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Abstract. We combine methods from microlocal analysis and dimension theory to study
resonances with largest real part for an Anosov flow with smooth real valued potential. We
show that the resonant states are closely related to special systems of measures supported
on the stable manifolds introduced by Climenhaga [SRB and equilibrium measures via
dimension theory. A Vision for Dynamics in the 21st Century: The Legacy of Anatole
Katok. Cambridge University Press, Cambridge, 2024, pp. 94—138]. As a result, we relate
the presence of the resonances on the critical axis to mixing properties of the flow with
respect to certain equilibrium measures and show that these equilibrium measures can be
reconstructed from the spectral theory of the Anosov flow.
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1. Introduction
Let (M, g) be a smooth closed connected Riemannian manifold of dimension n > 3. We
consider a smooth flow ¢; on M and its generating vector field

d
X(x) = i (li=0, X € M.

Assumption 1. We suppose that the flow is Anosov, topologically transitive, and that
the stable and unstable bundles are orientable and of dimension d; and d,,, respectively.
Furthermore, we consider a smooth, real valued potential V.

1.1. Leading resonant state. We study the operator P := —X + V acting on specially
designed anisotropic Sobolev spaces. The sets of eigenvalues of P on these spaces are
called the Ruelle resonances. Their set, which we will denote by Res, is intrinsic to the
Anosov flow and contains valuable dynamical meaning. Its understanding is essential to
estimate the speed of decay of correlations, see for instance [29, 37]. More concretely,
Ruelle resonances are defined by (see for instance [16, Lemma 5.1])
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2440 T. Humbert
) € Res < thereexistsu € O'(M)\ {0}, WFu) CEf, ®P—-MDu=0. (1)

Here, WF(u) denotes the wavefront set of the distribution u and E is the dual counterpart
of the unstable bundle (see (20) for a precise definition).

It is actually useful to study the operator P not only on functions but more generally on
the space of k-forms in the kernel of the contraction by the flow:

P: &= {ue COM; AKT*M) | txu = 0} — &,

d
Po:=(—Lx+V)o= —Ewt*wh:o +Vo.
We can also define resonances for k-forms by the equivalence (1) and we denote their set
by Resi. (In this case, u should be a k-current, more precisely, in the dual of éf‘).) The decay
rate of correlations is dictated by the resonances with large real part and hence of special
interest is the study of resonances on the critical axis:

Ci = {» € Resy | Re(\) = sup Re(w)). 2
eResy

Starting from the relation

o
forallw € é“g, forall A € C,Re()) > 1, (Pléﬁ — A)_lw = / ! ®=1 g, dt,
0

we see that the position of Cy should be linked to the exponential growth of the norm of the
propagator 'Y on relevant functional spaces (the so-called anisotropic Sobolev spaces that
will be introduced in §2.3). A form in é’é is a linear combination of k-wegdes of elements
of E and E} (see (12) for the exact definition of these bundles). However, an element in
E¥ is contracted exponentially fast while an element of E} is expanded exponentially fast
by the Anosov property. This means that to maximize the exponential growth of the norm,
one should study the resolvent on d;-forms.

Moreover, the exact location of C¢ (respectively Cy,) is given by the P(V 4 J¥)
(respectively P(V)), where P denotes the topological pressure and J* :=
—(d/dt)det(dg;(x)|E,(x))|r=0 is the unstable Jacobian. The corresponding eigenvectors
(referred to as resonant states) also bear dynamical significance. More precisely, the
resonant states at the first resonance P(V + J") (respectively P(V)) are linked to the
system of leaf measures my, ,_ ;. (respectively my,). Leaf measures are systems of reference
measures on stable and unstable leaves which are used to obtain the equilibrium state
via a product construction. Their introduction goes back to Sinai [36] for maps and
Margulis [30] for flows (when V = 0). The measure of maximal entropy was obtained
using leaf measures by Hamenstéddt [22] for geodesic flows in negative curvature and by
Hasselblatt [24] for Anosov flows, see also [23] for an extension to non-zero potentials.
Recently, Climenhaga, Pesin, and Zelerowicz [10-12] gave a new construction of leaf
measures using dimension theory. Their construction extends to certain classes of partially
hyperbolic flows, see also the related works of Carrasco and Rodriguez-Hertz [7, 8].
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A
E—0 0<k<dg k= d,
0 PV +J%) P(V)
{Re(\) = P(V + J")} {Re(\) = P(V)}

FIGURE 1. Critical axes for different values of k. According to Theorem 1.1, the resonances in purple cannot exist

if the flow is weakly mixing with respect to py and the resonances in blue cannot exist if the flow is weakly

mixing with respect to py 4 j«. The position of the critical axes for intermediate values of k should be linked to
the pressure on the span of largest Lyapunov exponents.

THEOREM 1.1. Under Assumption 1, the critical axes for the action on O-forms and
ds-forms are given by

Co={r|Re(r) = P(V+J")}, Caq ={X|Re(r)=P(V)}.

Moreover, P(V + J") (respectively P(V)) is a resonance called the first resonance for the
action on O-forms (respectively ds-forms).

There is 8 > 0 such that for any k # d, we have C;, C {A | Re(A) < P(V) — 6}, i.e,
all other critical axes are to the left of Cy,, see Figure 1. (For 1 <k < < d;, the proof
actually gives that C; is to the right of Cx.)

Moreover, all A € Cy (respectively ) € Cq,) have no Jordan block and the first
resonance P(V + J") (respectively P(V)) is simple:

{ue My | P — PV +J"))u=0,WFu) C E}} = Span(n), 3)
where 1 is a measure constructed in Theorem 3.1 from the system of leaf measures m, ;.
{(u € D'M; A% (Ef®E)) | (P—P(V)u=0,WF(u) C E;} = Span(my,). (4)

We note that for hyperbolic maps, similar results were already obtained by various
authors, using the formalism of anisotropic Banach spaces. The study for the action
of O-forms can be found in [2, Theorem 7.5] and for d,-forms, it can be found in
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[21, Theorem 5.1]. We also remark that Adam and Baladi used anisotropic techniques
to study the first resonant state for a contact Anosov flows in dimension 3 for the potential
V = —J" in [1]. (Because the unstable Jacobian is not smooth, this is actually, strictly
speaking, out of the range of Theorem 1.1.)

1.2. Equilibrium states. The leaf measures constructed in [10—12] can be used to
reconstruct the equilibrium state (i.e., the unique invariant probability measure that
maximizes the variational principle recalled in (17)). In our context, this means that the
equilibrium state can be reconstructed from the spectral theory of the Anosov vector field
X. Define the divergence of X by the relation Lxvol = divye(X)vol for the Riemannian
volume vol. Then, the L2-adjoint of P acting on O-forms is P* = X 4+ V + divyo1(X).
Applying Theorem 1.1 to the adjoint gives two co-resonant states v and m?,, and one has

(= X+V-PWV+J9n=0, WEF() C E}, 5)
X +V +divyg(X) = P(V+J*))v =0, WF(v) C E},
as well as
(—Lx +V — P(V)m}, =0, WE(m}) C E}, ©
(Lx +V —P(V)m}, =0, WEF(@m}) C E}.

The wavefront set bounds allow us to take the distributional pairing of the resonant and
co-resonant states 7 and v (respectively my, and my,). The resulting distribution is easily
seen to be measure invariant by the flow. The next theorem asserts that this measure is
actually the equilibrium state for the potential V + J* (respectively V). As a consequence,
the presence of other resonances on Cy (respectively Cy,) is linked to mixing properties
of the flow. In the rest of the paper, we denote by pw the equilibrium measure associated
to the Holder continuous potential W.

THEOREM 1.2. Under Assumption 1, one has

)

there exists ¢ > 0, pyyju =cn X v,

there exists ¢’ > 0, py =c'my, hna Amy, a(X) =1, a«(E, & E;) =0.
Let x be a cutoff x € C°([0, T + €[, [0, 1]) such that x = 1 on [0, T] for any € > 0 and
for T > 0 large enough. Then, one has the following. (The notation f** denotes the kth

convolution product of a function f with itself.)
o [Forany f € C*(M),

+00
- 1im/ GO (@) (f) dt = cpygu(f), ¢ > 0. (®)

k—+o00 Jo
e Fix an orientation of E} and let » € CO(M; A% E¥) be a non-negative section which

does not vanish identically. Then, one has, for any f € C*(M),

+00
— lim GO (@)@ Aa AmY)(f) dt = cpy(f), ¢>0.  (9)

k—+o00 Jo

Finally, one has the following.
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o [fthe flow is weakly mixing with respect to the equilibrium state jLy 4 ju, then
Reso NCo = {P(V + J")}.
o [fthe flow is weakly mixing with respect to the equilibrium state (v, then

Resg, NCy, = {P(V)}.

In particular, for V = 0, the theorem gives a construction of the Sinai—Ruelle—Bowen
(SRB) measure for the action on O-forms (respectively the measure of maximal entropy
for the action on ds-forms) from a solution of (5) (respectively (6)) for P(J*) =0
(respectively for P(0) = hiop(¢1)).

1.3. Ruelle zeta function. The resolvents acting on 616 are linked to the (weighted) Ruelle
zeta function:

TV
oy = [T =), v, = Ti /0 Vy @), (10)
yerlt 14

where T'? is the set of primitive geodesics and T, denotes the period of the closed
geodesic y. This function can be shown to be convergent and holomorphic in a half-plane
{Re(2) > 1}. In a celebrated paper [20], Giulietti, Liverani, and Pollicott proved that the
function ¢ ]‘{ admits a meromorphic extension to the whole complex plane. Another proof,
using microlocal analysis, was given by Dyatlov and Zworski in [15].

More precisely, let us introduce the Poincaré map P :y € I' = Py, :=dy_r1,|E0E,-
The link between the resolvents on forms and the Ruelle zeta function is given by the
Guillemin trace formula. In particular, [15, equation (2.5)] gives

n—1
Sy /ey () = D (=D F e 0w (o () — D7), (11)

k=0

where the shift by a small time #( is a technicality to ensure that the pullbacked resolvent
goito (P — A)~ ! satisfies the wavefront set condition which makes its flat trace well defined
(see [15, §4]). This shows that the meromorphic extension of ¢y follows from the extension
of the resolvent acting on the space éﬁ for any k (plus some additional arguments).
Moreover, we get the poles of {y by studying poles of each resolvent.

