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SUMMARY

Some sampling properties related with the mean and variance of the
number of alleles and single locus heterozygosity are derived to study the
effect of variations in mutation rate of selectively neutral alleles. The
correlation between single locus heterozygosity and the number of alleles is
also derived. Monte Carlo simulation is conducted to examine the effect of
stepwise mutations. The relevance of these results in estimating the popu-
lation parameter, 4Nev, is discussed in connexion with neutralist-
selectionist controversy over the maintenance of genetic variability in
natural populations.

1. INTRODUCTION

In the classical infinite allele model of population genetics (Wright, 1949; Kimura
& Crow, 1964) an implicit assumption is made that the mutation rates of all loci
are equal. Clearly this assumption is made largely for mathematical convenience.
Recent studies suggest that an enormous amount of variability in per locus muta-
tion rates exists for the spectrum of proteins and enzymes usually studied by
electrophoresis (Nei, Chakraborty & Fuerst, 1976; Nei, Fuerst & Chakraborty,
1978; Chakraborty, Fuerst & Nei, 1978; Koehn & Eanes, 1978). We were
thus led to propose a modification of the classical infinite allele model in which
variability of mutation rates at different loci is incorporated (Nei et al. 1976). By
considering the variability of subunit molecular weight of mammalian enzymes
(Darnell & Klotz, 1975) and the variation of amino acid substitution rates perprotein
for over forty proteins (Dayhoff, 1976; Wilson, Carlson & White, 1977) it was sugges-
ted that the variability of mutation rates in natural populations can be represented
as a first approximation by a gamma distribution. Under this assumption, the dis-
tribution of allele frequencies for a collection of loci in a random mating population
of effective size N is given by

Mx-m-x)-i
w [lMalnilx)'*1]' K '

where M = 4:Nv represents the product of four times the effective population size
and average mutation rate over all loci, and a = v2/Vv, Vv being the variance of
mutation rate over loci (Nei et al. 1976).
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254 R. CHAKRABORTY AND P. A. FTJERST

In the present paper we shall present further results of the varying mutation
model. In particular we shall be concerned with the effect of a varying mutation rate
upon the number of alleles at a locus, and the relationship between number of
alleles and heterozygosity. Consideration of the variance of the number of alleles
at different loci is important to any interpretation of the reported positive associa-
tion between number of alleles and molecular weight at loci in natural populations
(Koehn & Eanes, 1977, 1978). The relationship between heterozygosity and allele
number will be considered as it relates to strategies of estimating the parameter
4Nev from electrophoretic data. We shall also consider the problem of detecting
differences in average mutation rates between monomorphic and polymorphic
loci within a population.

2. MEAN AND VARIANCE OF OBSERVED NUMBER OF ALLELES

For a constant mutation rate Ewens (1972) worked out the expectation and
variance of k, the observed number of alleles in a simple of n genes under the infinite
allele model which are given by

and

F^-^W-V^,, (3)
respectively (Ewens, 1972).

When the mutation rate varies according to a gamma distribution with para-
meters a = v2/Vv and ft = cc/M, the expectation of the observed number of alleles
in a sample of n genes is given by

E(k) = EftEM(k)]

where Ef( •) is the expectation operator over the distribution of mutation rate, and

(Nei et al. 1976). The variance of k in such a case is given by

V(k) = Ef[V

n - l

I t may be noted that both E(k) and V(k) depend upon the average value of
M (averaged over all loci), M as well as the number of individuals sampled. For the
constant mutation model (a = oo) E(k) as well as V(k) can be computed directly
using equations (3) and (4) whereas the same quantities for the varying model have
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Sampling properties of neutral alleles 255

to be obtained by numerical integration. In Fig. 1 we present the relationship between
these two quantities [V(k) versus E(k)] for both constant and varying mutation
model for two different sample sizes (n = 100 and 500). Note that the relationship
between E(k) and V(k) is less sensitive to variations of sample size (number of genes
sampled, ri) when mutation rates are constant (a = oo) than when they vary
especially when the expectation of the observed number of alleles is particularly
large. For example, when E(k) is approximately 5, by increasing the sample size
from 100 to 1000 (not shown in Fig. 1), V(k) is increased by approximately 8 % when
a = oo, 10% when a = 2, and 15% if a = 1.

