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Abstract We study the classical limit of a family of irreducible representations of the quantum affine
algebra associated to sln+1. After a suitable twist, the limit is a module for sln+1[t], i.e., for the maximal

standard parabolic subalgebra of the affine Lie algebra. Our first result is about the family of prime

representations introduced in Hernandez and Leclerc (Duke Math. J. 154 (2010), 265–341; Symmetries,
Integrable Systems and Representations, Springer Proceedings in Mathematics & Statitics, Volume 40,

pp. 175–193 (2013)), in the context of a monoidal categorification of cluster algebras. We show that

these representations specialize (after twisting) to sln+1[t]-stable prime Demazure modules in level-two
integrable highest-weight representations of the classical affine Lie algebra. It was proved in Chari et al.

(arXiv:1408.4090) that a stable Demazure module is isomorphic to the fusion product of stable prime

Demazure modules. Our next result proves that such a fusion product is the limit of the tensor product
of the corresponding irreducible prime representations of quantum affine sln+1.

Keywords: Demazure modules; quantum affine algebras; prime representations; graded limits

2010 Mathematics subject classification: 17B10; 17B70; 20G42

Introduction

The classification of finite-dimensional irreducible representations of quantum affine

algebras was given in [10, 13]. Since that time, many different and deep approaches

have been developed to study these modules. However, outside the simplest case of the

quantum affine algebra associated to sl2, even the answer to a basic question such as

a dimension formula is not known for an arbitrary irreducible representation. Thus,

the focus of the study has been on particular families of modules: amongst the best

known are the standard or local Weyl modules, Kirillov–Reshetikhin modules, and their

generalizations: the minimal affinizations (see [26, 27, 41, 42] for instance). More recently,

motivated by categorification of cluster algebras, Hernandez and Leclerc identified in

[28, 30] an interesting class of ‘prime’ irreducible modules for quantum affine algebras.

(Recall that a representation is said to be prime if it is not isomorphic to a tensor product

of non-trivial representations.) This class includes some of the known and well-studied
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prime representations, but also included new families of examples. One of the goals of our

paper is to explore the structure of these prime representations by studying their q → 1
specialization and to show that the character of these modules is given by the Demazure

character formula.

The systematic study of the classical limit of finite-dimensional representations of a

quantum affine algebra was begun in [17], where a necessary and sufficient condition

for the existence of the limit was proved. All the interesting representations mentioned

earlier admit classical limits. The limit, when it exists, is a finite-dimensional module for

the corresponding affine Lie algebra. Hence it is also a module for the current algebra

g[t] of polynomial maps C→ g, which is naturally a subalgebra of the affine algebra.

(Here g is the underlying simple Lie algebra of the affine Lie algebra.) Equivalently

the current algebra is the commutator subalgebra of the standard maximal parabolic

subalgebra of the affine Lie algebra. The scaling element d of the affine Lie algebra

defines an integer grading on the affine Lie algebra, and the current algebra is a graded

subalgebra. The notion of the graded limit of a representation of the quantum affine

algebra was developed in [4, 8]. It was shown in these papers that, when g is of classical

type, the Kirillov–Reshetikhin modules could be regarded (after pulling back by a suitable

automorphism) as graded representations of the current algebra. The result is now known

in all types, and we refer the reader to [33] for a detailed discussion. In [39], it was shown in

some cases and conjectured in general that minimal affinizations could also be regarded as

a graded representation of the current algebra. The conjecture was established in [45, 46]

when g is of classical type.

There is a well-known family of graded modules for the current algebra which arises as

follows. Consider a highest-weight irreducible integrable representation V (3) of level m
for the affine Lie algebra. Fix a Borel subalgebra of the affine Lie algebra. A Demazure

module of level m is the module for the Borel subalgebra generated by an extremal element

of V (3). Under natural conditions on the extremal vector, the Demazure module admits

an action of the standard maximal parabolic subalgebra containing the chosen Borel

subalgebra. Since d is an element of the Borel subalgebra, it follows that such Demazure

modules, which we call stable, are graded modules for g[t].
The relation between graded limits and Demazure modules was made in [7]. In that

paper, it was shown, using results in [17], that any stable level one Demazure module is

the graded limit of an irreducible local Weyl module (or an irreducible standard module)

for the quantum affine algebra. The results of [24] imply that this remains true for simply

laced Lie algebras. In the non-simply laced case, this is no longer true; however, it was

shown in [44] that the graded limit admits a flag by level-one Demazure modules. The

work of [4, 8] shows that the graded limit of Kirillov–Reshetikhin modules, in the case

when g is classical, is a higher-level stable Demazure module. Finally, the work of [45, 46]

shows that Demazure modules and generalized Demazure modules appear as graded

limits of minimal affinizations.

We turn now to the new family of prime representations identified by Hernandez

and Leclerc. The highest weight of such a representation satisfies a condition, which

is best described as minimal affinization by parts (see the next section for details). In

this paper we establish, in the case of sln+1, that the classical limit of such a prime
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Demazure modules and prime representations 77

representation is a stable level-two prime Demazure module. The first hint of this

connection comes from the work of [19], which gives a refined presentation of the stable

Demazure modules.

We also answer in the affirmative the following question: does any level-two Demazure

module associated with affine sln+1 appear as a classical limit of a (not necessarily prime)

representation of the quantum affine algebra? This is a delicate question since the classical

limit of a tensor product is not the tensor product of the classical limits. The notion of

a fusion product of g[t]-modules was introduced in [22], and there are many examples

which suggest that it is closely related to this question. In this paper we prove that

certain fusion products of prime level-two Demazure modules are the graded limits of the

tensor products of the corresponding representations of the quantum affine algebra.

A detailed overview of the results of this paper, a discussion of the natural questions

arising from our work, and a description of the overall organization of the paper are given

in § 1.

1. The main results

We describe the main results of our paper and discuss the connections with those of

[18, 28, 30]. Throughout the paper, we denote by C the field of complex numbers, by

Z the set of integers, and by Z+ and N the set of non-negative and positive integers,

respectively.

1.1. Simple, affine, and current algebras

We shall only be interested in the Lie algebra sln+1 (denoted from now on as g) of

(n+ 1)× (n+ 1) complex matrices of trace zero. Let I = {1, . . . , n} be the set of vertices

of the Dynkin diagram of g, and let {αi : i ∈ I } and {ωi : i ∈ I } be a set of simple roots

and the corresponding set of fundamental weights, respectively. The Z (respectively, Z+)

span of the simple roots will be denoted by Q (respectively, Q+), and the Z (respectively,

Z+) span of the fundamental weights is denoted by P (respectively, P+). Define a partial

order on P by λ 6 µ iff µ− λ ∈ Q+. The positive roots are

R+ = {αi, j = αi +αi+1+ · · ·+α j : 1 6 i 6 j 6 n}.

Given αi, j = αi + · · ·+α j ∈ R+, let x±i j be the corresponding root vector of g, and set

x±i = x±i,i and hi = [x+i , x−i ]. The elements x±i , hi , 1 6 i 6 n, generate g as Lie algebra.

Let ĝ be the untwisted affine Lie algebra associated to g which can be realized as follows.

Let t be an indeterminate, and let C[t, t−1
] be the corresponding algebra of Laurent

polynomials. Define a Lie algebra structure on the vector space g⊗C[t, t−1
]⊕Cc⊕Cd

by requiring c to be central and setting

[x ⊗ tr , y⊗ t s
] = [x, y]⊗ tr+s

+ tr(xy)c, [d, x ⊗ tr
] = r(x ⊗ tr ), x, y ∈ g, r, s ∈ Z.

The commutator subalgebra is g⊗C[t, t−1
]⊕Cc, and we shall denote it by g̃. We shall

frequently regard the action of d as defining a Z-grading on g̃.

The current algebra is the Z+-graded subalgebra g⊗C[t] of g̃, and it will be denoted

as g[t]. We shall be interested in graded representations of the current algebra: namely,
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Z-graded vector spaces V = ⊕s∈ZV [s] which admit an action of g[t] which is compatible

with the grading, (g⊗ tr )V [s] ⊂ V [r + s], for all r, s ∈ Z. A map of graded modules is a

grade-preserving map of g[t]-modules.

1.2. Quantized enveloping algebras and their A-forms

Let C(q) be the field of rational functions in an indeterminate q, and set A = Z[q, q−1
].

Let Uq(g) and Uq (̃g) be the quantized enveloping algebras (defined over C(q)) associated

to g and g̃, respectively. The algebra Uq(g) is isomorphic to a subalgebra of Uq (̃g).

Let UA(g) and UA(̃g) be the A-forms of Uq(g) and Uq (̃g) defined in [37]; these are free

A-submodules such that

Uq(g) ∼= UA(g)⊗A C(q), Uq (̃g) ∼= UA(̃g)⊗A C(q).

Regard C as an A-module by letting q act as 1. Then, UA(̃g)⊗A C and UA(g)⊗A C are

algebras over C which have the universal enveloping algebra U(̃g) and U(g) as canonical

quotients. Finally, recall that Uq (̃g) is a Hopf algebra and that Uq(g), UA(̃g), and UA(g)

are all Hopf subalgebras.

Throughout the paper, we shall, as is usual, only be working with type-one

representations of quantized enveloping algebras, and we will make no further mention of

this fact.

1.3. Finite-dimensional representations of g, Uq(g), and their A-forms

It is well known that the isomorphism classes of irreducible finite-dimensional

representations of g and Uq(g) are indexed by elements of P+: given λ ∈ P+, we denote

by V (λ) and Vq(λ) an element of the corresponding isomorphism class.

It is also known that the category of finite-dimensional representations of these algebras

is semisimple. Further, the Uq(g)-module Vq(λ) admits an A-form VA(λ) which is a

representation of UA(g). The space VA(λ)⊗A C is an irreducible module for U(g), and we

have

VA(λ)⊗A C ∼=g V (λ), λ ∈ P+.