The study of the first pole of the Ruelle zeta function can be found in [31, Theorem 9.2].

THEOREM. (Parry and Pollicott) Let V be a Holder continuous potential, and suppose
that the flow is Anosov and weakly topologically mixing. Then, the Ruelle zeta function
Ly is non-zero and analytic in the half-plane {Re()) > P(V)} except for a simple pole at
A = P(V), where P(V) is the topological pressure of the potential V.

As a consequence of our first two theorems, we recover the theorem of Parry and
Pollicott on the first pole of the Ruelle zeta function for topologically mixing Anosov
flows with smooth potentials.
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We note that a consequence of this corollary and a standard Tauberian argument is the
following asymptotic growth:

tP(V)
Yoo = oo’ Voraydr L€
tP(V)

yel,T, <t yel,T, <t

For V =0, this result is known as the prime orbit theorem and can be found in
[31, Theorem 9.3].

1.4. Regularity of the pressure. Another consequence of our first theorems is the
following regularity statement of the topological pressure. It was first established by Katok
et al in [27] and Contreras in [13].

COROLLARY 1.1. (Smoothness of the topological pressure) Let V{° denote the set
of smooth transitive Anosov flows. Then, it is an open set (this point follows from
[19, Proposition 1.6.30] which proves that topological transitivity is preserved by orbit
conjugacy and the structural stability of Anosov flows, see [19, Corollary 5.4.7]) and the
maps

Pr:(X,V)eV>®x CPM) — Px(V),
Py (X, V) e VP x C¥(M) > Px(V+JY),

where Px denotes the topological pressure for the flow induced by the vector field X, are
smooth.

1.5. Outline of article.

e In §2, we recall some important features of Anosov flows and of the thermodynamical
formalism. Then, we will review microlocal methods for the study of Anosov flows.
Finally, we will recall the construction of leaf measures.

e In §3, we recall the definition of Ruelle resonances using a parametrix construction.
Then, we define in Theorem 3.1 a co-resonant state for the action on O-forms. This
allows us to precisely locate the critical axis at {Re(A) = P(V + J*)}. The rest of the
section is devoted to the study of resonant states on the critical axis and more precisely
to the proofs of the results announced in §1.

e In §4, we prove the equivalent results for the action on d;-forms. The strategies of
the proofs remain the same, but some additional care is needed when adapting certain
arguments to this case.

e In §5, we give a proof of the first part of Theorem 1.1 and of Corollary 1.1.

2. Preliminaries
2.1. Anosov flow. Our main assumption on the flow is that it is Anosov.

Definition 2.1. (Anosov) The flow ¢, is Anosov (or uniformly hyperbolic) if:
e there is a continuous splitting of the tangent space

TeM= E,(x) ® Es(x) ® RX (x); (12)
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e the decomposition is flow-invariant, meaning that

forallz € R, Eu(p:(x)) = (de)x(Eu(x)),  Es(gi(x)) = (dg)x(Es(x)); (13)

e there are uniform constants C > 0 and 6 > 0 such that for every x € M, we have

[(der)x(vs)lg < Ce " |ugl, forallt > 0, forall vy € E(x).

I(der)x(u)lg < Ce My, |, forallr <0, forall v, € Ey(x).

We will denote by d,, and d, the dimensions of E, and Ej, respectively.

For a comprehensive introduction to the theory of Anosov flows, we refer to [19, Ch. 8].
An important class of examples is given by geodesic flows on the unit tangent bundle
M= SM of a negatively curved closed Riemannian manifold M. We recall the stable
manifold theorem, see for instance [25, Theorem 6.4.9].

For all x € M, there exists immersed submanifolds

WH(x) = {y e M| d(@i(x), ¢:(¥)) —>1+00 O}, (14)

where + (respectively —) corresponds to s (respectively u), called the (strong) stable
(respectively unstable) manifolds, such that T, W** = E;,. Moreover, x — W™ (x)
are (Holder continuous) foliations of M. We also define the weak stable and unstable
manifolds

WS = {y € M| there exists fg € R, d(¢;(x), @141, (¥)) = 1—-+o0 0}
= J e (W), (15)

teR
their tangent spaces are given respectively by RX @ E; and RX @ E,,.
A consequence of the existence of these (un)stable manifolds is the local product
structure, see [25, Proposition 6.4.13].
For any xo € M, there exists a neighborhood V of xq such that for any € > 0, there is a
6 > 0 such that

forallx,y € V, d(x,y)<3 = thereexists|t|<e, Wi (g (x)) NWi(y)=:{lx, yl},

where we denoted by N, the e-ball of the manifold N. The point [x, y] is called the Bowen
bracket of x and y, and ¢ (x, y) is the Bowen time. For ¢ € M, we define a local rectangle
to be

Ry = {Wy(x,y) =[x, y] | x € Wi(q), y € W' ()} (16)

2.2. Thermodynamical formalism. We recall here the main features from the thermody-
namical formalism we will need. The two main objects are the topological pressure and
the equilibrium state. For an introduction to the thermodynamical formalism, we refer to
[19, Ch. 4]. Consider a Holder continuous and real valued potential V.

We first recall the variational principle (see [19, Theorem 9.3.4]), which we will state
in the case of smooth flows.
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Let (M, g) be a closed Riemannian manifold and ¢; be a smooth flow on M, and let
V : M — R be a Holder continuous potential, then

P(p1, V) = sup (hu((/)l)-i-/MVd/L), (17)

JASW)]

where h,, is the metric entropy and 9t(¢) is the set of invariant-probability Borel measures,
and P (g1, V) is the topological pressure associated to V.

Now, we can define an equilibrium state as a measure that achieves the supremum,
where the existence and uniqueness of such a measure can be obtained under Assump-
tion 1, and we will use the following result (see [19, Theorem 7.3.6] and [6, Theorem
3.3D.

PROPOSITION 2.1. (Existence and uniqueness of equilibrium states) Under Assumption 1,
the equilibrium state associated to V is unique, ergodic, and has full support. If the flow is
topologically mixing, then the flow is weak mixing with respect to the equilibrium state |1y .

In the case of an Anosov flow, an equivalent characterization of equilibrium state is
given by the Gibbs property (see [19, Theorem 4.3.26]). Indeed, u is the equilibrium state
for V if and only if

for all § > 0, there exists C > O forallt > 0, forallg € M,
C™' < u(Bi(q, )P~V <c. (18)

Here, B;(g, &) denotes the Bowen ball defined in (28) and S,V (q) := fé V(psq) ds.
We define a special potential called the unstable Jacobian by the following formula:

JH(x) = _%det(dfpt(x)\Eu(x))h:O =! —%jt(x)lt:o = —% In j;(xX)li=0,  (19)
where the determinant is taken with respect to the Riemannian measure vol.
The equilibrium state associated to the unstable Jacobian is the SRB measure whose
pressure vanishes: P(J*) = 0, see [19, Corollary 7.4.5].

2.3. Anisotropic spaces. To a given decomposition (12), we can associate a correspond-
ing splitting of the cotangent space. This will be more natural as we will use microlocal
analysis. For an introduction to microlocal analysis, we refer the reader to [39].

There is a continuous splitting 7M = E;(x) @ E;(x) ® Ej(x), defined by

E{)(Es(x) ORX(x) =0, E;(x)(Ey(x) ®RX (x)) =0, Ej(x)(Es(x)® Ey(x))=0.
(20)

Moreover, this decomposition is flow-invariant and there exists constants C, 6 > 0 such
that, uniformly in x € M, we have

[(do-)] (&) < Ce || forallz > 0, forall & € EF(x),
[(do-)] (€)= Ce™M|g,| forallz <0, forall & € Ej(x).

The following result, which is due to Faure, Roy, and Sjostrand in [17] constructs an
anisotropic order function.

https://doi.org/10.1017/etds.2024.131 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.131

First Ruelle resonance for an Anosov flow with smooth potential 2447

There exists an order function m(x, &) taking its values in [—1, 1] and an escape
function G, (x, &) := m(x, &) log |&][, such that:
e the order function m(x, &) only depends on the direction &£ /|€| € S*M for |£€] > 1 and
is equal to 1 (respectively —1) in a conical neighborhood of E} (respectively E);
e the escape function decreases along trajectories, that is,

there exists R > 0, |§| = R, X(Gp)(x,§) <0.

(For this inequality, one should work with an adapted metric and X denotes the
symplectic lift of the vector field X.)

We fix now an order function m and consider the corresponding symbol class. We refer
to [17, Appendix] for the detailed construction. What is important to understand here is that
the order function m(x, &) constructed below gives rise to a symbol class ") on which
we can perform quantization. These quantized symbols are called pseudo-differential
operators of order m(x, &) and can be viewed as bounded operators from the anisotropic
Sobolev space H™*%) to L2(M). The anisotropic Sobolev space H™*%) is defined by
means of an elliptic operator in the anisotropic symbol class SZW’E) (see [17, Appendix,
Definition 7]).

The symbol exp(G,) belongs to the anisotropic class S/ry(x,é) for every p < 1, and if we
fix a quantization Op (see for instance [39, Ch. 4]),

A

A = Op(exp(Gm))

is a pseudo-differential operator which is elliptic and, up to changing the symbol by a
0 (§m*E)=Cr=Dy term, it can be made formally self-adjoint and invertible on C*°(M).
For s € R, we define the Sobolev space of order sm(x, §) to be H* := A;& (L3(M)). In
the following, the L? spaces will be associated to the Riemannian volume form vol. The
following properties hold:

e the space H* is a Hilbert space with inner product

(o1, §02)(HS = (AAsm(PIs AAsm(pZ)LZ,

which makes Axm a unitary operator from H* to L%

e for a pseudo-differential operator A € W), A is an unbounded operator on L2 (M)
with domain given by H°;

e the space H* can be identified to the dual of H* by

(@ V)gp g = (Agme, A0 10, @21

and the duality extends the usual L>-pairing;
o if f € C®(M),thenforany ¢ € H*, v € H?,

(fo, ’ﬁ)q{lxq{*s = (o, fl[f)q-{sxq{ﬂv (22)

We now use the microlocal techniques introduced in [17, 18] to define the Ruelle
resonances. We first define the transfer operator associated to the Anosov flow.
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The transfer operator e L2(M, vol) — L*(M, vol) (where P := —X + V) is given,
for any f € C*°(M), by

t
e f(x) = exp </o Vip—s(x)) dS)f((p—z(X)) =:exp(S; V (p—x)) f (91 (x)).
We define the exponential growth in the L2-norm of ¢'? by

Co(P) = Cp := lim sup L el 2 2.
t—+oo I
The fact that Cy is finite is a consequence of e'P being a semi-group.
We obtain the existence of the meromorphic extension of the resolvent to the whole
complex plane and the fact that Ruelle resonances are contained in {Re(A) < Cp}. We
refer to [28, Theorem 9.11] for a proof of the following theorem.