161—

o
8

1

Mean number of alleles
Fig. 1. Relationships between mean number of alleles and interlocus variance of num-
ber of alleles under the infinite allele model with varying mutation rate in an
equilibrium population, a is the inverse of squared coefficient of variation of muta-
tion rates over loci and n is the number of genes sampled per locus. The solid lines
are for n — 500 and the dashed lines for n = 100.

Fig. 1 may be used to examine the relationship between mutation rate at a locus
and the number of observed alleles in different organisms. Koehn & Eanes (1977)
and Eanes & Koehn (1978) recently examined such a relationship indirectly by
relating the observed number of alleles at a locus with subunit molecular weight of
the enzyme. To interpret their results, we assume that the per codon mutation rate
is constant for all loci. It then follows that the mutation rate at a locus will be
directly proportional to the size of the cistron, and therefore subunit molecular
weight would bear a direct relationship with the mutation rate at a locus. Of course
if neutral mutation rate is not perfectly correlated with molecular size our calculated
relationships will be altered to some degree. We will consider this point in greater

https://doi.org/10.1017/S0016672300019492 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300019492


256 R. CHAKBABORTY AND P. A. FITERST

detail in the sequel. From study of equations (2)-(4) we can determine how much
of the variation of the observed number of alleles can be explained by the relation-
ship of mutation rate, v, with k, the observed number of alleles.

The amount of variability in the observed number of alleles that can be accounted
for by a relationship with differences in mutation rate can be expressed as

V(k)-E,\yM(Jc)l

Thus, the proportion of variance of h which is attributable to variation in mutation
rate is given by

MW . M l . (5,

Clearly, R2(k) is also a function of M and sample size. In practice, however, M is
not an observable quantity. One quantity which is observable is average hetero-
zygosity. In Fig. 2 we present the relationship of R2(k) with the average
heterozygosity (H) estimated from values of M for a = 1 and 2 (solid and dashed
lines). For comparison, Fig. 2 also shows (dotted lines) the equivalent relationship

a= l,« = 500

a= l ,n= 100

a = 2, n = 500

a=2 ,n = 100
;.:.••• a = i

,...-a=2

0 0 01 0-2 0-3
Average heterozygosity

Fig. 2. Squared correlation (proportion of variance explained) between mutation
rate and single-locus heterozygosity and between mutation rate and number of
alleles observed a t locus (in surveys of n genes/locus) as a function of the average
heterozygosity in the population under the infinited allele model with varying
mutation rate.
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between H, the average heterozygosity, and the proportion of explained variance of
heterozygosity (B2(h)), which can be accounted for by its relationship with mutation
rate. B2(h) is given by

where

(Nei et al. 1976), and

^ J" ̂  (1 -5)-. (7)
The expression in (7) can be shown to be mathematically equivalent to the co-
variance of heterozygosities between two populations at steady state (Chakraborty
et al. 1978).

As seen in Fig. 2, the squared correlation between v and k can be 1-5-2 times as
large as the corresponding squared correlation between v and h. For an organism
with average heterozygosity of 8 %, the expected correlation between v and h can
be 0-62 in a sample of 500 genes, whereas the expected correlation between v
and h in such a population would be only 0-44 if the mutation rate has a coefficient
of variation equal to one. It seems therefore reasonable that in man, for example,
Koehn & Eanes (1978) found a significant relationship between the subunit molecu-
lar weight and the number of alleles whereas Harris, Hopkinson & Edwards (1977)
found the relationship between subunit molecular weight and heterozygosity to be
statistically insignificant. Of course, there are several other factors which may
decrease the observed correlations between the number of alleles or heterozygosity
and the subunit molecular weight, as emphasized in Nei et al. (1978). We have reported
elsewhere a study of the relationship between molecular weight, number of alleles
and heterozygosity (Chakraborty, Fuerst & Nei, 1980). This included an examina-
tion of data taken from the literature on 122 species of vertebrates and Drosophila.
There was a significant tendency for the correlation between molecular weight and
heterozygosity to be weaker than the correlation between molecular weight and
number of alleles, as predicted by the results presented here. I t was found that 78
of the 122 species showed this relationship, despite the large sampling error expected
for both measures. The reader is directed to our other paper for details of the analysis.