1.4. The sets P+, P+Z , P+Z (1), and the weight function

Let P+ be the monoid consisting of n-tuples of polynomials with coefficients in C(q)[u]
with constant term one and with coordinate-wise multiplication. For 1 6 i 6 n and a ∈
C(q), we take ωi,a to be the n-tuple of polynomials where the only non-constant entry is

the element (1− au) in the ith coordinate. Let P+Z be the submonoid of P+ generated by

the elements ωi,a , 1 6 i 6 n and a ∈ qZ. Define wt : P+→ P+ by wtπ =
∑n

i=1(degπi )ωi .

Definition. Let P+Z (1) be the subset of P+Z consisting of the constant n-tuple and elements

of the form ωi1,a1 · · ·ωik ,ak , where 1 6 i1 < i2 < · · · < ik 6 n, a j ∈ C(q), 1 6 k 6 n, such

that

ai j a
−1
i j+1
= q±(i j+1−i j+2), k > 2, (1.1)
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and, if j 6 k− 2,

ai j a
−1
i j+1
= q±(i j+1−i j+2)

H⇒ ai j+1a−1
i j+2
= q∓(i j+2−i j+1+2). (1.2)

Note that

wtP+Z (1) = P+(1) = {λ ∈ P+ : λ(hi ) 6 1, 1 6 i 6 n}. (1.3)

1.5. Prime representations and prime factors

It was shown in [10, 13, 15] that the isomorphism classes of irreducible finite-dimensional

representations of Uq (̃g) are indexed by P+; for π ∈ P+, let V (π) be an element of

the corresponding isomorphism class. Note that the trivial representation corresponds to

the constant n-tuple. Given π,π′ ∈ P+, the tensor product V (π)⊗ V (π′) is generically

irreducible and isomorphic to V (ππ′). However, necessary and sufficient conditions for

this to hold are not known outside the case n = 1, and this motivated the interest in

understanding the prime irreducible representations.

Definition. We say that V (π) is a prime irreducible representation if it cannot be written

in a non-trivial way as a tensor product of irreducible Uq (̃g) representations. We shall say

that π1, . . . ,πs form a multiset of prime factors of π, if V (π j ) is prime and non-trivial,

for all 1 6 j 6 s, and we have an isomorphism of Uq (̃g)-modules

V (π) ∼= V (π1)⊗ · · ·⊗ V (πs).

Since V (π) is finite dimensional, it is clear that it is either prime or can be written as a

tensor product of two or more non-trivial prime representations. It is, however, not clear

that the set of prime factors of V (π) is unique: even in the case of simple Lie algebras,

a unique factorization theorem for the tensor product of finite-dimensional irreducible

modules was proved relatively recently in [48].

1.6. Some examples of prime representations

Regarding V (π) as a finite-dimensional Uq(g)-module, we can write

V (π) ∼=Uq (g) Vq(wtπ)
⊕

µ<wtπ

(dim HomUq (g)(Vq(µ), V (π)))Vq(µ). (1.4)

The best-known examples of prime representations are the evaluation representations,

namely an irreducible representation V (π) of Uq (̃g) which is also irreducible as a

Uq(g)-module, i.e., V (π) ∼=Uq (g) Vq(wtπ). It is important to recall here that we are in

the case when g is isomorphic to sln+1, since our next assertion is false in the other

types. For every λ ∈ P+, there exist elements π ∈ P+, a ∈ C(q), with wtπ = λ such that

V (π) ∼= Vq(λ) as Uq(g)-modules. An explicit formula for such elements was given in [12]

in complete generality. For the purposes of this paper, we will only need the following

special cases.
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Lemma. Let π ∈ P+.

(i) If wtπ = ωi , for some 1 6 i 6 n, then π = ωi,a, for some a ∈ C(q), and we have

an isomorphism of Uq(sln+1)-modules,

V (π) ∼= V (ωi ).

(ii) If wtπ = ωi +ω j , for 1 6 i 6 j 6 n, then

V (π) ∼= Vq(ωi +ω j ) ⇐⇒ π = ωi,aω j,aq±( j−i+2) , a ∈ C(q).
In both cases, the module V (π) is prime.

Remark. This lemma is what motivates the definition of the set P+Z (1). Moreover, we shall

see later that the module corresponding to an element of V (π), π ∈ P+Z (1), is ‘minimal’

when restricted to suitable subalgebras of g.

1.7. Further examples of prime representations

Using Lemma 1.6, it is easy to generate further examples of prime representations as

follows. The next result was proved in [28]; another proof can be found in [9].

Lemma. The module V (π) is prime for all π ∈ P+Z (1).
Our main goal in this paper is to understand the Uq(g)-character of the modules V (π),

π ∈ P+Z (1), and, more generally, to relate it to other well-known modules for affine Lie

algebras.

1.8. The A-form VA(π) and the representation L(π) of g[t]

It is in general not true that an arbitrary irreducible finite-dimensional module for Uq (̃g)

admits an A-form. In the special case, when π ∈ P+Z , the results of [4, 17] show that V (π)
does admit an A-form and that VA(π)⊗A C is an indecomposable and usually reducible

module for the enveloping algebra U(g̃) and hence also for the current algebra g[t].
Consider the automorphism of g[t] → g[t] defined by mapping a⊗ tr

→ a⊗ (t − 1)r , a ∈
g, r ∈ Z+. Let L(π) be the representation of g[t] obtained by pulling back the g[t]-module,

VA(π)⊗A C, via this automorphism. Then, one can prove (see § 2) that

(g⊗ t NC[t])L(π) = 0, N � 0.

Let δr,s be the usual Kronecker delta symbol. The following is not hard to prove (see [39]
for instance).

Lemma. Let π ∈ P+ be such that V (π) ∼= Vq(wtπ). Then

L(π) ∼=g V (wtπ) and (g⊗ tC[t])L(π) = 0.

In particular, L(π) is the graded g[t]-module generated by an element vwtπ of grade zero

and the following defining relations:

(x−1,n+1⊗ t)vwtπ = 0,

(x+i ⊗C[t])vwtπ = 0, (hi ⊗ t s)vwtπ = δs,0(degπi )vwtπ, (x−i )
degπi+1vwtπ = 0,

for all 1 6 i 6 n.
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1.9. The main result: a presentation of L(π), π ∈ P+Z (1)
Given ν ∈ P+ and λ = ωi1 + · · ·+ωik ∈ P+(1), 1 6 i1 < · · · < ik 6 n, let M(ν, λ) be the

graded g[t]-module generated by an element vν,λ of grade zero with the following defining

relations: for all 1 6 i 6 n, and s ∈ Z+,

(x+i ⊗C[t])vν,λ = 0, (hi ⊗ t s)vν,λ = δs,0(2ν+ λ)(hi )vν,λ, (x−i )
(2ν+λ)(hi )+1vν,λ = 0,

(1.5)

(x−i ⊗ tν(hi )+λ(hi ))vν,µ = 0, 1 6 i 6 n (1.6)

(x−i j ,i j+1
⊗ tν(hi j+hi j+1+···+hi j+1 )+1

)vν,λ = 0, 1 6 j 6 k− 1. (1.7)

In this paper, we shall prove the following.

Theorem 1. Let π ∈ P+ be such that V (π) has at most one prime factor in P+Z (1) and

all its other prime factors are of the form ωi,aωi,aq2 , 1 6 i 6 n, a ∈ qZ. Then wtπ =
2ν+ λ, for a unique choice of ν ∈ P+ and λ ∈ P+(1), and we have an isomorphism of

g[t]-modules

L(π) ∼= M(ν, λ).

In particular, L(π) acquires the structure of a graded g[t]-module.

1.10. Demazure modules as fusion products

We assume for the moment that the reader is familiar with the notion of g-stable

Demazure modules D(`, λ) of level `, which are indexed by pairs (`, λ) ∈ N× P+. They

are graded modules for g[t] and are generated by a vector v`,λ: a detailed development can

be found in § 3, where we shall also see that we have an isomorphism of sln+1-modules,

D(`, `ωi ) ∼= V (`ωi ), 1 6 i 6 n, ` ∈ N.

The tensor product of level-` Demazure modules is not a level-` module. In [22],

the authors introduced a new g[t]-structure on the tensor product of cyclic graded

g[t]-modules; the resulting g[t]-module (unlike the tensor product) is a cyclic g[t]-module.

This structure, called the fusion product, depends on a choice of complex numbers, a

distinct one for each factor in the tensor product. The underlying g-module structure is

unchanged, and in many cases it is known that the fusion product is independent of this

choice of parameters; the case of interest to us is the following special case of a result

proved in [18].

Proposition. Let ν =
∑n

i=1 riωi ∈ P+ and λ ∈ P+(1). Then

D(2, 2ν+ λ) ∼= D(2, 2ω1)
∗r1 ∗ · · · ∗ D(2, 2ωn)

∗rn ∗ D(2, λ).

Moreover, the module D(2, λ) is prime in the sense that it is not isomorphic to a tensor

product of non-trivial g-modules.

1.11. The connection with Demazure modules

The connection between Theorem 1 and Demazure modules is made via the following

proposition, proved in § 4 of this paper.
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Proposition. For ν ∈ P+ and λ ∈ P+(1), we have an isomorphism

M(ν, λ) ∼=g[t] D(2, 2ν+ λ).

1.12. The connection with the category Cκ
We discuss the relationship of our work with that of [28, 30]. Let κ : {1, 2, . . . , n} → Z be

a function satisfying |κ(i + 1)− κ(i)| = 1, for 1 6 i 6 n− 1. Let Cκ be the full subcategory

of finite-dimensional representations of Uq (̃g) defined as follows: an object of Cκ has all

its Jordan–Holder components of the form V (π), where π ∈ P+ is a product of terms

of the form ωi,a , a ∈ {qκ(i), qκ(i)+2
}, 1 6 i 6 n. The following is a slight reformulation of

results proved in [28–30].

Theorem 2. The category Cκ is closed under taking tensor products. An irreducible object

of Cκ is a tensor product of prime irreducible objects of Cκ . An irreducible object V (π)
of Cκ is prime only if π ∈ P+Z (1) or if π = ωi,qκ(i)ωi,qκ(i)+2 , for 1 6 i 6 n. Moreover,

given π ∈ P+Z (1), there exists a height function κ such that V (π) is a prime object of

Cκ .