THEOREM 2.1. (Faure and Sjostrand) There exists ¢ > 0 such that for any s > 0, we have,
for any A\ such that Re(A) > —cs + Cy, that P — A is Fredholm of index 0 as an operator

P—A:DomP)NH ={ucH |PucH}— . (23)
Moreover, the resolvent
RM)=P-N""'=X+V-n1:H > (24)

is well defined, bounded, and holomorphic for {Re(A) > Co} and has a meromorphic
extension to {Re(A) > —cs + Co}, which is independent of any choice. Thus, the resolvent,
viewed as an operator C*°(M) — D'(M), has a meromorphic extension to the whole
complex plane. The poles of this extension are called the Ruelle resonances, and they are
located in {Re(L) < Cp}. On {Re()) > Co}, one has

+00 +00 t
P-n"lf= / PN rar = / exp < / V(p—_s(x)) ds>e_’(x+)‘)f dt. (25)
0 0 0

Remark 2.1. The previous construction can be made for a general smooth Hermitian
bundle & and in particular for the bundle of forms in the kernel of the contraction, see
[15, Appendix C] for more details. (We insist on the fact that smoothness is important and
this leads to some technical difficulties when working on forms.) We will not specify the
dependence on &in the rest of the paper.

We sum up at the end of the subsection the characterization of generalized eigenfunc-
tions: the resonant states.

A complex number X is a Ruelle resonance if and only if there exists a distribution
u € D'(M) with wavefront set contained in E (see for instance [16, Lemma 5.1]) such
that (P — Xo)u = 0, and we will then say that u is a resonant state. We will sometimes
write Res as the set of Ruelle resonances and Res,, as the set of resonant states associated
to Ag:

Resy, = {u € D'(M) | (P — Ao)u =0, WF(u) C E*}. (26)
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We have a corresponding version for the co-resonant states (defined in the next
subsection). The wavefront set condition then becomes WF(u) C E and this will be the
version of the proposition that we will use in the proof of Theorem 3.1.

We finish the subsection by discussing generalized resonant states and the presence
of Jordan blocks. More precisely, if we consider the meromorphic extension R, (A)
constructed in Theorem 2.1, then A¢ € Res if and only if A¢ is a pole of the meromorphic
extension. In this case, the spectral projector at A is

nt = ! /R()d
T i y +2) 42,

where y is a small loop around X%¢. Moreover, we can use the analytic Fredholm theorem
to deduce that the resolvent has the following expansion:

N(Xo) P - /\O)j—ln+

A

Ry =R+ Y —— 2
= (A — o)/

il

where R f (A) is the holomorphic part near Ag. The generalized resonant states are
Resyg o0 1= I (H) = I (C¥ M) = {u € H' | @ = 2)"*u=0). @7

Remark 2.2. We will say that the Ruelle resonance Ao has no Jordan block if Resy o =
Res,,. Note that if N(Ag) = 1, i.e., the resolvent has a pole of order at most 1, then there
is no Jordan block. This will be used in Lemmas 3.5 and 4.2 to show that resonances on
the critical axes have no Jordan blocks.

2.4. Equilibrium states from dimension theory. In this section, we recall Climenhaga’s
construction from [10] of leaf measures mj, and mj, using dimension theory.

There are two main ways equilibrium states are defined. The first one is through the use
of Markov partitions and the second one is via the use of the specification property. A third
approach is given by dimension theory: the goal is to generalize the idea of Haussdorff
dimension and Haussdorff measure to a more dynamical setting. We recall the definition
of the Haussdorff dimension for a metric space (X, §). For d > 0 and € > 0, define the
d-dimensional Haussdorff measure by

o0
HY(S) := inf {Z diam(U)? | S c | J Ui, diam(U;) < e}
i=0 ieN

for any subset S and where the infimum is taken over all countable covering of sets U; with
diameter less than €. We define an outer measure by taking

HY(S) = lim HY(S) € [0, +o0].
€e—>—+00
‘We then define the Haussdorff dimension of X to be
dimpgauss (X) = inf{d > 0 | HY(X) = +o0} = sup{d > 0| H*(X) = 0}.

The idea of Climenhaga, Pesin, and Zelerowicz (already present in essence in [22, 24],
where the case of the measure of maximal entropy was treated) was to replace the sets with
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small diameters by more dynamical objects, namely, coverings should be made of Bowen
balls (defined below) and we should let time t — +o00.

Bi(x,r):={y e M| max d(gsx, ¢sy) <r}. (28)
s€[0,¢]

Let 8o > O be the size of the local (un)stable manifolds, then fix thereafter § €]0, do[
and define ‘W*(x, §) := B(x, §) N W*(x), where e = u, s, ws, wu. We will not always
specify in the rest of the paper the dependence in § if it is not relevant to the argument.

Let x € M, consider Z C ‘W"(x, §). Define, for T > 0,

E(Z,T):= {gc M x [T, +ool, ZcC | B,(x,r,'W”(x,c?))},
(x,1)e&

where  B;(x,r, W"(x, 8)) = {y € W"(x, 8) | max|o,] dwu(xs5)(@sX, ¢sy) <r}. Let
« € R, then we define a measure mg, s = m® by putting

m%(Z) = lim  inf oStV -t
) T—-+o00 &€E(Z,T) Z
(x,1)e&

We then retrieve the Carathéodory dimension as a threshold just like in the case of the
Haussdorff measure, this is a result due to Pesin, see [32, Propositions 1.1 and 1.2]. We
have, moreover, in this case that the measure for « = a¢ defines a Borel measure, see
[10, Lemma 2.14].

The measure m* defined above is an outer measure for any o € R and

P(V) :=inf{a | m*(W(x, §)) = +o0} = sup{a | m* (W"(x, §)) = 0}.

Moreover, m*(V) is a Borel measure, denoted by m¥ and called the leaf measure. It satisfies

forall Z ¢ W"(x1,8), m'“(Z)= lim  inf Z StV —IPV), (29)
T—+o00 &€E(Z,T)
(x,1)e&

Up until now, we have defined a system of (unstable) leaf measures {m% | x € M}
satisfying the two following conditions.
e Support: each measure m¥ is supported in W* (x, §).
e Compatibility: if Z C W*(x1, §) N W"(xz, 8) is a Borel set, then the two measures

agree, i.e., my (Z) = my (Z).

The set of measures defined in equation (29) has actually two more important properties:
it is ¢y-conformal and behaves naturally with holonomies (see [10, Theorem 3.4]).

The system of (unstable) leaf measures {m% | x € M} defined in equation (29) is
¢;-conformal, namely, for any x € M and ¢ € R, the measures (¢;).m% and mgr . are
equivalent and more precisely,

mt (@ 7) = fz PV gt (2). (30)
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In terms of Radon—Nikodym derivatives, we have

d((‘/’—f)*métx)(z) _aP-sve d@demy)

u u
dm! dmy, .

(prz) = VO3

We define the notion of holonomy between (weak-un)stable leaves.

Given W"(xy, §), W"(xp,8) for x1,xy € M, a weak-stable §-holonomy between
W (x1,8) and W*(xy, §) is a homeomorphism 7 : W (x1, §) — W (x2, §) such that
(z) € WY (z, §) forall z € W (xy, §).

To conclude, we give the change of variable formula for holonomies. We first introduce
a useful function. Let §9 > 0 be small enough, given x € M and y € W"*(x, &), define

+00
wy (%, ¥) = St V() +1(x, ) P(V) +/0 V(@1 ey () = Vg () dr.
(32)

Here, #(x, y) is the Bowen time and the integral converges because d(¢;+.x, ¢ry) — 0
exponentially fast and V is Holder continuous.
We define for x € Mand y € W™ (x, §) the quantity

+00
wy (X, ¥) = =81y Vx) +1(x, y) P(V) +/0 V(pr—x) = V(p—ry)) dr.

We note that we have the following special values:

forall y € W(x), wé,'(x, y) = /()+OO(V(§0rx) — V(p:y)) dr,
as well as
wi (x, gix) = S,V (x) —tP(V). (33)
Finally, we have the cocycle relation
forall y, z € W™ (x,80/2), wi(x,y) =w(x,2)+w(z y). (34)

The holonomy we will mostly be interested in will be given by 7 : W“(q, §) —
WH*(p, 8), m(x) := [x, p] and we can now state the second change of variable theorem,
see [10, Theorem 3.4] for more details.

Consider the system of (unstable) leaf measures {m* | x € M)} defined in equation (29).
Let W"(x1,8), W"(xa, 8) for x1,x, € M and let w : W*(x1,8) = W"(x2,8) be a
weak-stable 8o holonomy. Then, the measures m,.m" . and m)“62 are equivalent, and we have

d(mem

u
*Mx _ +( T2)
W(Tf(Z)) = "Wvi&7TY, (35)

X2
3. Resolvent acting on functions
In this section, we study the action of P on O-forms. The following proofs could all be
written in the formalism of currents as it is done in §4 for the dy-forms, but we remark that
by fixing a smooth volume form, one can reduce to studying the action of P on function,
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which we will do here. The goal is to locate the critical axis, show that it is given by
{Re(A) = P(V + J")}, and to study the co-resonant states associated to resonances on
this axis.

3.1. Construction of the co-resonant state. ~We first prove that P(V + J“) is indeed a
resonance, called the first resonance. In the case of a null potential (V = 0), this is trivial
as constant functions lie trivially in the kernel of the flow. In this case, the equilibrium
state (which is usually referred to as the SRB measure) can be identified as the co-resonant
state for the Ruelle resonance O.

Following §2.3, we can define Ruelle resonances for the L?-adjoint P* = X + V —
divyo1(X). The resonant states for P* are referred to as co-resonant states for P and their
span has the same dimension as the span of the resonant states. Equivalently, we can define
the adjoint by duality, using relation (21), as

forall £, g € COM),  (Pf, s grs = (F P* s (36)
from which we can define an unbounded operator
P* :DomPYNH  ={ucH* | PueH '} — H". (37)
Now, a direct adaptation of [S, Lemma 5.3] yields the following lemma.