One might, however, argue that in the above derivations we have considered only
the infinite allele model, and that electrophoretic date may not strictly follow these
expectations. Chakraborty et al. (1978) and Nei et al. (1978) studied analytically the
equivalent expressions for (6) and (7) under the stepwise mutation model. These
studies showed that the proportion of variance of heterozygosity explained by the
variation of mutation rate under such a model is slightly smaller than the corre-
sponding expectations under the infinite allele model. However, the analytical
treatment of variance of the observed number of alleles in a sample under the step-
wise mutation model does not seem to be so easy since the sampling theory of the
stepwise mutation model is not yet available.
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To obtain the expected correlation between the mutation rate and the observed
number of alleles under the stepwise mutation model, we conducted a Monte Carlo
simulation following the procedure described in Chakraborty (1977). Table 1
presents the expected proportion of variances of heterozygosity and of the observed
number of alleles which are explained by their relationship with the mutation rate
under both models. Two thousand replicates were examined for each of 5 levels of

Table 1. Proportion of variances of heterozygosity and observed number of alleles
explained by variation of mutation rate under the two models of neutral mutations

Average

zygosity

0011
0044
0105
0-215
0-452

t
Tc

1071
1-295
1-772
2-877
7-083

Infinite

R\h)

0032
0115
0-238
0-396
0-610

allele model

R\k)

0-065
0-224
0-424
0-633
0-839

r(h, k)

0-696
0-715
0-740
0-765
0-769

Stepwise mutation model

Tc

1-071
1-246
1-577
2-201
3-754

R\h)

0-038
0-102
0-223
0-327
0-309

R\k)

0084
0175
0-332
0-449
0-408

r(h, k]

0-707
0-714
0-746
0-778
0-790

average heterozygosity with a = 1. The results under the infinite allele model
(with a = 1) are obtained from the analytical formulae given above. It is clear that
for the same average heterozygosity a smaller proportion of variance of any of these
two statistics (h or k) is explained by variations in mutation rate under the stepwise
mutation model. The two models are, however, very similar in their expectations
for small average heterozygosity values, a pattern seen for several other parameters
as well (e.g. see Ohta & Kimura, 1975; Chakraborty, 1977).

3. CORRELATION BETWEEN HETEROZYGOSITY AND
OBSERVED NUMBER OF ALLELES IN A SAMPLE

The analysis just described indicates that the relationship between the mutation
rate and heterozygosity is at least qualitatively similar to that between the muta-
tion rate and the observed number of alleles. The principal difference that emerges
is in the quantitative magnitude of the effect of varying mutation; for the number
of alleles a greater percentage of its variation is explained by its relationship with
the mutation rate. This qualitative similarity is expected if the number of alleles at
a locus and the heterozygosity are correlated. Intuitively this may be obvious, but
no formal theories have so far been advanced. In this section, we obtain such correla-
tions for several neutral models.

(i) Infinite allele model with constant mutation rate

Let h and k denote the observed heterozygosity and the number of alleles in a
sample of n genes at a locus chosen from a population. Let / = l—h denote the
sample homozygosity. According to Ewens (1972), the expectation of k, E(Jc), is
given by equation (2) whereas the expectation of/, E(f), is

E(J) = Ek[E(f\k)], (8)

where Ek( •) is the expectation over the distribution of k in the sample, and E(f\k)
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is the expectation of the distribution of/given k in the sample. The value of E(f\k),
as obtained by Watterson (1977), is given by

where

G(k) = S
1=1

/S® being StirUng numbers of the first kind, and Stewart (1977) gives in explicit
terms the distribution of k in the sample from Ewens' (1972) sampling theory.
Thus,

Bin - y IU d i V

By similar computations, the expectation of the product of sample homozygosity
and the number of alleles, E(fk), is obtained as

