algebra A .

Then J is an ideal in A .

Proof. Let Q = I - P , where P is the M-projection onto J . We

fi rs t note that if f (. A* is positive, then so are P*f and Q*f . For

= /(I) = (P*f)(l) + («*/)(!) •

Hence (P*f){l) = \\P*f\\ and («*/)(l) = \\Q*f\\ .

Now let p = P(l) . If / € i4* is positive, then

f(p) = (P*/)(l) - 0 • Hence p is positve. We show that ap* € J for

all a € A .

Let / € A* be positive. Using the Cauchy-Schwarz inequality, we

obtain

I/O?(op*)) I2 = K G V X a p * ) ! 2 ^ («*/)(aa*)(C*/)(p*P*)
= 0 ,

since {Q*f)(p) = f(Qp) = 0 . Thus Q[ap*) l ies in the kernel of every

positive functional on A . It follows that Q[aps) = 0 , so ap € J .

Thus ap € J = P(i4) for al l a € 4 . Similarly a(l-p) € Q(A) for

al l a . I t follows that Pa = ap for al l a , so <7 = P{A) = Ap is a

left ideal. A similar argument shows that J is a right ideal. / /

PROPOSITION 2.10. Let A be a C* algebra, J a closed subspaoe

of A . Then J is an M-ideal if and only if J is an ideal.

Proof (ONLY IF) . i f J° i s an L-summand in A* , then J°° i s an
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A/-summand in the unital C* algebra A** . By Lemma 2.9, J is an

ideal in A** . Hence J = J n A is an ideal in A .

(IF) If J is an ideal in A , then J is a weak* closed ideal

in the W* algebra A** . Thus J = A**p for some central projection

p . Straightforward calculations show that A** = J © A**{~L-p) , and

that the two subspaces are weak* closed complementary M-summands. Taking

polars, we deduce that J is an L-summand in A* . //

It is natural to ask to what extent the previous result can be

generalized to Banach algebras. Smith and Ward [?3, Theorem 3.8] showed

that in a commutative, unital Banach algebra, every A/-ideal is an ideal.

By showing that #(£,) fails the 2-ball property in B(1 ) , they gave a

non-commutative counterexample to the converse problem. Commutative

examples are easily obtained by giving a suitable Banach space the zero

product, then adjoining an identity. We give a less trivial counter-

example .

Let A be the disc algebra [4, p. 6] and take

J = {/ € A : /(0) = 0} . Clearly J is an ideal in A . Using the

maximum modulus principle, it is easily shown that PT(f) = {f-f(O)} , for
o

all f £ A . Consideration of the balls 5(0, 2) and S(/, l) , where
o

f(s) = z + 2s - 1 , shows that J fails the 1%-ball property.

In fact, the disc algebra even contains a non-proximinal ideal. This

time, take J = {f Z A : /(0) = /(l) = 0 } . Obviously J is an ideal in

A . Let f(z) = 1 - z . For any g i J we have, by the maximum modulus

principle, \\f-g\\ > \f(O)-g(O)\ = 1 . Fix e > 0 , and let

g(z) = s(3-l)/(l+E-s) . Then g I J and \\f-g\\ = (l+e)/ (l+( e/2)) . Thus

d(f, J) = 1 , but P(/) = J n B(f, 1) is empty.

Smith and Ward [7 3, Theorem 3.6] also showed that every Af-ideal in a

unital Banach algebra is a subalgebra. This is not so for subspaces with

the 1%-ball property, even in commutative Banach algebras. Let TT denote

the circle group, and let S = {z € ¥ : 0 < arg z < IT} . With convolution

as multiplication, £ (IT) is a commutative Banach algebra. Now

M = {f € L^TT) : /|S = 0} is an L-summand, and so has the 1%-ball
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property in £ (TT) . If a € M i s defined by a{S) = {o} and

aCIT\S) = {l} then a £ M . Thus M i s not a sutjalgebra. Although

L (TT) is not a un i t a l Banach algebra, a uni ta l example i s easily obtained

via the adjunction of an ident i ty .
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