We make some comments about our reformulation. In [30], the authors define a quiver

Qκ whose vertices are the elements of the set {1, . . . , n}, and whose edges are the set

i → i + 1, if κ(i) < κ(i + 1), and i + 1→ i, otherwise. Given any subset J = (1 6 i1 <

i2 < · · · < ik 6 n) of I , consider the connected subquiver determined by this subset, and

let J< and J> be the set of sinks and sources, respectively, of this subquiver. According

to [30], the representation V (π) associated to

π =
∏
j∈J<

ω j,qκ( j)+2

∏
j∈J>

ω j,qκ( j),

is prime and, moreover, any prime object in Cκ is either of this form or is isomorphic

to V (ωi,qκ(i)ωi,qκ(i)+2), for 1 6 i 6 n. It is straightforward to check that the element

π ∈ P+Z (1). Conversely, given π = ωi1,a1 · · ·ωik ,ak ∈ P+Z (1), consider the height function

κ given by requiring the elements i1, i3, . . . to be the sinks of Qκ , and i2, i4, . . . to be the

sources of the quiver. Then V (π) is a prime object of Cκ .

Very little has been known so far about prime objects V (π) in Cκ , except in the

case when π = ωi,κ(i)ω j,κ( j) or π = ωi,qκ(i)ωi,qκ(i)+2 , for 1 6 i 6 n, where we can use

Lemma 1.6. As a consequence of Lemma 1.8 and Theorem 1, our results show that if

V (π) is a prime object of Cκ then one knows a presentation of L(π) and that it is a graded

g[t]-module. Moreover, since the Uq(g)-character of V (π) is the same as the g-character

of L(π), Proposition 1.11 shows that their character is given by the Demazure character

formula. Taking this together with Proposition 1.10, we see that V (π), π ∈ P+Z (1), is

strongly prime, in the sense that V (π) is not isomorphic to a tensor product of non-trivial

Uq(g)-modules. To the best of our knowledge all known examples of prime representations

are strongly prime. But, it is far from clear that the two notions are equivalent.
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1.13. An outline of the proof

We outline the main steps of the proof of Theorem 1. It generalizes ideas in [39] (see

also [45]), where a similar question was studied for a different family of irreducible

representations.

Suppose that π1,π2 ∈ P+Z are such that we have an injective map of Uq (̃g)-modules

V (π1π2)→ V (π1)⊗ V (π2). Since UA(̃g) is a Hopf subalgebra of Uq (̃g), we get

an injective map VA(π1π2)→ VA(π1)⊗ VA(π2). It was shown in [39, Lemma 2.20,

Proposition 3.21] that tensoring with ⊗AC, and pulling back by the automorphism of g[t]
induced by t → t − 1, gives rise to a map of g[t]-modules L(π)→ L(π1)⊗ L(π2). This

map is neither injective nor surjective even when V (π) ∼= V (π1)⊗ V (π2), but it plays a

big role in this paper. The main steps in the proof of Theorem 1 are the following. Let

π ∈ P+Z (1).
(i) There exists a surjective map of g[t]-modules ϕ1 : M(0,wtπ)→ L(π)→ 0.

(ii) There exist πo,πe
∈ P+Z (1) with π = πoπe such that we have an injective map of

Uq (̃g)-modules V (π)→ V (πo)⊗ V (πe). Moreover,

L(πo) ∼=g[t] D(1,wtπo), L(πe) ∼=g[t] D(1,wtπe).

The induced map

ϕ2 : L(π)→ L(π0)⊗ L(πe) ∼= D(1,wtπo)⊗ D(1,wtπe)

satisfies

ϕ2(ϕ1(vwtπ)) = v1,wtπo ⊗ v1,wtπe .

(iii) There exists an injective map of g[t]-modules

D(2,wtπ)→ D(1,wtπo)⊗ D(1,wtπe), with v2,wtπ → v1,wtπo ⊗ v1,wtπe .

Consider the composite map

ϕ2ϕ1 : M(0,wtπ)→ D(1,wtπo)⊗ D(1,wtπe).

The preceding steps show that the image of this map is D(2,wtπ). Proposition 1.11

proves that ϕ2ϕ1 must be injective, and hence it follows that ϕ1 is an isomorphism,

proving Theorem 1 when π ∈ P+Z (1).
(iv) The next step is to prove Proposition 1.11.

(v) The final step is to prove the following. Suppose that V is a cyclic g[t]-module

generated by a vector v satisfying (1.5). Assume that V ∼= D(2, 2ν+ λ) as g-modules.

Then, V ∼= D(2, 2ν+ λ) as g[t]-modules.

We now deduce Theorem 1 in full generality. We prove in Lemma 2.1 that L(π) is a

cyclic g[t]-module. The assumptions on π in Theorem 1 imply that V (π) is isomorphic,

as Uq (̃g)-modules, to a tensor product of modules of the form V (ωi,aωi,aq2), 1 6 i 6 n,

along with a single module V (π1), with π1 ∈ P+Z (1). Hence, we can write wtπ = 2ν+
wtπ1, with ν =

∑n
i=1 riωi ∈ P+ and wtπ1 ∈ P+(1). Since this is an isomorphism also of

Uq(g)-modules, it follows that we have an isomorphism of g (but not of g[t])) modules,

L(π) ∼=g L(2ω1)
⊗r1 ⊗ · · ·⊗ L(2ωn)

⊗rn ⊗ L(π1).

https://doi.org/10.1017/S1474748015000407 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000407


84 M. Brito et al.

Using Lemma 1.6, the fact that D(2, 2ωi ) ∼=g V (2ωi ), and Theorem 1 for π1, we get

L(π) ∼=g D(2, 2ω1)
⊗r1 ⊗ · · ·⊗ D(2, 2ωn)

⊗rn ⊗ D(2,wtπ1).

Using Proposition 1.10 gives

L(π) ∼=g D(2,wtπ).

Using step (v) now proves that L(π) is isomorphic to D(2,wtπ) as g[t]-modules, and the

proof is complete.

The proof of steps (i) and (ii) are in § 2, the proof of step (iii) is in § 3, the proof of

step (iv) is in § 4, and the proof of step (v) is in § 5.

1.14. Further questions

As we have remarked, the isomorphism

V (π1π2) ∼= V (π1)⊗ V (π2)

does not imply that L(π1π2) is isomorphic to L(π1)⊗ L(π2). However, in the case when

the L(π j ) are graded g[t]-modules, it is true in many known examples that

L(π1π2) ∼= L(π1) ∗ L(π2).

Theorem 1, and Proposition 1.10 and Proposition 1.11 add to these growing number of

examples which support the conjecture that such a statement might be true in general.

We now discuss some natural questions arising from our work. The Demazure character

formula is not easy to compute, and an interesting question would be to determine

the g-module decomposition of the prime level-two Demazure modules. Preliminary

calculations show that there could be some interesting combinatorics associated with it,

along the lines of the formulae given for the well-known Kirillov–Reshetikhin modules.

Another direction is the following: there exist irreducible (but not prime) objects of

Cκ which are not level-two Demazure modules. In fact any tensor product of modules

which has more than one prime factor of the form V (π), π ∈ P+Z (1), does not usually

specialize to a level-two Demazure module. It is natural to speculate that they too have

graded limits which are also related in some way to other known representations for the

current algebra. In simple cases, it appears that these are quotients of a family modules

for sln+1[t] defined and studied in [19]; they also appear to be related to the generalized

Demazure modules studied in [36, 45].

There are two more very obvious questions: can one formulate and prove analogous

results for Demazure modules of level at least three for sln+1[t], and are there analogous

results for the other simple Lie algebras? It is most convenient to address these two

questions together. Assume therefore that g is an arbitrary simple Lie algebra. If g is

simply laced, then one uses results in [7, 17, 24] to prove that any level-one Demazure

module is isomorphic to the graded limit of a module for the quantum affine algebra.

However, in the non-simply laced case this is false; the level-one Demazure modules

are too small. It was shown in [44] that the graded limit usually admits only a flag by

Demazure modules.

This phenomenon persists as we move to higher levels. Thus for types D and E , the

level-two Demazure modules are again too small; one sees this already in the case of
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most of the Kirillov–Reshetikhin modules. Similarly for type A beyond level two, some

of the Demazure modules appear to be too small. In all these cases there is evidence to

suggest that the generalized Demazure modules and the modules defined in [19] might

be the correct objects. In particular, in work in progress (see also [2]) we show that

the minimal affinizations, which are known through the work of [44] to specialize to

generalized Demazure module, are isomorphic to the modules defined in [19].

2. Prime representations and graded limits

In this section we recall the necessary results from the theory of finite-dimensional

representation of quantum affine sln+1. The results can be stated without introducing, in

too much detail, the extensive notation of the quantum affine algebras. We refer the reader

to [11] for the basic definitions, and to [45, § 3] for an excellent exposition with detailed

references, for the results discussed here, on graded limits and minimal affinizations.

2.1. The modules L(π) for π ∈ P+Z
We begin the section by elaborating on the definition of the g[t]-modules L(π), π ∈ P+Z .

Special cases of what we are going to say are in the literature [4, 39, 44] but not in the

generality we need.

For π ∈ P+, let π̄ = (π1(u), . . . , πn(u)) ∈ C[u] be the n-tuple of polynomials with

complex coefficients obtained from π by setting q = 1. If π ∈ P+Z , then it follows that

π̄i (u) = (1− u)degπi , for all 1 6 i 6 n. It was shown in [17, § 4] that the module V (π),
π ∈ P+Z , has an A-form VA(π) which gives an action of g̃ on V (π) := VA(π)⊗A C.

Moreover, it was proved that V (π) is generated, as a g̃-module, by an element vπ which

satisfies the following relations:

(x+i ⊗C[t, t−1
])vπ = 0, (hi ⊗ tr )vπ = (degπi )vπ, (x−i ⊗ 1)degπi+1vπ = 0,

for all 1 6 i 6 n. Since V (π) is a finite-dimensional module for g̃, it follows that the

central element acts as zero; i.e., V (π) is a module for g⊗C[t, t−1
]. Hence, there must

exist f ∈ C[t, t−1
] of minimal degree such that

(g⊗ f C[t, t−1
])V (π) = 0.