E(fk) = Ek[E(fk\k)]

where E{k) is as given by equation (2). Using (9) and (10) we thus obtain the
covariance between h and k as

Cov(h,k) = (I-^]M/(1 + M)2. (11)

To obtain the correlation between these two quantities we then need to compute
) , which in turn is

V(h) = V(f) = Ek[V(f\k)] + Vk[E(f\k)]

_ n-lV5n(Ln-l) + 2
M+l W+2 + M + 3

using formula (4.3.9) of Watterson (1977) and some algebraic simplifications.
Some numerical values of the correlation between heterozygosity and number of

alleles for various values of M and sample size n together with the sample average
heterozygosity and the expected number of alleles are given in Table 2. It is clear
that in a small sample the correlation between k and h is quite strong and that as
sample size increases the correlation coefficient decreases slightly. Furthermore,
Table 2 also indicates that in populations with larger average heterozygosity the
correlat;on between Aand&isweaker as compared to the same correlation in popula-
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tions with lower genetic variability. The actual decrease in r(h, k) as the average
heterozygosity increases is very small, however, even smaller than the decrease
resulting from increased sample size.

Table 2. Correlation (r) between heterozygosity and observed number of alleles in a
sample ofn genes and the expectations of these two quantities for various M values and
sample sizes (n) under the infinite allele model with constant mutation rates of neutral
mutations

(The average heterozygosity in the population is denoted by H.)

n = 25 n = 100 n = 1000

M H E(h) E(k) r(h,k) E(h) E(k) r(h, k) E(h) E(k) r(h,k)

001 0010 0010 1-038 0-855 0-010 1-052 0-752 0010 1075 0-630
0-05 0-048 0-046 1-185 0-848 0-047 1-255 0-744 0-048 1-370 0-621
0-10 0-091 0-087 1-363 0-841 0090 1-502 0-734 0-091 1-733 0-611
0-15 0130 0125 1-534 0-833 0129 1-743 0-725 0-130 2089 0-602
0-20 0-167 0-160 1-699 0-827 0-165 1-978 0-717 0167 2-439 0-593
0-30 0-231 0-222 2-014 0-815 0-228 2-432 0-702 0-231 3-123 0-577
0-40 0-286 0-274 2-311 0-804 0-283 2-866 0-689 0-286 3-788 0-563
0-50 0-333 0-320 2-591 0-795 0-330 3-284 0-678 0-333 4-436 0-551
1-00 0-500 0-480 3-816 0-762 0-495 5-187 0-637 0-500 7-485 0-506

(ii) Infinite allele model with varying mutation rate

Using the same sampling theory the variances and covariances of h and k can
also be derived when the mutation rate as described in the previous section varies
according to a given probability distribution. As was done previously, we continue
to use a gamma distribution to represent the variation of mutation rates. The
expectation of the sample homozygosity is then given by

E{f) = W

whereas the variance of sample homozygosity, V(f), is derived using (9) and (12) as

!> (14)

where
e* =
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The covariance of h and k in this case is given by

261

Cov Qi,k) = 71-1 B»

n T(a)J0 (M +1)2 ^ +
n- I " - 1 r

o

ra-1 fi'}
71

2 feo

J o (1 + Jlf) <?oJo

where
r(a) Jo

dM. (15)

Using (4), (14) and (15) the correlation between h and k with varying mutation was
obtained. Some numerical computations are shown in Table 1 and Fig. 3. In
contrast to Table 2, Fig. 3 indicates that as the average heterozygosity increases, the
correlation coefficient between the number of alleles and the heterozygosity at a
locus increases slightly when the mutation rate varies according to a gamma dis-
tribution. Note that this relationship is the reverse when the mutation rate remains
the same at all loci. To obtain the results in Table 1 the mutation rate is assumed
to be distributed as a gamma variate with coefficient of variation of unity.