LEMMA 3.1. (Co-resonant states) Let A € C, then A is a Ruelle resonance for P if and
only if X is a Ruelle resonance for P*. In this case, the space of resonant and co-resonant
states have the same dimension m. If we consider uy, ..., uy € D (M) :={u € D' |
WFu) C EX} and vy, ..., vy € Z)’E;(M) ={ue?D | WFu) C E;l’:} as two bases of
the resonant states for P and P*, respectively, satisfying (u;, vj) = &; j, then the projector
[To(X) on the space of resonant states for the resonance A is given by

[Mo(A) = Z ui @v;. (38)
i=1

In [10, Theorem 3.10], Climenhaga gives a local product construction of the equilibrium
state. For this, let us first notice that Climenhaga’s construction is still valid when swapping
the unstable and stable foliations.

We can thus define a system of stable leaf measures {m5. | x € M} which is compatible
and supported in “W* (x). Moreover, m?. is defined using equation (29), but using backward
Bowen-balls, see [10, §3.3] for details. The set {m{ | x € M} is ¢;-conformal in the
sense of equation (30) and the change of variable by holonomy is the one explicated in
equation (35) but with w™ replaced by w™.

We can then extend the leaf measures to the weak (un)stable foliations

B s
my® = /8 my,, dt,  my" = /5 mg,, dt. (39)
To state the main result of this subsection, we introduce further notation,

2=We(x,y), Ry =W (z,8)NRy, R () =W"(z2,8) N Ry,
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where R, and ¥, are defined in equation (16). Observe that

=[xy, x=lz.q], y=Ilg.zl (40)

We adapt the product construction of Climenhaga [10, Theorem 3.10] to obtain the
following local construction of the co-resonant state. In the following, we add an additional
index W to denote the leaf measures constructed using equation (29) from the Holder
continuous potential W. For any g € M, we define three measures on R, by putting, for a
Borel set Z C Ry,

+ _
m‘li(Z) — f oWy @lzaD+wi (zlg.2D) d((\yq)*(m;”ﬂ_,’_v X mZ”Slu))(z), (41)
V4
mg (Z2) := / / W u(@y) dm’;Ju_FV(Z) dm;’fju ), (42)
ws JZRy)

mi(2) = / ) /Z - )ewfuv(z’x) dm¥%(2) dm® v, 7 (x). (43)
q q X

THEOREM 3.1. (Construction of the co-resonant state) For any q € M, the three measures
m‘li, mg, and mg coincide, and there is a unique non-zero and finite Borel measure v on M

such that for all Z C Ry, one has v(Z) = m(Z). This Borel measure satisfies
P*v = P(V +J"v, WF(v) C Ef (44)
and is therefore a co-resonant state. In other words, P(V + J") is a Ruelle resonance.

Remark 3.1. Climenhaga’s original construction is obtained by taking the two potentials to
be equal, in other words, all leaf measures are constructed using V and the resulting Borel
measure is a non-zero multiple of the equilibrium state wy. We observe that when V = 0,
both constructions coincide and we retrieve the known fact that the SRB measure is the
co-resonant state in this case. Of course, by taking the adjoint, we obtain a construction of
a resonant state 7).

Proof. We mostly follow the strategy of the proof of [10, Theorem 10], while only
changing the necessary details. We first prove that the three formulas indeed agree and

define the same local measure. Starting from a measurable function ¢ : W¥(q, §) x
W™ (q, §) —10, +o0[, one sees that

/ZK(‘I’q_l(z))d((‘lfq)*(m;,vﬂu x my ")) (2)
=/ gy d(Omg e X m ) (x, ).
v, ' (2)

Now, this last expression can be seen to be equal to equation (42), using the change
of variable by holonomy in equation (35) with the holonomy 7 : W*(q, §) — Rg ),

. _
7(x) = [x, y] and with £ (g) := e”v+su &leaDHwu(@lg.c)
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/Ru ¢(lx, yDILx, yD) dmy v gu(x) =/R ¢(2) d(msmy y 4 yu)(2)

G ()WNZ

+ _
= f é‘(z)ewV-PJ” ([z.q).2) dmZ’V+1u (Z) = / ewﬂ‘ (z.[g.2D dm?,’v_’_‘]u (2)9
Ru(»NZ Ru(»NZ

where we used the cocycle relation (34). Similarly, we obtain the equivalent equation (43).
Next, we show that the set of local measures {v, | ¢ € M} are compatible in the sense that
for any Borel set Z C R; N R, one has v,(Z) = v,(Z). This will then define a global
Borel measure. If p € W*¥ (g, 8), then we deduce that the above relation follows from
equation (42) and the fact that the system measures {m} | x € M} is compatible on the
intersection. Similarly, the relation for p € W"(g, §) follows from the compatibility of
{m}* | x € M} and equation (43). The general case then follows from the local product
structure. Call v the global Borel measure we obtain. The fact that v is non-zero and finite
follows from the analog fact on the local measures v, and the compactness of the space
M. What is left to prove is equation (44). It suffices to show that one has

forall f € C°M), (¢'FF,v) =PV (1 vy, (45)

which will clearly imply the first part of equation (44). Because the measure v is
constructed from its restrictions, it will be enough to prove that

forall f € C®°(M), Supp(f)U Supp(etPf) CR;= v(ele) = etP(V+Ju)v(f).
(46)

We now use equation (43) to compute explicitly, using the ¢;-conformality in equation
(30):

VV+J (e'Pf) = / / eS{V((ﬂ—zZ)f((p_tZ)ew;u @) dm;v_k]u (Z) dm:;)f]u (y)
ws JZORY ()

The cocycle relation (34) gives eVr+ @Y = W juG9=12) oW u(0=12Y) ging equation (33) to
get w}ﬁ, (z, p—12) = S; J*(p—;z), this means that

/ eS,V(‘ﬂ—tZ)f((p_tZ)ew;“ (Z,)’) dm;yv_k_]u (Z)
ZNRY(y)
_ / SIVHIG-D) £ (o ) P dmt L (2)
ZNRY(y)

— f SV £(2)e"mE d((pp)em . 1)(2)
ZNRY(y)

_ / e PVHII=SIVHI@ SV f ()W CD) gl ()
ZORY ()

— elP(V+J ) / f‘(z)ew]” @) dm;itx’vﬂ_.]u (Z)7
ZORE(Y)

where we used the ¢;-conformality, see equation (31). This implies equation (45) and thus

P*v = P(V + J%)v.
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The last thing we need to do is to bound the wavefront set of the measure v. For this, we
will need some regularity result on the conditional measures of the SRB measures and the
following adaptation of [5, Lemma 2.9].

LEMMA 3.2. The wavefront set of v is included in E}.

Proof. Consider g € M and & ¢ E}(q), and we shall prove that (g, &) is not in the
wavefront set. Choose a phase function S such that d;S = & and a cutoff x near g, we
then use equation (43) to obtain

- S
v;/-i-./“ (Xelﬁ)

;:/ / X (2)elh Wb @O (PYVHTI=P (V) il (20) dm?, (2) dm® ().
U JZORYS (x)

Now, we can use [10, Corollary 3.11] to obtain that

w';u (z,x)

d ws
o S p—

dmyy, " my Ry (x))

h(x) :=my" (Ry" (x)),
where u ¥ is the conditional measure of the SRB measure on the weak unstable manifold,
in other words,
u .S
VV+] ( X el ﬁ)

q
: + u
h(x)(/; X(Z)el(S/h)ewv(Z,X)+I(P(V+J )P(V))MXIUS(Z)> dmz’v_‘_‘]u (x)

/I; ﬂR};’S (x)

Now, we use [14, Theorem 3.9] to obtain that the density n¥* is smooth along the leaves
R(’{“ (x). By this, we mean that

u
q

Iy ek rus ey == sup sup 1X1 - Xae(uy® (@)rps ()]
ZERYS (x) X[, X4 ES RIS (x)
is finite for any k and that the norm depends continuously in x.

From the proof of [14, Corollary 4.4], one sees that the smoothness of the potential V
implies that wi,r(z, x) is smooth along the leaves R}I‘” (x). More precisely, the proof shows
that given a function which is smooth along the leaves, the function defined by the last
integral in equation (32) is smooth along the leaves, therefore proving that the holonomy
factor is smooth along the leaves. (Note that the fact that the unstable Jacobian is smooth
along the leaves in the sense above is non-trivial because it is only Holder continuous in x.)

Using the fact that each leaf is a smooth submanifold, we can perform integration by
parts (in z) to show that the inner integral is O (h*°) as long as d§| Rus (x) does not vanish.
However, £ ¢ E7¥, so this can be ensured locally near p. This proves that £ ¢ E¥ and we
have thus shown that WF(v) C E}. O

We can now finish the proof of Theorem 3.1. For this, we use the characterization in
equation (26) to deduce that v is indeed a co-resonant state, i.e., P(V + J%) is a Ruelle
resonance. O
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3.2. Critical axis. In this subsection, we prove that the set of Ruelle resonances is
contained in the half-plane {X | Re() < P(V + J*)}. The case V =0 is enlightening;
in this case, the critical axis is the imaginary axis. No resonance has positive real part,
indeed, in the case of a volume preserving Anosov flow, this follows directly from Theorem
2.1, while in the general case, it follows from the general bound [le™ X! £z < || Lo,
see [5, Corollary 4.16]. We insist on the fact that the functional space L* is not really
part of the L2-anisotropic Sobolev spaces scale and, thus, this part of the proof needs
the introduction of some ‘finer’ measure theory. The goal of this subsection is thus to
construct, using the co-resonant state v defined in Theorem 3.1, a norm ||.||y such that

forall f € C°M), e Fllv < PVH £y (47)

LEMMA 3.3. Let v be as in Theorem 3.1, for f € C°(M), define
1A v ==l = /M | f1(z) dv(z).

Then, this defines a norm on C°° (M) such that
Jorall f € C¥M), e flly < e PVH DY £y
We will denote by L' (M, v) the completion for |||y of C*(M).