Proposition 2.7 of [16] shows that f must be of the form (t − 1)N for some N � 0. This

means that the module V (π) is a module for the quotient Lie algebra g⊗C[t, t−1
]/

(t − 1)N . Using the isomorphism

g⊗C[t, t−1
]/(t − 1)N ∼= g⊗C[t]/(t − 1)N ,

we see that we can regard V (π) as a module for g[t] generated by the element vπ such

that

(g⊗ (t − 1)NC[t])V (π) = 0.

Pulling back V (π) via the automorphism x ⊗ tr
→ x ⊗ (t − 1)r of g[t], we get the module

which we have called L(π). Summarizing, we have the following.
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Lemma. The g[t]-module L(π) is generated by an element vπ satisfying

(x+i ⊗C[t])vπ = 0, (hi ⊗ tr )vπ = δr,0(degπi )vπ, (x−i ⊗ 1)degπi+1vπ = 0,

for all 1 6 i 6 n. In particular, we have

L(π)wtπ = {v ∈ L(π) : (h⊗ 1)v = wtπ(h)v, h ∈ h} = Cvπ .

2.2. Restrictions to subalgebras

Suppose that J is a connected subset of I of cardinality m. Then the subalgebra of g

generated by the elements x±j , j ∈ J , is isomorphic to slm+1, and will be denoted by gJ .

We have canonical inclusions of the quantized enveloping algebras, Uq(gJ ) ↪→ Uq(g) and

Uq(g̃J ) ↪→ Uq (̃g).

The Z+-span of the weights ω j , j ∈ J , is denoted by P+J ; the subsets Q+J of Q+ and P+J
of P+ are defined in the obvious way. Define surjective maps P+→ P+J and P+→ P+J
by

λ =

n∑
i=1

riωi → λJ =
∑
j∈J

r jω j , π = (π1, . . . , πn)→ π J = (π j ) j∈J .

The set P+J (respectively, P+J ) indexes the isomorphism classes of finite-dimensional

irreducible representations of gJ and Uq(gJ ) (respectively, Uq(g̃J )). Given λ ∈ P+J , let

V J (λ) be a finite-dimensional irreducible representation of gJ ; the modules V J
q (λ) and

V J (π), π ∈ P+J , are defined in the obvious way. The following result is proved by standard

methods (see [14] for details in the quantum case).

Proposition. Let λ ∈ P+ and π ∈ P+.

(i) We have an inclusion of gJ -modules V J (λJ )→ V (λ). Analogous statements hold

for V J
q (λJ ) and for V J (π J ).

(ii) Suppose that µ ∈ P+ is such that λ−µ ∈ Q+J . Then

HomUq (g)(Vq(µ), V (π)) 6= 0 H⇒ HomUq (gJ )(V
J

q (µJ ), V J (π J )) 6= 0.

2.3. Existence of ϕ1

Suppose now that π1 ∈ P+Z (1), and let λ := wtπ = ωi1 + · · ·+ωik , for some 1 6 k 6 n
such that 1 6 i1 < · · · < ik 6 n. In view of the definition of M(0,wtπ) given in § 1.9 and

Lemma 2.1, the existence of the surjective map ϕ1 : M(0,wtπ)→ L(π) follows, if we

prove that

(x−i ⊗ tλ(hi ))vπ = 0, 1 6 i 6 n, (x−i j ,i j+1
⊗ t)vπ = 0, 1 6 j 6 k− 1.

If λ(hi ) = 0 then the first equality is clear from Lemma 2.1. If λ(hi ) = 1, i.e., i = i j for

some 1 6 j 6 k, then Lemma 2.1 gives

(x−i ⊗ 1)2vπ = 0.

Applying (x+i ⊗ t), taking commutators, and using the relations in Lemma 2.1 again

proves that (x−i ⊗ t)vπ = 0.
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Suppose for a contradiction that v := (x−i j ,i j+1
⊗ t)vπ 6= 0, for some 1 6 j 6 k− 1. Then,

we claim that x+s v = 0, 1 6 s 6 n. This is obviously true except when s = i j or s = i j+1,

when we have to prove that

(x−i j+1,i j+1
⊗ t)vπ = 0 = (x−i j ,i j+1−1⊗ t)vπ .

If i j+1 = i j + 1, i.e., x−i j+1,i j+1
= x−i j+1

or x−i j ,i j+1−1 = x−i j
, this was established in the

previous paragraph.

If i j+1 > i j + 1, we can write

(x−i j+1,i j+1
⊗ t) = [x−i j+1,i j+1−1, x−i j+1

⊗ t].

Since degπi = 0 if i j < i < i j+1, we have x−i j+1,i j+1−1vπ = 0. Together with the fact that

we have proved (x−i j+1
⊗ t)vπ = 0, it follows that (x−i j+1,i j+1

⊗ t)vπ = 0. The proof that

(x−i j ,i j+1−1⊗ t)vπ = 0 is similar, and we omit the details. This proves the claim, and it

follows that we have

dim Homg(V (µ), L(π)) > 0, µ = λ−

i j+1−i j∑
s=0

αi j+s,

and hence also

dim HomUq (g)(Vq(µ), V (π)) > 0, µ = λ−

i j+1−i j∑
s=0

αi j+s . (2.1)

Setting J = {i j , i j + 1, . . . , i j+1}, we have

µJ = 0, π J = (ωi j ,a j , 1, . . . , 1,ωi j+1,a j+1), ai j a
−1
i j+1
= q±(i j+1−i j+2).

Using Proposition 2.2 and equation (2.1), we have

dim HomUq (gJ )(V
J

q (0), V J (π J )) > 0. (2.2)

On the other hand, Lemma 1.6 applies to the representation V J (π J ) of Uq (̃gJ ), and hence

we have V J (π J ) ∼= V J
q (λJ ) as Uq(gJ )-modules. This contradicts equation (2.2), and hence

we must have v = 0. The existence of the surjective map ϕ1 : M(0,wtπ)→ L(π)→ 0 is

established.

2.4. Tensor products and defining relations

The relations given in Lemma 2.1 are not necessarily the defining relations of L(π).
However, we have the following result, which is a special case of [17, § 4] and the main

result of [7].

Theorem 3. Let π ∈ P+Z be such that the prime factors of V (π) are

{V (ω js ,bs ) : 1 6 s 6 m, 1 6 js 6 n, bs ∈ qZ
};

https://doi.org/10.1017/S1474748015000407 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000407


88 M. Brito et al.

i.e.,

V (π) ∼=Uq (̃g) V (ω j1,b1)⊗ · · ·⊗ V (ω jm ,bm ).

Then L(π) is generated by the element vπ with the following defining relations:

(x+i ⊗C[t])vπ = 0, (hi ⊗ tr )vπ = δr,0(degπi )vπ, (x−i ⊗ 1)degπi+1vπ = 0,

for all 1 6 i 6 n.

2.5. Simple socle in a tensor product

The hypothesis in Theorem 3 that V (π) has all its prime factors of the form ωi,a , 1 6
i 6 n, a ∈ qZ, is generically true. This is seen from the next result, the dual of which is

proved in [5, Theorem 4.4 and Corollary 6.2].

Proposition. Let m > 1, 1 6 j1, . . . , jm 6 n, and b1, . . . , bm ∈ qZ, be such that

s > r H⇒ br/bs /∈ {q2p+2− js− jr : max{ jr , js} < p+ 1 6 min{ jr + js, n+ 1}}. (2.3)

Then V (ω j1,b1 · · ·ω jm ,bm ) is the unique irreducible submodule of V (ω j1,b1)⊗ · · ·⊗

V (ω jm ,bm ). Moreover, if equation (2.3) holds for all 1 6 r, s 6 m, then we have an

isomorphism of Uq (̃g)-modules,

V (ω j1,b1)⊗ · · ·⊗ V (ω jm ,bm )
∼= V (π).

2.6. The elements πo and πe

Let π ∈ P+Z (1), in which case we can write

π = ωi1,a1 · · ·ωik ,ak , 1 6 i1 < · · · < ik 6 n,

where either

a1 = qm, a2 j/a2 j−1 = q i2 j−i2 j−1+2, a2 j+1/a2 j = q i2 j−i2 j+1−2,

or

a1 = qm, a2 j/a2 j−1 = q−(i2 j−i2 j−1+2), a2 j+1/a2 j = q−(i2 j−i2 j+1−2),

for some m ∈ Z. We shall always assume that we are in the first case. The proof in the

other case is identical.

Define

πo
=

ωi1,a1ωi3,a3 · · ·ωik ,ak , k odd

ωi1,a1ωi3,a3 · · ·ωik−1,ak−1 , k even,
πe
=

ωi2,a2ωi4,a4 · · ·ωik−1,ak−1 , k odd

ωi2,a2ωi4,a4 · · ·ωik ,ak , k even,

and note that πeπo
= π.

Proposition. Assume that k is even. We have an isomorphism of Uq (̃g)-modules,

V (πo) = V (ωi1,a1)⊗ · · ·⊗ V (ωik−1,ak−1), V (πe) ∼= Vq(ωi2,a2)⊗ · · ·⊗ V (ωik ,ak ).

Moreover, V (π) is a submodule of V (πo)⊗ V (πe). Analogous statements hold if k is odd.
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Proof. The first assertion of the proposition is immediate from Theorem 2. However, it

is easy to give a proof using Proposition 2.5, and we include it for completeness since it

is crucial for this paper.

Define integers r j , 1 6 j 6 k, by

r1 = 0, r2 = i2− i1+ 2,

r2s+1 = −i1+ 2(i2− i3+ · · ·− i2s−1+ i2s)− i2s+1, s > 1,

r2s+2 = −i1+ 2(i2− i3+ · · ·+ i2s − i2s+1)+ i2s+2+ 2, s > 1,

and note that a j = qr j+m , for 1 6 j 6 k.

We prove that V (πo) is irreducible. Using Proposition 2.5, it suffices to prove that, for

all s > j and p ∈ Z+ with p+ 1 > i2s+1,

r2s+1− r2 j+1 6= ±(2p+ 2− i2 j+1− i2s+1),

or equivalently that

−i2 j+1+ 2(i2 j+2− i2 j+3+ · · ·− i2s−1+ i2s)− i2s+1 6= ±(2p+ 2− i2 j+1− i2s+1).