1-0 I—

0-8

•2 0-6

o
O

0-4

0-2
I J

0-30 1 0-2
Average heterozygosity

Fig. 3. Correlation between single locus heterozygosity and the number of alleles at
a locus as a function of the average heterozygosity in the population, n = number
of genes sampled per locus, smooth lines are for the infinite allele model with a = 1
and dotted lines are for the infinite allele model with a = oo; A and # are from
Monte Carlo simulation of the stepwise mutation model with n = 300, a = 1 and
a = oo, respectively.
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As mentioned in the previous section, a sampling theory is not yet available for a
step mutation model. To obtain the correlation between h and k we therefore con-
ducted a Monte Carlo simulation of the charge-change model following Chakraborty
(1977). In each generation n = 300 genes were sampled. Four cases were investigated
each with 4000 replications with M (or average M) values 0-01, 0-05, 0-10 and 0-20.
In Fig. 3 and Table 1 we indicate the relationship between E(h) and Corr (h, k)
under the step mutation model for constant (solid circles) as well as varying muta-
tion rates (solid triangles). From these limited results it appears that Corr (h, k)
under the step mutation model is essentially the same as that seen for the infinite

Table 3. Relationship between heterozygosity and number of
alleles in natural populations

(The data is taken from that reported by Chakraborty, Fuerst & Nei (1980).
n = number of genes sampled.)

n = 100-300 n = 300-600 n = 600-2000

Average No. of Average No. of Average No. of Average
heterozygosity species r(h, k) species r(h, k) species r(h, k)

0-025-0-075
0075-0125
0-125-0- i75
0-175-0-225

46
31
6
7

0-753
0-775
0-750
0-798

10
8
3
2

0-687
0-727
0-747
0-768

5
3
4
3

0-615
0-578
0-687
0-765

allele case. We have also examined the observed relationship between number of
alleles and heterozygosity in a large body of data on electrophoretic surveys
collected from the literature. (See Chakraborty et al. 1980, for a full description of
data.) Species with 100 or more gene products determined at 20 or more loci were
included. The results of this study for 128 populations with heterozygosity values
above 0-025 are shown in Table 3. The data represent several different average
heterozygosity and average sample size ranges. If we compare these results with
Fig. 3 we see that the agreement between our theoretical prediction and the average
correlations for the various species groups is good. Clearly evident in the data is
the tendency for Corr (h, k) to decrease with increasing sample size. Less clear is the
question of whether a tendency exists for Corr (h, k) to rise with increasing average
heterozygosity, although even here the data do show some trend in this direction.

4. AVERAGE MUTATION RATES IN POLYMORPHIC
VERSUS MONOMORPHIC LOCI

We have thus far considered two measures of intrapopulation genie variability,
namely, the observed number of alleles and the average heterozygosity. Harris,
Hopkinson & Edwards (1977) used yet a third approach when they considered the
difference in average molecular weights between polymorphic and monomorphic
loci in their study of electrophoretic variation in humans. It should be obvious that
the expected difference in molecular weight can only be predicted following a
consideration of the effect of varying mutation rates between loci. In discussing the
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efficiency of this test let us first compare the average mutation rates for the poly-
morphic with those for the monomorphic loci, and obtain the minimum sample size
needed, to establish a significant difference between them.

We define a locus as polymorphic when the frequency of the most common allele
is less than 1 — q, where q is a small quantity. The expected proportion of poly-
morphic loci is then given by

- \

J
<b(z)dz,

1-Q

where <J>(a;) is as given in (1). In a previous publication (Nei et al. 1976) we obtained
a closed expression for this proportion, which may as well be obtained by taking
weighted average of 1 — qM over the variation of M since for a locus with a particular
mutation rate v, the probability of polymorphism is given by 1 — qM (Kimura &
Ohta, 1971). Thus, the expected proportion of polymorphic loci is

Jo f(a)

It may now be shown that the expected mutation rate for the class of polymorphic
loci will be

— P° Me-PMM°-i(l-qM)dM/\l-( ^ VI
a)Jo v / L \a-Jflog?/ J

Pa], (17)

when P = a/(a — Mlogq), and v is the average mutation rate for all loci. The
variance of the mutation rate for the class of polymorphic loci is then given by

= «2(a+l)( l-Pa+2)/[a(l-Pa)]-«2[l-Pa + 1]2 /[ l-Pa]2 . (18)