Proof. The fact that v(] f|) > 0 is a consequence of v being a measure (i.e., of v being a
distribution which is non-negative on non-negative functions). The homogeneity and the
triangle inequality are clear. Suppose now || f|yv = 0, then use equation (41) as well as
equation (29) to see that the co-resonant state v gives positive measure to any non-empty
open set of M. Thus, if f is non-zero, then | f| is positive on a small open set, which is
a contradiction. The change of variable formula (47) is a direct consequence of equation
(45), which was shown in the proof of Theorem 3.1. O]

As a direct consequence, we adapt [5, Corollary 4.16] to show that there is no Ruelle
resonance in the half-plane {Re(z) > P(V + J*)}.

LEMMA 3.4. The set of Ruelle resonances for the potential V is contained in the half-plane
{Re(h) = P(V + J")}

Proof. Recall from the proof of Theorem 2.1 (see [28, Theorem 9.11]) that we can
construct an operator Q (1) such that, as an equality on operators acting on C*° (M),
P+ 100 =1d— R(), (48)

where the remainder is given by
5 T+e€
R\ = — f x (e e® dr,
T

where x is a cutoff supported in [0, T + €[ and constant equal to 1 on [0, T'], for some
suitable choices of € and 7.

Let A € C such that Re(A) > P(V + J%). Let us show that it is not in the Ruelle
spectrum. The projector ITp(A) on the eigenvalue z = 0 of the Fredholm operator
F\) :=1d— R\ is given by the integral
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Moy = — [ = ko)~ dz (49)
2mi |z]=€

for a radius € > 0 small enough. Note that by the proof of Theorem 2.1, this is the spectral

projector for any anisotropic Sobolev space H°* for which Re(L) > —cs + Cp and thus

equation (49) also holds as a map C®(M) — 9O’ (M). However, if f € L'(M, v), then,

using Lemma 3.3, one has

5 T+e
nle(x)fnvsfjw Ix'(0) e Re®) s 1™ fly dr

Te Re(M)—P(V4+J* 1
sf |wmw““*<+>BWﬂwms;mm
T

if T is chosen large enough. In particular, this shows that F(A) is invertible on L'(M, v)
with inverse in £(L'(M, v)) and thus Tg(%) = 0, meaning that A is not a Ruelle
resonance. O

3.3. Resonances on the critical axis. In this subsection, we investigate some properties
of Ruelle resonances on the critical axis and prove the first part of Theorem 1.1. The main
results are that Ruelle resonances on the critical axis have no Jordan block and that the first
resonance is simple.

The following two lemmas justify that resonances on the critical axis have no Jordan
block. The strategy is the same as in [5, Lemma 5.1], where the space L™ is replaced by
the new functional space L'M, v).

LEMMA 3.5. Let A+ P(V + J*) € {Re(A) = P(V + J*)} be on the critical axis. Then,
R(A) has spectrum included in the closed unit disk.

Proof. Consider B € W9(M) such that its principal symbol is equal to 1 except in a conic
neighborhood V of Ej. We can then write R = RB + (Id — B)R(Id — B) + BR(Id — B),
where (Id — B)R(Id — B) is smoothing thus compact (because WF(R) does not intersect
E(’;, see [28, Theorem 9.11] for a detailed computation of the wavefront set). Moreover,
we have |[RB + BR(Id — B)|lj212 < % if T is chosen large enough. This shows that the
essential spectrum of R is contained in B(0, 1/2) and that the spectrum outside this ball
consists of isolated eigenvalues. Using the L> — L? boundedness of R()), we see that for
large values of |z|, we get the converging Neumann series (in *)

@—RON' =21 2FROE. (50)
k>0
Now, we use the bound in equation (47) for f € C*(M):

T+e
IROY U1 vy 5/ e PV D] 1€ fll i dt
T

T+e
—1P(V+J" P(V+J"
sf e POHD L Ol PYH N Fllsiomny 4 < 1L
T
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to get that the above Neumann series actually converges for |z| > 1 in L(LY(M, v)) and is
analytic in |z| > 1. By density of smooth functions in 4, this proves that the eigenvalues
are contained in the closed unit disk. O

The next lemma, together with Remark 2.2, justifies that resonances on the critical axis
have no Jordan blocks.

LEMMA 3.6. A complex number Lo € P(V 4+ J") + iR is a Ruelle resonance if and only
if R(Xo) has an eigenvalue at 1. Moreover, if R(}o) has a eigenvalue on the unit circle,
then it is equal to 1 and the eigenfunctions correspond to resonant states at the resonance
Ao. Finally, write T1o(Ao) to be the spectral projector of Id — Ié()»()) on the kernel (see
equation (49)). Then, we have the convergence, in L(H"), for any s > 0,

Mo(ko) = lim R(xo)*. (51)

Proof. Suppose that T € S! is an eigenvalue of R(Ag). We first check that for any
smooth function u, one has PR(AO)M = ﬁ(AO)Pu. In other words, the operator R(Ao)
commutes with P so that the space Ran(IT;(Ap)) associated to the eigenvalue t € S! can
be decomposed into generalized eigenspaces of P. Suppose now that u € Ran(IT;(Ap)) is
an eigenvector for P for the eigenvalue p, then we get

o0
tu=RM)u = — / x'(D)e M0y (x) di = x'(—ikg + ip)u.
0

This implies that |)?’(—i Mo + in)| = 1. However, using Lemma 3.4, we see that the real
part of w is smaller than P(V + J“), so that

o0
L= 2] = ¥ (—iko — i) < / I (O RGO—TPOVAID gy < .
0

This implies that Re(u) = P(V + J*) and that cos(t(—iAg + ip)) is constant on the
support of x’. This is possible only if Ag = w, which gives T = 1 and shows that u is a
resonant state for the Ruelle resonance Ag.

The previous discussion justifies that there exists an integer N such that

Mo(ho) 1= {u € Dy (M) | (P—20)"u = 0}.

We will now prove that R(Ao) has no Jordan block at 1 and deduce that N = 1. Note
that the right-hand side of the previous equality does not depend on the choice of cutoff
function and so that needs to be the case for the right-hand side. Let f be an eigenfunction
of R(1o), then

R(o)f =1d = — / K (e ap 1.
R

The above relation holds for any cutoff function x supported in [0, T + €] and equal
to 1 on [0, T]. The only condition being that 7 must be large enough to ensure the
validity of Lemma 3.5. Approximating the Dirac mass at T (for T large enough) yields
e~ T2+TP £ — £ and f is thus a resonant state at Ag. The converse is clear and we showed
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that the eigenfunctions of R(Xo) at 1 coincide with the resonant states at Ag. Let u € C*,
then near z =1,

(R(ro) — 1)/ (ho)u
(z—1)J

N
(R(0) =) 'u=Ru@+ Y : (52)

j=1

where Rf (z) is the holomorphic part near z = 1. We note that (R(r) — DN To(ho)u
is an eigenevector of R(1) for 1. By the previous discussion, it is thus a resonant state
6 associated to Ag. By Lemma 3.1, we can consider a co-resonant state w such that the
pairing (6, ) # 0. On one hand, using equation (52) gives, near z = 1,

(z—DN (1—zN-!
However, on the other hand, for any |z| > 1, one has, for any k > 0,
2RO u, 1) = 275, (RGwo) i) = 275 (u, ).

Summing the Neumann series then gives

~ 0, 1
(RG0) = 27t i) pgs = ot +0< ) (53)

(RO — 20ty g wppos | < |'<”’“>' (54)

[
Going back to equation (41), this is possible only if N = 1. In particular, resonances on
the critical axis have no Jordan block. Finally, we use that

R(xo) = Mo(ho) + K(R0), K (0)To(Ro) = o (ro)K (Ao) = 0,

where the spectral radius of K (Ag) on 7 is strictly smaller than 1. Remember thatif r < 1
is the spectral radius of K (Ag), then for any € > 0 small enough, one has

1K 10) llgp sge < (r +€)" — 0.

Thus, as bounded operators on H*, we get, as n — 400, R(A)" = To(ro) + K (A0)* —
o (2o)- O

We now identify the co-resonant states associated to resonances on the critical axis
to equivariant measures with wavefront set contained in E, and show that the space of
(co)-resonant states at the first resonance is one-dimensional and spanned by the measure
constructed in Theorem 3.1. First, define for v € C*(M, [0, +00[) a (complex) Radon
measure ,u,fj‘ such that

uhiu e CO°M) > (To(Mu, v), WEub) c EFXY,  pbPu) =iul@). (55

PROPOSITION 3.1. (Resonant states on the critical axis) Let A € P(V + J") 4+ iR be a

Ruelle resonance on the critical axis. The space of co-resonant states at A is equal to

Hg(k) (C®M)) = Hé(k) (H ). More precisely, we have the following isomorphism:
() (C® (M) = Span{zy, v € C(M; [0, +ooD)}.

Finally, all these measures are absolutely continuous with respect to the measure ,U«f (V+J%)

with bounded densities.
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Proof. Let v e C®(M, [0, +oo[) and first consider A = P(V + J*). Then, using
Lemma 3.6, we get R(A)" — Tlo(%) in L(H*). Now, for any u € C®(M, [0, +00]),

+00

(R(P(V + J"Dru, v) = — / X’*k(t)e—”’(”f“)(f e ou dv01> dt > 0.
0 M

This proves that (ITo(P(V + J*))u, v) > 0, which gives that u, is a non-negative Radon
measure for v > 0. Consider a general resonance on the critical axis A = ib + P(V + J*)
withb € Rand v < v’ € C®(M, [0, +o0[), we get

forall u € C® (M, R), [(R*(M)u, v)| < (R¥(P(V + ") ul, v) <(RK(P(V + J“)|ul, V).

Passing to the limit, we get first that Mf} defines an order O distribution and thus defines
a (complex) measure. Moreover, the last inequality actually proves that ufj &K WUy with
a density bounded by 1. In particular, one gets that every measure M)vL is absolutely
continuous with respect to the measure 1. O

We can now prove the first part of Theorem 1.1 for the action on O-forms.

PROPOSITION 3.2. Under Assumption 1, the first Ruelle resonance P(V + J%) for the
action on O-forms is simple with a space of co-resonant state spanned by v.