This amounts to proving that

p+ 1 6= i2s − i2s−1+ · · ·− i2 j+3+ i2 j+2

and

p+ 1 6= i2s+1− i2s + · · ·+ i2 j+3− i2 j+2+ i2 j+1.

If equality were to hold, then in the first case we would get p+ 1 < i2s < i2s+1 and in the

second case we get p+ 1 < i2s+1, which contradicts our assumptions on p. The proof of

the irreducibility of V (πo) is complete. A similar argument proves the result for V (πe).

To prove that V (πo)⊗ V (πe) contain V (π) as its unique submodule, we again use

Proposition 2.5, and note that it is enough to check that, for all s and j , we have

r2 j−1− r2s /∈ {2+ 2p− i2s − i2 j−1 : max{i2 j−1, i2s} < p+ 1 6 min{i2 j−1+ i2s, n+ 1}}.
(2.4)

For clarity, we prove this by breaking up the checking into several cases. If s > j > 1 and

i2s + i2 j−1 6 n+ 1, we have

r2s − r2 j−1 = i2s + i2 j−1+ 2− 2(i2 j−1− i2 j + · · ·− i2s−2+ i2s−1);

i.e.,

r2 j−1− r2s = −i2s − i2 j−1+ 2(−1+ (i2 j−1− i2 j )+ · · ·+ (i2s−1− i2s)+ i2s).

Since (−1+ (i2 j−1− i2 j )+ · · ·+ (i2s−1− i2s)+ i2s) < i2s , we see that equation (2.4) is

satisfied. On the other hand, if j > s > 1 and i2s + i2 j−1 6 n+ 1, we have

r2s − r2 j−1 = i2s + i2 j−1− 2(−1+ (i2s − i2s+1)+ · · ·+ (i2 j−2− i2 j−1)+ i2 j−1).

Since the expression in parentheses is less than i2 j−1, we see that equation (2.4) is again

satisfied. The other two cases are similar, and we omit the details.
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2.7. Existence of ϕ2

Using Proposition 2.6 and the discussion in § 1.13, we see that there exists a map ϕ2 :

L(π)→ L(πo)⊗ L(πe). Moreover, since wtπ = wtπo
+wtπe, and

L(π)wtπ = Cvπ, L(πo)wtπo = Cvπo , L(πe)wtπe = Cvπe ,

we see that

ϕ2(vπ) = vπo ⊗ vπe .

Moreover, V (πo) and V (πe) satisfy the conditions of Theorem 3, and hence we have the

defining relations of L(πo) and L(πe). We have now established the second step of the

proof of Theorem 1, modulo the identification of L(πo) and L(πe) with the level-one

Demazure module. This will be done in § 4.1.

3. Level-two Demazure modules in the tensor product of level-one Demazure

modules

We establish the third step in the proof of Theorem 1.

3.1. Extended and affine Weyl groups

We use freely the notation established in § 1.1. Let n± be the subalgebra spanned by

the elements x±i, j , 1 6 i 6 j 6 n, and set b = h⊕ n+. Set hi, j = [x+i, j , x−i, j ], and note that

hi,i = hi . Define elements x±0 and h0 of ĝ by

x±0 = x∓1,n ⊗ t±1, h0 = c− h1,n,

and set

ĥ = h⊕Cc⊕Cd, n̂+ = g⊗ tC[t]⊕ n+, b̂ = n̂+⊕ ĥ.

We shall regard an element of h∗ as an element of ĥ∗ by setting it to be zero on c and d.

Define elements 3i ∈ ĥ∗, 0 6 i 6 n, by

30(h⊕Cd) = 0, 30(c) = 1, 3i = ωi +30, 1 6 i 6 n,

and let δ ∈ ĥ∗ be given by δ(h⊕Cc) = 0, δ(d) = 1. Let P̂ be the Z-span of {δ} and

{3i : 0 6 i 6 n}, and let P̂+ be the direct sum of the Z-span of {δ} with the Z+-span of

{3i : 0 6 i 6 n}.
Let si , 0 6 i 6 n be the simple reflection of the affine Weyl group Ŵ ; recall that it acts

on ĥ∗ and ĥ by

si (µ) = µ−µ(hi )αi , si (h) = h−αi (h)hi , h ∈ ĥ, µ ∈ ĥ∗.

Note that

w ∈ Ŵ H⇒ w(c) = c and w(δ) = δ.

The Weyl group W of g is the subgroup of Ŵ generated by the elements si , 1 6 i 6 n,

and is isomorphic to the symmetric group on n+ 1 letters. Let w0 ∈ W be the unique

element of maximal length. The action of W on ĥ∗ preserves P and Q, and we have an

isomorphism of groups

Ŵ ∼= W n Q.
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The extended affine Weyl group W̃ is the semidirect product W n P. The affine Weyl

group is a normal subgroup of W̃ , and, if T is the cyclic subgroup of the diagram

automorphisms of ĝ, we have

W̃ ∼= T n Ŵ .

Here T is just isomorphic to the cyclic group of order n+ 1. Since T preserves P̂ and P̂+,

we see that W̃ preserves P̂. The following formulae make explicit the action of µ ∈ P on

ĥ∗:

tµ(λ) = λ− (λ, µ)δ, λ ∈ h∗⊕Cδ, tµ(30) = 30+µ−
1
2 (µ,µ)δ,

where ( , ) is the symmetric bilinear form defined by (αi , ω j ) = δi, j , for all 1 6 i, j 6 n.

3.2. Integrable highest-weight modules

Recall that a weight module V for ĥ is one where ĥ acts diagonally. Let wt V ⊂ ĥ∗ be

the set of eigenvalues for this action, and, given µ ∈ wt V , let Vµ be the corresponding

eigenspace. For 3 ∈ P̂+, let V (3) be the irreducible highest-weight integrable ĝ-module,

which is generated by an element v3 with defining relations

n̂+v3 = 0, hv3 = 3(h)v3, (x−i )
3(hi )+1v3 = 0,

where h ∈ ĥ and 0 6 i 6 n. Note that wt V (3) ⊂ 3− Q̂+. (Here Q̂+ is the Z+-span of the

elements αi , 0 6 i 6 n, and δ). It is easily seen that, for all r ∈ Z, we have an isomorphism

of g̃-modules,

V (3− rδ) ∼= V (3). (3.1)

The following proposition is well known (see [32, Chapters 10 and 11], for instance).

Proposition. (i) Let 3 ∈ P̂+. We have

dim V (3)µ = dim V (3)wµ, for all w ∈ Ŵ , µ ∈ ĥ∗.

In particular, dim V (3)w3 = 1 for all w ∈ Ŵ .

(ii) Given 3′,3′′ ∈ P̂+, we have

V (3′)⊗ V (3′′) ∼=
⊕
3∈P̂+

dim(Homĝ(V (3), V (3′)⊗ V (3′′)))V (3).

Moreover,

dim Homĝ(V (3), V (3′)⊗ V (3′′)) =

 1, 3 = 3′+3′′,

0, 3 /∈ 3′+3′′− Q̂+.
(3.2)

Corollary. Suppose that 3′,3′′ ∈ P̂+, and that 3 = 3′+3′′. For all w ∈ Ŵ , we have

(V (3′)⊗ V (3′′))w3 = V (3)w3, (3.3)

where we have identified V (3) with its image in V (3′)⊗ V (3′′).
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Proof. Since the right-hand side is of dimension one by part (i) of the proposition and

is clearly contained in the left-hand side, it suffices to prove that

dim(V (3′)⊗ V (3′′))w3 = 1.

If not, we get by using part (ii) of the proposition with the first case of equation (3.2)

that there exists 31 ∈ P̂+ with 31 6= 3, such that

dim Homĝ(V (31), V (3′)⊗ V (3′′)) 6= 0, V (31)w3 6= 0.

Using part (i) of the proposition, this means that V (31)3 6= 0. But this is impossible,

since 31 ⊂ 3− Q̂+ and 31 6= 3, thus proving the corollary.

3.3. Stable Demazure modules

Given 3 ∈ P̂+ and wτ ∈ W̃ , where w ∈ Ŵ and τ ∈ T , the Demazure module Vw(τ3) is

the b̂-submodule of V (τ3) given by

Vw(τ3) = U(̂b)vwτ3, 0 6= vwτ3 ∈ V (τ3)wτ3.

The Demazure modules are necessarily finite dimensional since wt V (3) ⊂ 3− Q+. We

say that Vw(τ3) is a level-` Demazure module if 3(c) = `. The following is immediate

from Corollary 3.2.

Lemma. Let wτ ∈ W̃ and 3′,3′′ ∈ P̂+. We have an isomorphism of b̂-modules,

Vw(τ (3′+3′′)) ∼= U(̂b)(vwτ3′ ⊗ vwτ3′′) ⊂ V (τ3′)⊗ V (τ3′′).

In this paper we are only interested in the Demazure modules Vw(3) satisfying the

condition w3(hi ) 6 0, for all 1 6 i 6 n. In this case, we have n−vw3 = 0, and Vw(3) is

a module for the parabolic subalgebra b̂⊕ n−; i.e.,

Vw(3) = U(̂b⊕ n−)vw3 = U(g[t])vw3 = U(g[t])v
w−1

0 w3
,

where the last equality follows from the fact that Vw(3) is a finite-dimensional

g-module. Writing w3 = w0λ+3(c)30+ rδ, for a unique λ ∈ P+ and r ∈ Z, we see from

equation (3.1) that

Vw(3) ∼=g[t] Vw(3− rδ).

Hence, we denote these modules as τ ∗r D(`, λ), where ` = 3(c), r ∈ Z. Notice that the

action of d on these modules defines a Z-grading on them which is compatible with the

grading on g[t]; i.e., the modules τ ∗r D(`, λ) are graded g[t]-modules; for a fixed ` and

λ, these modules are just grade shifts, and we set τ ∗0 D(`, λ) = D(`, λ). The eigenspace

D(`, λ)λ for the h-action is one dimensional, and we shall frequently denote a non-zero

element of this space by v`,λ.