Similarly, for the monomorphic loci, the mean and variance of the mutation rate
are given by

= Pu (19)

and „ >?a

= v2P2/a, (20)

when P is as defined in (17).
From expressions (16)-(20) we can state that if a random sample of n loci are

examined, a statistically significant (at, say, 5 % level) difference between the
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mutation rates of the polymorphic and monomorphic classes of loci would be
observed if

n> [(Z0.05-ZY) ^ p + ̂ j/{vp-vn)]*, (21)

where Zy is denned by Prob [Z > Zy \ Z ~ JV(O,1)] = y.
In (21) we appealed to the central limit theorem since the sample distribution for

the mutation rates is not Gaussian. The same inequality for the total sample size

Table 4. The minimum number of loci to be examined to observe significant differences
(at the 1 % and 5 % levels) in the average mutation rates among the monomorphic and
polymorphic classes of loci for different average heterozygosities

(The coefficient of variation of the distribution of overall mutation rate is taken as unity.)

Average

zygosity

0-02
005
0-10
015
0-20
0-25

002
005
0-10
015
0-20

Power =

123
44
25
18
14
11

61
23
12
9
7

q = 0
A

0-5 0

205
74
42
29
23
19

123
45
25
18
14

01

•75

1%

5%

0-9

level test
296
107
61
42
32
27

level test
195
72
40
28
21

0-5

186
67
36
23
18
14

93
35
18
12
9

q = 005

0-75

310
110
60
39
30
23

185
68
36
24
18

OS

448
158
86
56
42
33

295
105
57
38
28

0-25 6 11 17 7 15 23

(number of loci) would hold for testing the difference between the average molecu-
lar weights for these two classes of loci if the molecular weights are strictly propor-
tional to the mutation rates. We must note that our study of the relationship
between amino acid substitution rates and molecular weight indicates that a correla-
tion of no greater than 0-5 exists between mutation rate and molecular size (Nei et
al. 1978). In Table 4 we present some values for these critical sample sizes. Note that
in (21) the critical sample size is a function of the probability of monomorphism
which is in turn functionally related to the average heterozygosity, H. In Table 4
therefore we compute the critical sample size (right side of inequality 21) for several
average heterozygosities for q = 0-01 and 0-05 and two levels of significance (1 %
and 5 %). In all these computations the coefficient of variation of the overall dis-
tribution of mutation rate is taken as unity. It can be seen that in populations with
larger average heterozygosity a smaller number of loci need to be studied to ob-
serve significant differences in the average mutation rates between the two classes
of loci than is required for populations with smaller average heterozygosity. If the
variance of the distribution of mutation rate is smaller than we have assumed
(a > 1 in equations 16-20), the number of loci needed to detect significant differences

https://doi.org/10.1017/S0016672300019492 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300019492


Sampling properties of neutral alleles 265

would be larger than the ones presented in Table 4. Of more importance, however,
is the fact that the correlation between the mutation rate and the size of a molecule
is not perfect (Nei et al. 1976, 1978). In this case the actual efficiency of tests based
on differences in molecular weight between classes of alleles would be even weaker
than indicated by our results. Given these considerations, the negative findings of
Harris et al. (1977) are not greatly surprising. Nevertheless, we have noted else-
where that the electrophoretic data from humans does exhibit a general tendency
to be inconsistent with several of the predictions of the mutation-drift hypothesis
(Nei et al. 1978; Chakraborty et al. 1980).