Proof. Consider a co-resonant state u for the first Ruelle resonance P(V + J*). We know
by the previous proposition that 4 is a measure with wavefront set contained in E and
we will suppose that it is a non-negative measure. The wavefront set condition, together
with [26, Corollary 8.2.7], justifies that one can restrict the distribution u to any unstable
manifold ‘W* (x). We will denote by jt, := ptjqym (). More explicitly, for a smooth function
f € C*® (M), we can define, for some s € R,

(f\(wu(x), My) i= (f&wu(x), n) = (f&wL'(x)» H)(HS;H*S,

where the bracket denotes the distributional pairing and dqyx(,y denotes the integration
over the unstable manifold ‘W" (x) defined by

(fs dwrny) = / J () dvolyye ) (y). (56)
W (x)

The fact that the distributional pairing coincides with the H* x H~* pairing is a
consequence of the wavefront set condition on the distributions. In particular, u, is a
non-negative distribution as the product of two non-negative distributions. The restrictions
{ix | x € M} define a system of “W™*-transversal measures in the sense of [10]. The
strategy to show that the first resonance is simple is to use [10, Corollary 3.12], which
asserts that the only system (up to constant rescaling) of ‘W™ -transversal measures which
satisfies ¢;-conformality (see equation (30)) and the change of variable by holonomy (see
equation (35)) is my, | yu.
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The system of measures {j1y | x € M} satisfies ¢,-conformality. This is a consequence
of the fact that u is a co-resonant state. More precisely, for any smooth function
f € C*®(M), we can write

(f8api s Wgpxgis =€ TV @@P(Foapui)s 1gp s

Using e'P (f8qyu (1)) = €' fe™X8qyn(,), then yields

/W”( )f(y) Az () :/Wu( )e_tP(VHu)eStV(w_ty)f(‘p‘fy) det(do—1)|E,(v) digx ()
X PrXx

This rewrites
/(W”( ) SO dux(y) Z/WM( : g_tP(V"‘Ju)eSt(V+J”)(§0—r)’)f((p_ty) dﬂ(ﬂ,x(y),
X Prx

which is exactly ¢;-conformality for the potential V + J*.

The system of measures {iy | x € M} satisfies the change of variable by holonomy.
Investigating the proof of [10, Corollary 3.12], we see that we only need to show the
change of variable formula for the standard §p-holonomy given by W*(x) 3 z > 7(z) :=
[z, x'] € W"(x"). We have the following facts.

o Forall x,x"e M, x#x’ close,one has L, ./ : ¢ € COM) = (it — iy, $)/d (x, x)*
is linear.

e Forany ¢ € C°(M), one has SUp,2y | Ly v (9)| < 400 by equation (A.1).

e The space C°(M) is a Banach space.

We can apply the Banach—Steinhauss theorem to get SUP,2y [ Ly llop = C < 400, ie.,

forall p € COM), forall x,x’ e M, |(ux — py» )| < Cd(x, x")%.

Now consider ‘W"(x) 3 z — 7(z) := [z, x'] € W*(x'). Our goal is to relate w, and
7y iy . Consider f € CO(‘W*(x, 8)). Since the foliation is Holder, we can extend f
locally on a small rectangle by making it constant on weak-stable manifolds, and this
defines a continuous function f . We are now left with relating i ( f ) and ey ( f ).

First, consider the Bowen time r =1(x, x") such that ¢;x € W*(x’). Then, ¢;-
conformality shows that d[(¢/)spx]/dpex(2) = S VHD@Q—tPVHI"Y)  Now, for
any 7 >0, we can use ¢-conformality again to get d[(@c)sigxl/dly,, . x(2) =
St VHI@—TP(VHI"Y) 404 A @) witx /it o (¥) = St (VHIM=TPVHI") — Now,
we have that d(@;i.x, @:x’) < Ce ™ and the above continuity then shows that
1494 ox (f) — 1, x'(f)] = O when T — +oo. This means that the overall holonomy
factor is given by the following limit:

eXP(TEI}rlOO S (V+ID@) —tP(V+T)+ Se (VA4 T)pr412) — Se (V4 T (g ),
which is exactly equal to V(@)
argument.

The first resonance P(V + J") is simple. We can use [10, Corollary 3.12] to claim that
there is a constant ¢ > 0 such that for any x € M, one has u, = cm?v 4 ju- We now would
like to deduce that this implies & = cv by proving a Fubini-like formula for distributions
with wavefront set in E;. For this, we first need to disintegrate the volume measure with

, see the proof of [10, Theorem 3.9] for a more detailed
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respect to the unstable foliation and an arbitrary (smooth) transversal complementary
foliation G. More precisely, we will use [4, Proposition 1.6], which states that in a product
neighborhood U around a point g € M, there is a continuous function §, : U — R such
that

for all f € C®(M), / £ dvol = / ( f F(@8u(2) dvolayny, (z)) dvolG (y),
U Gloc(p) W (y)

where Gioc(p) is the connected component of the element of the partition of G containing
p. Actually, the conditional density §, is smooth along the leaves in the following sense:

I8ull cx (Rs (xyy = sup sup [X1 - Xk (8u (@) we ()|
Z€WH(x) X1, X €S, W (x)

is finite for any k and that the norm depends continuously in x. This regularity condition
allows to integrate by parts in the inner integral and, in particular, an immediate adaptation
of [4, Lemma 1.9] yields WF(8,(2)dyn(y)) C E;; @ Ej. Here, we have denoted by
8u(2)8ap () the distribution:

[ S (2)8u(z) dvolqayu(y)(2).
W)

In particular, we consider f, € C°*°(M) such that f, — u is D-(M), where I' is a conic
neighborhood of E which does not intersect E;; @ Ej, and we can use the continuity of
the distributional product (see [28, Lemma 4.2.7]) to write for any f € C*°(M),

(fsw) = lim (f, f) = lim (8u(2)Bapr(yys £ X fu) dvolS (y)
n——+00 n——+00 Gioe(p)

:/ (8u (D)8 3y, f X 1) dvol,cj(y)
Gioc(p)

= f 1y (f % 8,) dvol§ (y) = c / mY vy gu(f X 84) dvol§ ()
Gioc(p) Gioc(p)

= C(fv ’7)’

where we used the continuity of the density and the fact that u, is of order 0. Together
with the previous lemma, this proves that all co-resonant states are proportional, and thus
that P(V 4 J*) is simple and concludes the proof. O

We can now prove Theorem 1.2 for the action on O-forms.

PROPOSITION 3.3. The equilibrium state (see equation (17)) iy 4 ju is equal to = cn X v
or is given by the averaging formula (8). Finally, if the flow is weak mixing with respect to
the equilibrium state [y + ju, then the only resonance on the critical axis is P(V + J%).

Proof. The co-resonant state v is absolutely continuous with respect to [y 4 j«. We follow
the proof of [10, Theorem 3.10] and prove that there exists a constant C > 0 independent
of g € Mand ¢ > 0 such that

forallz > 0, forallg e M, v(B:(q,r)) < CeStVHID@—tPV+TY) (57)
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which suffices as py 4 ju is the the Gibbs state (see [19, Theorem 4.3.26]). From the proof
of [10, Theorem 3.10], we get that

there exists C > O for all g € M, forall ¢ > 0, m"‘,+J,,(Bt (g, %))
< CeSIVHIN@—1P(VHI")
Now, we can use equation (43), the fact that the integrand eV @) g uniformly bounded on
M, and m(’]"fju (R;‘” ) is uniformly bounded in ¢ (see [10, Theorem 3.1]) to get equation (57).
Product formula and averaging formula. Let n be the resonant state, which we can
obtain by applying Theorem 3.1 to the dual P*. We have WF(n) C E;f, WF(v) C E} and
wehave E¥ N E} N (T*M\ {0}) = @, which shows that the distributional product of 7 and
v is well defined. Actually, we can use the duality in equation (21) to define the product:

forall f € C¥M), (1 x V)(f) = 0, fV)gpxgrs = (F0 Vg grs. (58)

where the equality is justified by equation (22). From the fact that v and » are non-negative
measures (see Proposition 3.1), and equation (58), we see that this is also the case of their
product  x v. It is easily seen to be invariant by the flow:

(n x v)(Xf) = (X*n, fv) — (fn, Xv)
=PV +J0, fv) — (Vn, fv)+ divya(X)n, fv)
= P(V+J(fn,v)+ (fn, Vv) = [divya(X) f1, v) = 0.
We prove that the product is absolutely continuous with respect to py 4 j«. For this, we

use Proposition 3.1 and the previous proposition to get I[To(P(V + J*))1 = c¢n for some
¢ > 0. Now, this means that we can compute (n x v)(f) for f € C®(M):

c(n x v)(f) = [PV + DL, fV)gpqis
+o00

—— Ilim GO e PV, e (fv)) di
k—+00 Jo
+o0o
= — lim R @)™ f,v) dr.
k—+o0 Jo

We use the fact that v is absolutely continuous with respect to py 4y« with bounded density
to get that [v(e'X f)| < Cuyyyu(le'X f]) < Cuy1yu(|f]) because wy 4 ju is invariant. In
particular, we get, by integrating,

forall f € C*M), (1 xV)(fD = C'ry(fD) = () x V) K Ly

This proves that the density of (i x v) is invariant by the flow and measurable for the
equilibrium state @y 4 y«. However, this last measure is known to be ergodic so the density
is constant, which proves the two formulas.

Weak mixing implies no other resonances on the critical axis. From the averaging
formula (8), we see that if v gives zero measure to an invariant Borel set, then it is also the
case for uy 4y« and the two measures are actually equivalent.
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Next, we use [33, Theorem VII.14] to see that the flow is weakly mixing if and only if
the only eigenvalue is 1 and it is a simple eigenvalue. In other words, if

Xf =ik\f,
[ € L*M, py4gu)

has no solution except for A = 0 and f constant. Using Proposition 3.1, the presence
of another co-resonant state on the critical axis is equivalent to the existence of an
absolutely continuous measure with respect to v. Its density with respect to v is in
L®(M,v) = LM, pty4yu) C L>*(M, wy4«) and is thus a solution of the system
above. This shows that weak mixing of the flow with respect to py 4y« implies that there
is no other resonance on the critical axis. O

(59)

4. Acting on the bundle of ds-forms

We have studied the case of O-forms before and for this, we have fixed a Riemmanian vol-
ume vol to embed smooth functions into distributions. As a consequence, the co-resonant
state v from Theorem 3.1 has a rather convoluted form. Note however that changing the
metric does not change the critical axis as the pressure of two cohomologic functions are
the same. For d;-forms, such an identification is not possible as the bundles involved are not
line bundles anymore, and we are led to adopt the more general and intrinsic viewpoint
of currents. Loosely speaking, in this new formalism, a distribution is an element of the
topological dual of O-forms. More generally, we will think of ‘distributions’ on ds-forms
as continuous linear forms on C®(M, A% T*M) and will call this a d,-current. The
construction of anisotropic Sobolev space is also valid on this space, as noted before in
Remark 2.1. (Smoothness is needed to apply the microlocal approach. Here, the bundles
E: and E} are only Holder continuous but &% is smooth.) We will focus our attention on
forms in the kernel of the contraction by the flow, which are given by

& = {u € C®M; AFT*M) | ixu = 0} = C°(M; ANE! ® EX)).