3.4. The main result on tensor products of level-one Demazure modules

The main result of this section is the following.

Theorem 4. Given µ ∈ P+, there exist µo, µe
∈ P+ with µ = µo

+µe such that we have

an injective map of graded g[t]-modules

D(2, µ) ↪→ D(1, µo)⊗ D(1, µe), v2,µ→ v1,µo ⊗ v1,µe .
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3.5. The key proposition

Recall that

P+(1) = {λ ∈ P+ : λ(hi ) 6 1 for all 1 6 i 6 n}.

Given λ =
∑k

j=1 ωi j ∈ P+(1), with 1 6 i1 < i2 < · · · < ik 6 n, define λo, λe
∈ P+(1) by

λo
=

 ωi1 +ωi3 + · · ·+ωik , k odd,

ωi1 +ωi3 + · · ·+ωik−1 , k even,
λe
= λ− λo.

We shall prove the following.

Proposition. Given λ ∈ P+(1) and ν ∈ P+, there exists w ∈ W̃ such that

w(ν+ λo
+30) ∈ P̂+, w(ν+ λe

+30) ∈ P̂+.

3.6. Proof of Theorem 4 and the third step of the proof of Theorem 1

Assuming Proposition 3.5, the proof of Theorem 4 is completed as follows. Write µ =

2ν+ λ, where ν ∈ P+ and λ ∈ P+(1), and set µo
= ν+ λo and µe

= ν+ λe. Choose w ∈ W̃
as in Proposition 3.5, and take

3 = w(µ+ 230), 3o
= w(ν+ λo

+30), 3e
= w(ν+ λe

+30).

Then 3o,3e
∈ P̂+ and 3 = 3o

+3e
∈ P̂+, and

D(2, µ) = Vw0w−1(3), D(1, µo) = Vw0w−1(3
o), D(1, µe) = Vw0w−1(3

e).

Theorem 4 is now immediate from Lemma 3.3.

The third step of the proof of Theorem 1 now follows. Given π ∈ P+(1), observe

that wtπo
= (wtπ)o and wtπe

= (wtπ)e, and hence using Theorem 4 we have a map

of g[t]-modules D(2,wtπ) ↪→ D(1,wtπo)⊗ D(1,wtπe).

3.7. Proof of Proposition 3.5; reduction to ν = 0

In the rest of this section we prove Proposition 3.5. The first step is to show that, for

a fixed λ, it suffices to prove the result when ν = 0. Thus, suppose that we have chosen

w ∈ W̃ such that w(λo
+30) and w(λe

+30) are in P̂+. Since (λo
+30)(c) = 1 = (λe

+

30)(c), we may write

w(λo
+30) = 3i + poδ, w(λe

+30) = 3 j + peδ,

for some po, pe
∈ Z and 0 6 i, j 6 n. Using the formulae in § 3.1, and the fact that 3p =

ωp +30 for 0 6 p 6 n, where ω0 = 0, we get

t−wνw(λo
+30+ ν) = (3i + (po

+
1
2 (ν, ν)+ (ωi , wν))δ) ∈ P̂+,

t−wνw(λe
+30+ ν) = (3 j + (pe

+
1
2 (ν, ν)+ (ω j , wν))δ) ∈ P̂+,

and the claim is established.
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3.8. Proof of Proposition 3.5; the case ν = 0

Consider the partial order on P+(1) given by µ 6 ν iff ν−µ ∈ Q+. The minimal elements

of this order are 0 and ωi , 1 6 i 6 n. If λ = 0, the result is clear: we just take 3o
=

3e
= 30 and w = id. If λ = ωi , we take λo

= ωi and λe
= 0. Since ωi +30 ∈ P̂+, we take

3o
= ωi +30, 3e

= 30, and w = id. If λ = ωi +ω j with i < j then we again take w = id,

since ωp +30 = 3p for all 0 6 p 6 n.

For the inductive step, let λ ∈ P+(1) with λ =
∑k

j=1 ωi j , i1 < · · · < ik and k > 2.

Suppose that we have proved the result for all elements µ ∈ P+(1) with µ < λ. To prove

the result for λ, it clearly suffices to show that there exist w ∈ W̃ and µ ∈ P+ with µ < λ,

and po, pe
∈ Z, such that

w(λo
+30) = µ

o
+30+ poδ, and w(λe

+30) = µ
e
+30+ peδ. (3.4)

This is done as follows. Take

w =

 si3 si3+1 · · · sns0, k = 3, i1 = 1,

si3 si3+1 · · · snsik−2−1sik−2−2 · · · s1s0, k > 3, or k = 3, i1 > 1,

and

µ =

 ωi1−1+ωi2 +ωi3+1, k = 3,

ωi1−1+ωi2−1+ωi3 + · · ·+ωik−2 +ωik−1+1+ωik+1, k > 3.

Note that µ < λ, since

λ−µ =

 αi1 + · · ·+αi3 , k = 3,

αi1 + 2αi2 + · · ·+ 2αik−1 +αik , k > 3.

We now establish that equation (3.4) is satisfied. For this, it is most convenient to deal

with the cases k = 3, 4 separately. If k = 3 and i1 > 1, or if k = 4, a simple calculation

gives

w(λo
+30) = w(3i1 +3i3 −30) = 3i1 +3i3 −30+

i1−1∑
j=0

α j +

n∑
j=i3+1

α j = µ
o
+30+ δ.

Moreover, if k = 3, we have

w(λe
+30) = w(3i2) = 3i2 = µ

e
+30,

while, if k = 4, we have

w(λe
+30) = w(3i2 +3i4 −30) = 3i2 +3i4 −30+

i2−1∑
j=0

α j +

n∑
j=i4+1

α j = µ
e
+30+ δ.

The case k = 3 and i1 = 1 is identical, and we omit the details. For k > 5, we write

w(λo
+30) = w(λ

o
+30)(d)δ+

n∑
j=0

(w(λo
+30), α j )3 j ,
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and similarly for λe
+30. We have

w(λo
+30)(d) = (λo

+30)(w
−1d) = (λo

+30)(d − h0) = λ
o(hθ )− 1.

To prove that (w(λo
+30), α j ) = (µ

o
+30, α j ), it is enough to prove that

(λo
+30)(w

−1h j ) = (µ
o
+30)(h j ),

and this is done by using the following easily established formulae:

w−1(α0) = α0+α1+αn, w−1(α j ) = α j , i3 < j < ik−2,

w−1(α j ) = α j+1, 0 < j < i3− 1, w−1(α j ) = α j−1, j > ik−2+ 1,

w−1(αi3−1) = αi3 + · · ·+αn +α0, w−1(αik−2+1) = αik−2 + · · ·+α1+α0,

w−1(αik−2) = −(α0+α1+ · · ·+αik−2−1),

and

w−1(αi3) =

−(αi3+1+ · · ·+αn +α0), k > 5,

−(α1+ · · ·+αn + 2α0), k = 5.

The case of w(λe
+30) is identical, and the proof of Proposition 3.5 is complete.

4. A presentation of level-two g-stable Demazure modules

An infinite set of defining relations of the Demazure module Vw(3) was given in [31, 38]

for all w ∈ W̃ and 3 ∈ P̂+. In the case when w3(hi ) 6 0, for all 1 6 i 6 n, these relations

can be used (see [24, 44]) to give (a still infinite set of) the defining relations of Vw(3)
(or equivalently of τ ∗r D(`, λ)) as g⊗C[t]-modules. In the case of the level-one Demazure

modules, it was shown in [7] for sln+1 that the relations could be reduced to a finite

number of relations. This was later extended for arbitrary levels in [19]. In this section

we show that, in the case of An and ` = 2, one can further whittle down the set of

defining relations, and as a consequence we prove Proposition 1.11. Along the way, we

shall see that, if π ∈ P+(1), then L(πo) and L(πe) are level-one Demazure modules,

which establishes the missing piece (see § 2.7) of the second step of Theorem 1.

4.1. A refined presentation of Demazure modules

We recall the presentation of D(`, µ), µ ∈ P+, given in [19, Theorem 2].

Proposition. For ` ∈ N, µ ∈ P+, the g[t]-module D(`, µ) is generated by an element wµ
satisfying the following defining relations:

(x+i ⊗ 1)wµ = 0, (hi ⊗ tr )wµ = µ(hi )δr,0wµ, (x−i ⊗ 1)µ(hi )+1wµ = 0,

(x−i, j ⊗ t si, j )wµ = 0, 1 6 i 6 j 6 n,

(x−i, j ⊗ t si, j−1)mi, j+1wµ = 0,
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where r ∈ Z+, 1 6 i 6 j 6 n, and si, j ,mi, j ∈ Z+ are uniquely defined by requiring

µ(hi, j ) = (si, j − 1)`+mi, j with 0 < mi, j 6 `. Moreover, if mi, j = `, the final relation is

a consequence of the preceding relations.

Corollary. For all ` ∈ N and µ ∈ P+, the assignment wµ→ wµ defines a canonical

surjective map D(`, µ)→ D(`+ 1, µ)→ 0 of g[t]-modules.

Remark. It is clear from Lemma 2.1 that, for all π ∈ P+Z , the module L(π) is a quotient

of D(1,wtπ). If π ∈ P+(1), it follows from Theorem 3 and Proposition 2.6 that

L(πo) ∼= D(1,wtπo), L(πe) ∼= D(1,wtπe),

which establishes the missing piece (see § 2.7) of the proof of the second step of Theorem 1.

4.2. Evaluation modules

Let ev0 : g[t] → g be the map of Lie algebras given by setting t = 0, i.e., a⊗ f → f (0)a,

for all a ∈ g and f ∈ C[t]. Given a g-module V , let ev∗0 V denote the corresponding

g[t]-module. The following is straightforward.

Lemma. For all ` ∈ Z+ and µ ∈ P+, we have wt D(`, µ) ⊂ µ− Q+. Moreover,

dim Homg(V (µ), D(`, µ)) = dim Homg[t](D(`, µ), ev∗0 V (µ)) = 1,

and

D(`, λ) ∼=g[t] ev∗0 V (λ), if λ(h1,n) 6 `.