5. DISCUSSION

We have demonstrated in this paper that under selective neutrality a high correla-
tion exists between heterozygosity and the number of alleles at a locus. These two
statistics provide alternative estimates of the parameter 4:Ne v for testing the muta-
tion-drift hypothesis, a situation which in recent years has generated controversy
regarding the efficiency of estimating 4i\r v. From statistical considerations Ewens
(1972) and Watterson (1978) argue that number of alleles is the most efficient
statistic for estimating the above parameter. This is true as long as we attempt to
obtain a locus-specific estimate. On the contrary, for testing the neutral mutation
hypothesis (which, we contend, is 'majority-rule' - postulating that the majority
of genie variability of a population is mainly due to neutral or nearly neutral
mutations) heterozygosity per locus may be a more appropriate measure (Fuerst,
Chakraborty & Nei, 1977; Li, 1979), since it directly gives an average estimate of
4:Nev. This averaging has an added advantage in the sense that heterozygosity as
an estimator of 4Nev has robustness in the presence of rare deleterious alleles
whereas this is not true of an estimator using the number of alleles (Li, 1979). The
question of whether a locus-specific test of neutrality or a test of the simultaneous
behaviour of many loci (sometimes called ' bulk test') should be preferred is closely
associated with this controversy and is discussed in detail elsewhere (for example,
see Fuerst et al. 1977; Chakraborty et al. 1978; Li, 1979). To cite a few examples to
show how different the alternate estimates can be, we use the genie variability
observed in some human studies. Neel et al. (1978) recently estimated the locus-
specific 4JVe v values from their survey of genetic variants of 22 proteins in Japanese
populations from the observed number of alleles at each locus. From the 17 variable
loci (in each of which the observed number of alleles is more than one) the ±Ne v
estimate as obtained from number of alleles was 0-350 ± 0-089. If we compute the
heterozygosities at these loci and use %/(!—%) as an estimator of 4Nev, where % is
the average heterozygosity (0-103, in this case), the 4J$ev estimate turns out to be
0116 + 0-044. In Harris, Hopkinson & Robson's (1974) survey of 43 enzyme loci
from Caucasians of the British Islands the corresponding estimates of 4Nev are
0-312 + 0078 on the basis of number of alleles and 0-133 + 0-040 based on average
heterozygosity, where both of these are based on 28 variable loci. Thus, in both cases
the average iNe v estimates are higher when number of alleles are used to estimate
this quantity. In fact, Ewens (1972) proposed this estimator only to provide, as
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we said before, a locus-specific 4JVe v value. The heterozygosity measure, on the other
hand, has never been advocated as a locus-specific estimator since this quantity
when computed for a single locus has a large stochastic error (Nei & Roychoudhury,
1974; Li & Nei, 1975). Since point estimation of 4J$ev is possible only for variable
loci using number of alleles, it is obvious that it provides a conditional estimate on
the supposition that the number of alleles observed in the sample is greater than
one. It may, therefore, be worthwhile to evaluate the expectation of this conditional
estimator as compared to the true value of M = 4Nev. Let Mk denote the estimator
of M given that in a sample of n genes from this locus more than one allele is ob-
served. Then we have

where Q(l) is the probability of finding one allele at this locus, given by

The proportional bias of Mk, therefore, will be given by Q(l)/(1 — Q(l)) which
would vary from locus to locus if sample size (n) varies over loci. For example, if
n = 8000, the proportional bias can be of the order of 63 % of the estimate of M
when 4:Nev is about 0-10 for the locus. This, of course, docs not account for the
difference between the two alternative estimates (which is two and one-half to
three fold in human surveys). In both surveys a large number of rare alleles (alleles
with a frequency less than 1 %, for example) are observed in the sample, some of
which may be slightly deleterious. These rare alleles, as we contend, affect estimates
of M when the number of alleles is used but do not affect estimates using hetero-
zygosity since the average heterozygosity is only marginally affected by the
presence of rare alleles.

Finally, we wish to comment on our use of the gamma distribution to represent
the variability in mutation rate among loci. The gamma distribution is notable for
its extreme robustness. If our principal purpose were to provide a statistical fit to
the true distribution of mutation rate this might be a distinct disadvantage. It must
be stressed that this has not been our purpose. Current biological information on
locus-specific mutation rates is extremely limited. Given this paucity of data, the
primary purpose of our studies on varying mutation has been to provide insights
into the potential effects of differences in mutation rates. From this point of view the
robustness of the gamma distribution is of distinct advantage. The fact that useful
differences between the constant and varying mutation model have been identified
justifies this approach (Fuerst et al. 1977; Chakraborty et al. 1978). We anticipate
that future advances in molecular biology and mutation rate monitoring may
provide a more specific formulation than provided by our earlier studies, but we
feel that our general conclusions will remain unaltered.
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