4.1. Critical axis. More generally, the action of P will be extended, by duality, to
currents. This idea can be traced back at least to Ruelle and Sullivan although no spectral
theory was involved in [34]. We define a k-current T as a continuous linear form on the
space of smooth k-forms. On manifolds, especially when no canonical choice of smooth
volume form is available, currents allow us to obtain an intrinsic definition of distributions.
As such, the space of smooth k-forms is embedded canonically (up to choosing an
orientation) in the space of (n — k)-currents by the formula

forall p € C°(M; AXT*M), ¢ :a e CPM; A" *T*M) — / aAQ.
M

Note that the set of smooth k-forms is dense in the space of homogeneous currents
of degree n — k, see [9, Theorem 12, §15] for a precise statement and more generally
[9, Ch. 3] for an introduction to currents. In the rest of the paper, we will write
DM, Ad“(E;k @ EY)) for the space of sections of currents of degree d; which are
canceled by the contraction ty. They can be thought of as linear combinations of elements
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of A%(E} @ E¥) with distributional coefficients. We first introduce a useful (Hélder
continuous) splitting;

q q
A(Ef®EY) = @(AkE;“ AANTTREY) = EB Al (60)
k=0 k=0

We prove that the system of (unstable) leaf measures {m% | x € M} defines a section of
currents of Sobolev regularity H* (M; A% (E} @ EY)) and is actually a co-resonant state
for A = P (V). This point reduces to a computation of the wavefront set of the system of
leaf measures m?, by equation (26). This is done by adapting the argument of Lemma 3.2
and we note that the proof is actually easier in this case as we do not have to deal
with the smoothness of the unstable Jacobian J* along the leaves. We will then use the
‘L'-norm’ associated to my, to prove that no Ruelle resonances exist in the half-plane
{Re(%) > P(V)} by mimicking the proof of Lemma 3.4.

However, because we work on forms, the co-resonant state m'(, will be non-zero only
when tested on sections with values in Ags and will fail to define a norm on the rest of
the decomposition. This will explain the need of a more complicated norm, which we will
construct in Proposition 4.2.

More importantly, the decomposition in equation (67) is only Holder continuous which
prevents us from applying the microlocal strategy to obtain a meromorphic extension of
the resolvent acting on sections with values in Azx.

Indeed, in general, one can only expect to have a Holder continuous section
C*(M: Af") for some o > 0. The pairing against my, will however still be justified
because the co-resonant state is of order 0.

PROPOSITION 4.1. The system of leaf measures {m% | x € M} from equation (29) defines
a section of D' (M; A% (E; ® EY)), which we will denote by mY,. Moreover, one has

Lpm' = P(V)mly,  WE(m) C EJ, 1)

and thus mY, € FH(M; A (E} ® EY)) and it is a co-resonant state associated to the
Ruelle resonance P (V). We will call P(V) the first resonance.
Moreover, for any 1 < k < dg and wy € C* (M, AZS), one has m¥, (wy) = 0.

Proof. Our first goal is to give meaning to mf (p) for ¢ € C®(M; ABT*M).
First, the compatibility statement allows us to only define the duality locally, so let
@ € C®(M; A% T* M) be supported in R, . We can define the duality as follows:

my (@) == / my Ao A g = / (/ ewwy’x)((p A ot)(y)) dmy (x), (62)
M W(q.6) \JRYS (x)

where o € Ej, a(X) = 1. We see that the previous definition makes sense as ¢ A « is a
dy + 1 form and as w"t(x, y) is smooth in y, in the sense of Lemma 3.2, and continuous in
x. The formula clearly defines a current of degree 0 so m§, € D'(M; A (E} ® EY)).

Let wp € C¥(M: AZS) for some k. Then, the fact that m{, is a measure on ‘W" (g, 6)
shows that the pairing m’(,(a)k) is well defined. If k¥ > 1, we can use equation (62) and the
definition of E to get that m7, (wy) = 0.
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To prove the first part of equation (61), we can consider a dy form ¢ supported in R,
such that e "¢ is also supported in R,. We have to prove that m¥, (¢'P¢) = ¢'"V)m¥, ().
We first use the Leibniz rule to get Lx (¢ A @) = Lxp Aa+ ¢ A Lxa = Lxo A a. This
allows us to compute explicitly the action of the propagator on the current mf,. More
precisely, we use the cocycle relation in equation (34), equation (33), as well as ¢,
conformality in equation (30):

m' (e'Pp) = /

W"(q.6)

= / (/ ew\J/r(‘/’tw,x)eS’V(w)((p A a)(w)) dm¥, (x)
Wg.8) \JRYS (gm)

_ / oWy (i) (/ ew‘f(fpzw,w)ewé(w,wzx)e&V(w)((p A a)(w)) dm", (x)
W(g.5) RYS (¢1)

= / 2PV =SV (/ ewww’(p’x)((/) A Ol)(w)> dmy, (x)
Wiig.0) RS (g12)

= f (/ V@ (o A a)(z>> dm'y(2) = ¢'"Vml (g).
W(g.6) \JRY:(2)

(/ ewé(y,x)es,\/(w,,y)eu:x (@ A a)@)) dm'{,(x)
RYS (x)

For the wavefront set condition, we mimic the argument of Lemma 3.2, and consider a
smooth ds-form x supported in R, and S a phase function such that dS(q) =& ¢ E}, and
compute

mb"/(ei(s/h))() _ /w </ ew:,r(y,x)ei(S(y)/h)(X A a)(y)) dmlg/(x).
u(q’b‘) R;}s(x)

Now, the proof is easier than for Lemma 3.2 as the integrand is easily seen to be smooth
along the weak-stable leaves (because the potential V is smooth) uniformly in x. We can
perform integration by parts and show that the integrand is O (h*°) as long as d S does not
vanish on R;” (x), which can be ensured near g by the definition of Ef. This shows that
& ¢ WE(my,) and thus WE(mY,) C EY. This shows that P(V) is a Ruelle resonance with
the associated Ruelle co-resonant state given by my,. O

If we consider the adjoint P*, the above theorem would give that mi, 1S a resonant state
for P(V). We also get a product construction of the equilibrium measure. In this case, it
is actually easier than in the case of functions, as the product is given by the usual wedge
product (extended to distributions with convenient wavefront sets). The following lemma
is a re-writing of [10, Theorem 3.10] and corresponds to the second part of Theorem 1.2.

LEMMA 4.1. (Equilibrium state as a product) There exists ¢ > 0 such that
my Ao Amy = cpy.

Similarly to the case of functions, we now prove that {Re(A) = P(V)} is the critical axis
by using the ‘L!-norm’ associated to the co-resonant state mY,. Nevertheless, because we

work on forms, the following norm will only be non-zero for a section with values in Ags.
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LEMMA 4.2. We define a norm on CO(M; Ag“) by posing
forallg € COMAY),  lellv.o := m (). (63)
This norm satisfies the bound

forall g € COM; AS),  11€ollvo <PV lgllv . (64)

Proof. Suppose ¢ € CO(M; Ag‘), the bundle is one-dimensional and it thus makes sense
to talk of || A o as a ds + 1 density. If ¢(g) # 0, then by continuity, ¢ 7 0 on a small
open set. Then, [|¢|ly 0 > 0 because mj, gives a positive measure to any open set. The
bound in equation (64) follows from the fact that my, is a co-resonant state. The last point
follows from the first two points by a direct adaptation of the proof of Lemma 3.4. O

Remark 4.1. The one-dimensional nature of Ags will be crucial to obtain a fine description
of the resonant states on the critical axis. Recall that in the proof of Proposition 3.1, it was
shown that the space of resonant states was given by I1o(C) and that u < Cv implied
that ITo(u) was absolutely continuous with respect to I1p(v). One could then deduce the
simplicity of the first resonance from the ergodicity of the flow and the non-presence of
other resonances on the critical axis by the mixing properties of the flow. Here, we will use
a similar approach by showing that the set of resonant states is given by Ho(Ags).

We now use this norm and a ‘shift’ to define inductively a norm on CO(M; AZ“) for any
k. We use Assumption 1 to define the set of (normalized) trivialization of E,,:

P = ((X) D1=j=d, € COM: Ey) | (E) = Span{X] . 1 < j <du}. [1X] ,llco = 1},
and its dual counterpart
T = (Y] 1=j=a, € COMLED) | (E}) = Span{Y],. 1< j <ds}, V], llco = 1}.

PROPOSITION 4.2. We define a norm inductively on C°(M; Azs), k > 1, by posing, for
f e COM; AD),

ds dy
Iflves=sup  sup D> ey fAYyllvar. (65)

X e Y e =1 j=1
This norm satisfies the bound
forall g € COM; AP, [lePpllye < Ce! PV Mgy, (66)
Jor some C,n > 0. As a consequence, there are no Ruelle resonances in {Re(L) > P(V)}

and if ) is a Ruelle resonance on the critical axis, then it has no Jordan block.

Proof. Contracting with a vector in E, and then wedging with a vector in E; sends a
section of CO(M; Ag’) to CO(M; Af_ 1), so the formula makes sense by induction. Let us
prove that the norm takes finite values. For this, we use the fact that m’(, is of order zero and
Lemma 4.2 to get first that for f € CO(M; Ag‘), one has || f|lv.o < C| fllo. This implies,
for any f € CcOM; Afs),
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dy  dg

Yo e f AYillve =€) IXalicoll Yilicoll fllo < €1 fllo
i=1 j=I ij

with a constant C” independent of the choice of cover or partition of unity. This shows

that ||.||v.1 takes finite values and a quick induction shows that it is also the case of ||.||y x

for any k. The triangle inequality, homogeneity, and non-negativity of ||.||v x follow from
Lemma 4.2 and an induction. Suppose now that f € CO(M; AZ“) and f # 0. Then, f is
non-zero on a small open set, and since (X ! ) and (Y, L’;) are local bases, then there is (ig, jo)
such that Lydo A Y,jo is continuous and non-zero on that open set. By induction and the

s,h
fact that mf, gives a positive measure to any non-empty open set, we get that || /|y x > 0

and ||.||v « thus defines a norm. We prove equation (66):
P i _ 1P ) tLx vi
Lyie fnrY, =e (L(d(p—t)w[y(xzjt)f/\e Y,

= ) A e LxYi(y).