4.3. The sl2 case

In the case of n = 1, i.e., when g is of type sl2, we identify P+ with Z+ freely, and let

x± be the root vectors x±1 . Given a partition, ξ = (ξ1 > · · · > ξm > 0), r ∈ N, define a

sl2[t]-module V (ξ) as follows: it is the cyclic module generated by an element vξ with

defining relations

(x+⊗ t)vξ = 0, (h⊗ tr )vξ = |ξ |δr,0vξ , (x−⊗ 1)|ξ |+1vξ = 0, |ξ | =
∑
k>1

ξk, (4.1)

and

(x+⊗ t)s(x−⊗ 1)s+rvξ = 0, (4.2)

for all s, r satisfying the condition that there exists k ∈ Z+ with s+ r > 1+ rk+∑
p>k+1 ξk .

In this paper, we shall only be interested in the case when the maximum value of a

part is 2, i.e., ξ is of the form 2a1b for some a, b ∈ Z+. We summarize for this special

case, the results of [19, Theorem 2, Theorem 5] that we shall need.
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Proposition. Let ξ = 2a1b, a, b ∈ Z+ be a partition.

(i) We have V (1b) ∼= D(1, b) as sl2[t]-modules.

(ii) If b ∈ {0, 1}, then V (2a1b) ∼= D(2, 2a+ b) as sl2[t]-modules.

(iii) If b > 2, then we have a short exact sequence of graded g[t]-modules,

0→ V (2a1b−2)
ι
→ V (2a1b)

π
→ V (2a+11b−2)→ 0, (4.3)

such that

ι(v2a1b−2) = (x ⊗ ta+b−1)v2a1b , π(v2a1b ) = v2a+11b−2 .

Corollary. The module V (2a1b) is generated by the element v2a1b with the relations given

in (4.1) and the single additional relation (x−⊗ ta+b)v2a1b = 0.

Proof. If a = 0, then the corollary follows from Proposition 4.1 and part (i) of

Proposition 4.3. A straightforward induction on a together with the short exact sequence

in (4.3) establishes the corollary.

4.4. A further refinement of the presentation of level-two Demazure

modules

Proposition. Assume that g is of type sln+1, and let µ ∈ P+. For 1 6 i 6 j 6 n, write

µ(hi, j ) = 2(si, j − 1)+mi, j with mi, j ∈ {1, 2}. The relation

(x−i, j ⊗ t si, j−1)mi, j+1wµ = 0

in D(2, µ) is redundant.

Proof. It follows from Proposition 4.1 that it suffices to prove the proposition when

mi, j = 1. If n = 1, then the result follows from Proposition 4.3(ii) and Corollary 4.3.

Otherwise, set α = αi, j , and consider the subalgebra sα[t] of g[t] spanned by the elements

x±α ⊗C[t]. Clearly sα[t] is isomorphic to sl2[t] with the element x±α mapping to x±.

Moreover, if we denote by Dsl2[t](2, µ(hα)) the level-two Demazure module for sl2[t],
then we have a non-zero map of sl2[t]-modules,

Dsl2[t](2, µ(hα))→ U(sα[t])wµ ⊂ D(2, µ).

The proposition is now immediate from the n = 1 case.

4.5. Proof of Proposition 1.11

We prove Proposition 1.11. Let λ = ωi1 + · · ·+ωik ∈ P+(1), where 1 6 i1 < · · · < ik 6 n
and ν ∈ P+. For α ∈ R+, write (2ν+ λ)(hα) = 2(sα − 1)+mα with sα > 1 and mα ∈ {1, 2}.
Note that

ν(hi )+ λ(hi ) = si , 1 6 i 6 n, ν(hi p,i p+1)+ 1 = si p,i p+1 , 1 6 p 6 k− 1.

It is clear from the definition of M(ν, λ) (see § 1.9) and Proposition 4.1 that there exists

a surjective morphism

M(ν, λ)→ D(2, 2ν+ λ)→ 0
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of g[t]-modules. The proposition follows if we prove that the preceding map is an

isomorphism. By Corollary 4.4, it suffices to show that

(x−i p,i p+1
⊗ t si p ,i p+1 )vν,λ = 0, 1 6 p 6 k− 1 H⇒ (x−i, j ⊗ t si, j )vν,λ = 0, 1 6 i 6 j 6 n.

(4.4)

We proceed by induction on j − i , with induction beginning at i = j by hypothesis (see

(1.6)). Assume that we have proved the result for all αi + · · ·+α j with j − i < s, and

consider the case when j = i + s. Suppose first that there does not exist 1 6 p 6 k such

that i 6 i p 6 i + s. In this case, we have µ(hi, j ) = 2ν(hi, j ) = 2ν(hi )+ 2ν(hi+1, j ). The

induction hypothesis implies that

(x−i ⊗ tν(hi ))vν,λ = 0 = (x−i+1, j ⊗ tν(hi+1, j ))vν,λ.

Since [x−αi
, x−αi+1, j

] = x−αi, j
, we get (4.4) in this case. We consider the other case, when we

can choose 1 6 p 6 k minimal and 1 6 r 6 k maximal so that i 6 i p 6 ir 6 j . If i < i p
we have again by the inductive hypothesis that

(x−i ⊗ tν(hi ))vν,λ = 0 = (x−i+1, j ⊗ t (ν+λ)(hi+1, j ))vν,λ,

and the inductive step is completed as before. If j > ir , then the proof is similar: we

write αi, j = αi, j−1+α j . Finally, suppose that i = i p and j = ir . If r = p+ 1, then the

inductive step is the hypothesis in equation (1.7). If r > p+ 2, then we write αi, j =

αi p,i p+1 +αi p+1+1,ir . This time, the induction hypothesis gives,

(x−i p,i p+1
⊗ tν(hi p ,i p+1 )+1

)vν,λ = 0 = (x−i p+1+1,ir ⊗ t (ν+λ)(hi p+1+1,ir ))vν,λ,

and the inductive step is completed as before.

5. A characterization of g-stable level-two Demazure modules

We establish the final step of the proof of Theorem 1.

5.1.

We shall prove the following result in the rest of the section.

Proposition. Let µ ∈ P+, and let V be a (not necessarily graded) g[t]-module which is

isomorphic to D(2, µ) as a g-module. Assume that ϕ : D(1, µ)→ V → 0 is a surjective

map of g[t]-modules. Then V is isomorphic to D(2, µ) as g[t]-modules.

Let ν ∈ P+ and λ = ωi1 + · · ·+ωik ∈ P+(1), 1 6 i1 < · · · < ik 6 n, be the unique

elements such that µ = 2ν+ λ. Setting ϕ(wµ) = vµ ∈ V , we see that vµ satisfies

the relations in (1.5). Since dim V = dim D(2, µ) by hypothesis, it follows from

Proposition 1.11 that it suffices to prove that the element vµ satisfies (1.6) and (1.7).

5.2.

Lemma. For 1 6 i 6 n, with (ν+µ)(hi ) > 0, we have dim Vµ−αi 6 (ν+ λ)(hi ).
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Proof. Since

V ∼=g D(2, µ) H⇒ Vµ−αi
∼= D(2, µ)µ−αi ,

it suffices to prove that dim D(2, µ)µ−αi 6 (ν+ λ)(hi ). A simple application of the

Poincare–Birkhoff–Witt (PBW) theorem, along with the fact that (x−i ⊗ t (ν+λ)(hi ))wµ = 0
in D(2, µ), shows that D(2, µ)µ−αi is spanned by the elements {(x−i ⊗ tr )wµ : 0 6 r <
(ν+ λ)(hi )}, and hence proves the lemma.

5.3.

We now prove that vµ satisfies equation (1.6). Proposition 4.1 implies that the element

wµ ∈ D(1, µ) satisfies (x−i ⊗ tµ(hi ))wµ = 0, 1 6 i 6 n, and hence we also have

(x−i ⊗ tµ(hi ))vµ = 0, 1 6 i 6 n. (5.1)

If (ν+ λ)(hi ) ∈ {0, 1}, then µ(hi ) = (ν+ λ)(hi ), and there is nothing to prove.

Suppose that µ(hi ) > 2, or equivalently that ν(hi ) > 0. Using the second relation in

(1.5), we get

(hi ⊗ t)(x−i ⊗ t s)vµ = −2(x−i ⊗ t s+1)vµ,

and hence

(x−i ⊗ t s)vµ = 0 H⇒ (x−i ⊗ t s+1)vµ = 0.

We now proceed by contradiction to prove that vµ satisfies (1.6). Thus, if (x−i ⊗
t (ν+λ)(hi ))vµ 6= 0, then the elements of the set {(x−i ⊗ t s)vµ : 0 6 s 6 (ν+ λ)(hi )} are all

non-zero, and, by Lemma 5.2, they must be linearly dependent. It follows that there

exists 0 6 m < (ν+ λ)(hi ) such that we have a non-trivial linear combination,

(ν+λ)(hi )∑
s=m

zs(x−i ⊗ t s)vµ = 0, zs ∈ C,m 6 s 6 (ν+ λ)(hi ), zm 6= 0. (5.2)

Since µ(hi )−m− 1 > ν(hi ) > 0, we apply (hi ⊗ tµ(hi )−m−1) to the preceding equation and

use (1.5), (5.1), along with the fact that zm 6= 0, to get

(x−i ⊗ tµ(hi )−1)vµ = 0.

If µ(hi ) ∈ {2, 3}, then we have ν(hi ) = 1 and (ν+ λ)(hi ) = µ(hi )− 1, and we have the

desired contradiction. Otherwise, we have µ(hi ) > 4, i.e., ν(hi ) > 2, and hence we
get µ(hi )−m− 2 > ν(hi )− 1 > 0. Hence, applying (hi ⊗ tµ(hi )−m−2) to the expression

in equation (5.2), we now get (x−i ⊗ tµ(hi )−2)vµ = 0. If µ(hi ) ∈ {4, 5}, we would have

(ν+ λ)(hi ) = µ(hi )− 2, which would again contradict our assumptions. Further iterations

of this argument give a contradiction for all values of µ(hi ). Hence, we have (x−i ⊗
t (ν+λ)(hi ))vµ = 0, as required.

5.4.

We need some additional notation to complete the proof that vµ satisfies (1.7). Recall

that αi, j = αi + · · ·+α j . Let

U(n−[t])αi p ,i p+1
= {u ∈ U(n−[t]) : [h, u] = −αi p,i p+1(h)u, for all h ∈ h}.
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The elements

(x−βs
⊗ t`s ) · · · (x−β1

⊗ t`1), s > 1, `s ∈ Z+,

and β j ∈ R+, ` j ∈ Z+ satisfying β1 = αi p +αi p+1+ · · ·+αm , for some m > i p, β1+ · · ·+

βr ∈ R+, for all 1 6 r 6 s, β1+ · · ·+βs = αi p,i p+1 , are a basis for U(n−[t])αi p ,i p+1
. Let

S ⊂ U(n−[t]) be the subset of this basis with the additional restriction that 0 6 ` j 6 Nβ j ,

where

Nβ j =


ν(hi p,i p+1)+ 1, s = 1,

ν(hβ j ), j ∈ {1, s}, s > 1,

ν(hβ j )− 1, 1 < j < s.

(5.3)

Then S is a finite linearly independent subset of this space, and we let S be the span

of S. Notice also that S is graded, and that

S[p] = 0, p > ν(hi p,i p+1)+ 1 and S[ν(hi p,i p+1)+ 1] = C(x−i p,i p+1
⊗ tν(hi p ,i p+1 )+1

).

(5.4)

Moreover, if h ∈ h and r ∈ Z+, then

m ∈ ⊕p∈Z+S[p] H⇒ [h⊗ tr ,m] ∈ ⊕p∈Z+S[p+ r ].

5.5.

We turn to the proof that vµ satisfies (1.7). Denote by Ṽ the graded quotient of D(1, µ)
by the g[t]-submodule generated by the set

{(x−i ⊗ t (ν+λ)(hi ))wµ : 1 6 i 6 n},

and let ṽµ be the image of wµ in Ṽ . The results in § 5.3 show that V is a g[t]-quotient

of Ṽ ; the definition of D(2, µ) given in Proposition 4.1 shows that D(2, µ) is a graded

g[t]-quotient of Ṽ . Since

(x−i ⊗ tν(hi ))ṽµ = 0, i p < i < i p+1, (x−i ⊗ tν(hi )+1)ṽµ = 0, i ∈ {i p, i p+1},

taking repeated commutators gives

(x−i p,i p+1
⊗ tν(hi p ,i p+1 )+2

)ṽµ = 0 and

(x−i p,i ⊗ tν(hi p ,i )+1
)ṽµ = (x−j,i p+1

⊗ tν(h j,i p+1 )+1
)ṽµ = (x−i, j ⊗ tν(hi, j ))ṽµ = 0, (5.5)

for all i p < i 6 j < i p+1.

The following is a straightforward consequence of the relations in equation (5.5) and

the PBW theorem.

Lemma. The space Ṽλ−αi p ,i p+1
is spanned by the elements {xṽµ : x ∈ S}, and hence

dim Ṽλ−αi p ,i p+1
6 |S|.
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5.6.

We now prove the following.

Lemma. We have dim Vλ−αi p ,i p+1
< |S|; i.e., there exists a non-zero element m ∈ S such

that mvµ = 0.

Proof. Assume for a contradiction that dim Vλ−αi p ,i p+1
= |S|. Then we have

dim Ṽλ−αi p ,i p+1
= |S| = dim D(2, µ)λ−αi p ,i p+1

,

where the first equality follows because V is a quotient of Ṽ , and the second equality

follows because V ∼= D(2, µ) as g-modules. Since D(2, µ) is a quotient of Ṽ , this means

that, using Lemma 5.5, the elements {xṽµ : x ∈ S}, and hence the elements {xwµ : x ∈ S}
are linearly independent subsets of Ṽ and D(2, µ), respectively. But the latter is

impossible, since

(x−i p,i p+1
⊗ tν(hi p ,i p+1 )+1

) ∈ S,

and (x−i p,i p+1
⊗ tν(hi p ,i p+1 )+1

)wµ = 0 is a defining relation in D(2, µ). The lemma

is proved.

5.7.

Proposition. Let 0 6= m ∈ S be such that mvµ = 0, and assume that the minimal graded

component of m is k, for some k < ν(hi p,i p+1)+ 1. There exists 0 6= m′ ∈ S with m′vµ = 0
whose minimal graded component is at least k+ 1. In particular, we have

S[ν(hi p,i p+1)+ 1]vµ = C(x−i p,i p+1
⊗ tν(hi p ,i p+1 )+1

)vµ = 0,

and hence vµ satisfies (1.7).

Proof. For 1 6 i 6 n, let hωi ∈ h be the unique element such that α j (hωi ) = δi, j , for all

1 6 j 6 n. Write m =
∑

x∈S zxx, zx ∈ C, and note that [h⊗ tr ,m]vµ = 0, for all h ∈ h,

r ∈ Z+. Moreover, we have

[hω1 ⊗ t, x] = (x−βs
⊗ t`s ) · · · (x−β1

⊗ t`1+1), x ∈ S.

Suppose that the set

S1(m) = {x = (x−βs
⊗ t`s ) · · · (x−β1

⊗ t`1) ∈ S : zx 6= 0, `1 < Nβ1} 6= ∅.

Then, the elements {[hω1 ⊗ t, x] : x ∈ S1(m)} are all distinct elements of S, and, by (5.5)

and the definition of Nβ1 , we have

x /∈ S1(m) H⇒ [hω1 ⊗ t, x]vµ = 0.

Set

m1 =
∑

x∈S1(m)

zx(x−βs
⊗ t`s ) · · · (x−β1

⊗ t`1+1),
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and note that m1 ∈ S is non-zero. Moreover,

[hω1 ⊗ t,m]vµ = m1vµ = 0.

Since the minimal grade of m1 is at least k+ 1, the proposition is proved when S1(m) 6= ∅.
Suppose now that S1(m) = ∅; i.e.,

zx 6= 0 H⇒ x = (x−βs
⊗ t`s ) · · · (x−β2

⊗ t`2)(x−β1
⊗ t Nβ1 ).

If m = x−i p .i p+1
⊗ tν(hi p ,i p+1 )+1

, there is nothing to prove. Otherwise, there exists i p < j 6
i p+1 minimal so that the set

S2(m) = {x = (x−βs
⊗ t`s ) · · · (x−β2

⊗ t`2)(x−β1
⊗ t Nβ1 ) ∈ S : zx 6= 0, β1 = αi p, j−1} 6= ∅.

Then,

[hω j ⊗ t, x] = (x−βs
⊗ t`s ) · · · (x−β2

⊗ t`2+1)(x−β1
⊗ t Nβ1 ), x ∈ S2(m),

and, using (5.5), we have

[hω j ⊗ t, x]vµ = 0, x /∈ S2(m), zx 6= 0.

Let

m2 =
∑

x∈S2(m)

zx(x−βs
⊗ t`s ) · · · (x−β2

⊗ t`2+1)(x−i p, j−1⊗ t
Nαi p , j−1 ).

The preceding discussion proves that

[hω j ⊗ t,m]vµ = m2vµ = 0,

and that m2 has minimal grade at least k+ 1. However, it need not be true that m2 ∈ S:

an instance is if x ∈ S2(m) is such that `2 = Nβ2 . To address this issue, we define a further

subset S′2(m) of S2(m) consisting of elements x with `2+ 1 6 Nβ2 . Let m′ ∈ S be defined

by

m′ =

 ∑
x∈S′2(m)

zx(x−βs
⊗ t`s ) · · · (x−β2

⊗ t`2+1)

 (x−i p, j−1⊗ t
Nαi p , j−1 ).

Setting S′′2 (m) = S2(m) \ S2(m′), we note that

(m2−m′)vµ =

 ∑
x∈S′′2 (m)

zx(x−βs
⊗ t`s ) · · · (x−β3

⊗ t`3)(x−β2+β1
⊗ t Nβ1+β2 )

 vµ.

The expression in parentheses on the right-hand side is an element of S, and we denote

it by m′′. Moreover, the elements m′ and m′′ are clearly linearly independent elements

of S assuming that at least one of them is non-zero. To see that this is in fact the case,

assume that m′ = 0; i.e., S′2(m) = ∅ and S′′2 (m) = S2(m). This means that the elements

(x−βs
⊗ t`s ) · · · (x−β3

⊗ t`3)(x−β2+β1
⊗ t Nβ1+β2 ), x ∈ S2(m),

are all distinct, and thus linearly independent (recall that β1 = αi p, j−1), and, hence,

m′′ 6= 0. Therefore

0 6= m̃ := m′+m′′ ∈ S, m̃vµ = 0,

and the minimal graded component of m̃ is at least k+ 1. The proposition is proved.
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Astérisque, Invent. Math. (1988), 159–160.

39. A. Moura, Restricted limits of minimal affinizations, Pacific J. Math. 244 (2010),
359–397.

40. A. Moura and F. Pereira, Graded limits of minimal affinizations and beyond: the
multiplicity free case for type E6, Algebra Discrete Math. 12 (2011), 69–115.

41. E. Mukhin and C. A. S. Young, Path descriptions of type B q-characters, Adv. Math.
231(2) (2012), 1119–1150.

42. H. Nakajima, t-analogs of q-characters of Kirillov–Reshetikhin modules of quantum affine
algebras, Represent. Theory 7 (2003), 259–274.

43. H. Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), 71–126.

https://doi.org/10.1017/S1474748015000407 Published online by Cambridge University Press

http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/0201111
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://arxiv.org/pdf/math/9812093
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://dx.doi.org/10.1215/00127094-2010-040
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
http://www.arxiv.org/abs/1109.0862
https://doi.org/10.1017/S1474748015000407


Demazure modules and prime representations 105

44. K. Naoi, Weyl modules, Demazure modules and finite crystals for non-simply laced type,
Adv. Math. 229(2) (2012), 875–934.

45. K. Naoi, Demazure modules and graded limits of minimal affinizations, Represent. Theory
17 (2013), 524–556.

46. K. Naoi, Graded limits of minimal affinizations in type D, SIGMA 10 (2014),
047, 20 pages.
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