Y-y X T

Using the invariance of the Anosov decomposition in equation (13), we get

dS d“

tP ) tLyx yi
Z; Z; € gy iy D A€W
i=1 j=

et.[x Yi

_ tLyx vi J P ) ) u
- Z ”e Yu””(d(p—t)(pty(xu)”e L(d‘pft)(pt\(Xli)/”(d(ﬂft)(my(xli)”f(y) A ||et-£X Ylj” .
LJ

We then have ||e'£x YL5||, ||(d¢,t)¢,y(X£)|| < Ce™'" for some (uniform) C, > 0 by the
Anosov property. Finally, we obtain

ds du

dy dy
P i —2nt P i
DD e f A Yillvacr < €Y 0N e g fATDIva-

i=lj=1 i=1 j=1

for X3 := (dg_1) gy (X /1(dp_1) gy (Xl and Vi = e'£xYi /|| Lx Y| Passing to the
supremum thus gives

le™® fllva—t < CePVIZ2E=DMEy £ = 1 fllyx < CePVI=20r £

V.k-

To conclude the proof of equation (66), we only need to initialize the induction, and this is
exactly the statement of Lemma 4.2.
Consider f € C*(M; &,) and consider its decomposition

ds
f:Za)k, wr € C*(M, AZS).
k=0

We define a norm on C*°(M; &y, ) with the following bound when using the propagator:

d
PV
1l =" llexllve. e fllv < Ce "V fly.
k=0
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This is the only thing we need to mimic the argument of Lemmas 3.4 and 3.5, and prove
that no resonance exists in {Re(1) > P(V)} and that resonances on the critical axis have
no Jordan block. O

We will now prove Theorem 1.1 for the action on d;-forms.

PROPOSITION 4.3. (Critical axis for ds-forms) Under Assumption I, the first resonance
P (V) is simple and the space of co-resonant states is spanned by m,.

Proof. The argument of Lemma 3.6 goes through and the projector I1g(1) on the resonant
states is obtained as the limit of R(1)" as an operator H* — F*. The formula defining
R()) is the same. In particular, as in the proof of Proposition 3.1, we obtain every
co-resonant state by the following construction:

for all » € P(V)+iR, forall ve C¥(M; A% (EX @ E¥), To(h)*(v)= liT (RO (v),
n——+0o0

where the convergence holds in 7. Consider the pairing between C®(M; A% (E *®E)))
and C®(M; A% (E* @ EY)) defined by (v, u) := fM u Ao A v, extended to H* x H*.

Co-resonant states define currents of order 0. Consider two smooth forms
w € C®(M; A% (E} @ EF)) and 6 € C®°(M; A%(E} @ E})). We first expand these
forms:

dy ds
o= . wpeC*M; Afy, 6= D O e CH*M: Ady.(67)
k=0 k=0

Note that the regularity of the component is only Holder continuous here because of the
regularity of the stable and unstable foliation. We see that wy A a A §; is a continuous
n-form which is non-zero if and only if k + [/ = d;. The previous discussion justifies the
following convergence:

(0, To(3)"6) = — lim_ fR ()™ e (e, 0) di

dy
- — 1 /t xk —tA tP ’9 o\ dt.
Jim fR (X' () *e kX_(j)«e @k, Oa, k)

Here, we have noticed that the integration over all the manifold is an n-current of order
zero and thus extends to continuous n-forms. ‘

By Assumption 1, we can find a trivialization basis (Y;/ )i<j<d, € C OM; EY)
such that E} = Span{Yuj, 1<j=<ds} and (Ysj)lfjfdu e COM; E¥) such that
E*=Span{Y{, 1 <j<d,). Let Y'A- - AYE A@AY A AY" =G Aanb
be a non-vanishing continuous n-form which we suppose to be positive. We notice to start
that, using the Anosov property, there is an n > 0 such that
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/ PN YETTAYY A AYEAYEA - AYS
M
< Ce™™ f P A - YE YA AYE AYIAYZA A Y
M
< Ce™ 2 / lePWIA - YETLAYEY ARG AYIAYEA - A Y
M
< Ce 2 / Y@ Aanb.
M
Thus, a quick induction yields the following bound:
forall 0 <k <dy, |(ewr. 04,—1)| < Cllwllcoe™ > (e, 6).
Now, choose a smooth section w and 6 such that wy and 6, are non-vanishing on

M. Note that such an @ can be obtained by approximating in C° norm a non-vanishing
continuous section by smooth sections. Then, we get the convergence of

€= (w, MTH(M)*0) = — lim / X @)™ e ™ (e wy, Bo) (1 + O(e™™)) dt.
k—+o00 Jr
Consider thus an arbitrary € > 0 and an integer ky > 0 such that for any k > ko, one has

—€ < <e.

/ ') e ™ (ePawy, o) (1 + O(e™™)) dt + ¢
R

The support of the (x'(t))** goes to infinity with k, so we can suppose that for k > kq,
onehas1 —e <14 O(e™") < 1 + € on the support of the integrand. In other words, we
have obtained

=

for all k = ko, % = '/ (X' @) *e ™ (ePawy, Bo) dt + ¢ -
R —

This also proves the boundedness of the above integral with wg and 6y replaced by @ and
6, and this shows that

(@, TTp(M)*0) = lim / X (0)*e ™ (P awy, 6p) dt
k—+00 Jr
< Cllwllo lim sup f 1O () *1e™ PV (e, 6) di < C'|lw| co.
R

The above bound actually holds for any 6 and w, and we get that every co-resonant state is
an order zero current.

Restrictions of co-resonant state on unstable manifolds are well defined. Following the
strategy of the proof of Proposition 3.2, we consider a co-resonant state & which satisfies
WEF(0) C E¥. For any x € M, we can thus define the restriction of 6 to ‘W (x). We will
denote 6y := Oy (). More explicitly, for a smooth function f € C*°(M), we can define

(fiwe oy Ox) = (FIWH* (0], 0) = (fFIW* ()1, O)gp g5
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where the bracket denotes the distributional pairing and [W"*(x)] denotes the d,-current
which consists in integrating over the unstable manifold “W" (x). Then, 6, is seen to be
of order zero, in other words, {0, | x € M} defines a system of measures on the unstable
leaves.

The system of measures {0, | x € M} satisfies ¢;-conformality. This is again a conse-
quence of the fact that 6 is a co-resonant state. More precisely, for any smooth function
f € C*®(M), we can write

(FIW“ L O)gpwqrs = e TV P FIW ()], 0)gp g
Using e’P (f[W" (x)]) = &P fF['W"(g;x)] then yields
0c(f) = e PG, (e5V =) fo_y)),

which is exactly the ¢;-conformality for the potential V.

The system of measures {0, | x € M} satisfies the change of variable by holonomy.
This a consequence of the continuity of x + 6y, which is shown as in the proof of
Proposition 3.2. Indeed, another way of obtaining 6, is to write 6 as a linear combination of
smooth d,,-form with distributional coefficients in {~*. Then, the restriction 8y is obtained
by pulling back the smooth forms and the coefficients. The pullback on the coefficients are
well defined by the wavefront set condition and we deduce the continuity property by the
continuity of the coefficients.

Following the proof of Proposition 3.2 and using [10, Corollary 3.12], we obtain the
existence of a constant ¢ > 0 such that for any x € M, one has 6, = cm)’ﬁ’v.

The first resonance P (V) is simple. The first part of the proof shows that it suffices to
prove that for any w € C*(M; Agx ), one has (, 8) = c(w, mY,). Note that such a @ writes
w = fvolgyu, for some f € C%(M), we can then write

Ox(f) = (f[(Wu(X)], e)wxwﬁr = (fsrwu(x), VOlrWu(x) VAN AN 9)7{?)(7,{7.?,

where dqyu () is the integration of function on the unstable manifold of x (see equa-
tion (56)). Remark that here, the last bracket is the usual distributional pairing. In partic-
ular, 6y is the restriction to the unstable manifold ‘W (x) of the measure volqu A a A 6.
Using the last part of the proof of Proposition 3.2 then yields that

for all feCO(M), (@, 0) = (volyn Ao ABY(f) = c(Volyu A AmYy) = c(w, my).
This concludes the proof. O

We can now prove the second part of Theorem 1.2 for ds-forms.

PROPOSITION 4.4. The equilibrium state jy is given by the averaging formula (8).
Finally, if the flow is weak mixing with respect to the equilibrium state [y, then the only
resonance on the critical axis is P(V).

Proof. The averaging formula is derived from the product formula of Lemma 4.1 and
the expression of the projector ITo(P(V)) using the exact same argument as in the proof
of Proposition 3.3. Suppose now that there is another co-resonant state 6 associated to a
resonance P(V) +iA on the critical axis. We use the fact that 6 is of order O as well as
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[35, Ch. 6, equation (2.6)] to get that there exists a Borel measure pg and a ,u’o}—measurable
function Ty with values in A% (E} @ E}) normalized 11};-almost everywhere such that

forall € C°(M; A% (E} @ EY)), (w,0) = /M(a)(x), Ty (x)) dug(x),

where the bracket here denotes the scalar product on A% (E* @ EF). Moreover, the
measure j;; is defined by

for all U € M open set, ,ug\(U) = sup (w, 0). (68)
lwll co=<Lsupp(@)CU

The proof of the previous proposition showed that there is a C > 0 such that
forall o € CO(M; A% (E} @ EY)),  (@,0) < CO,mYy) = po < s, =: .
Now, using equations (62), (68), as well as the bound
there exists C > 0 forallg eM, forallt >0, m%(B,(q,8)) < CeSrVV@O=PV)

(which can be found in the proof of [10, Theorem 3.10]), we get that u satisfies an upper
Gibbs bound. In other words, we have ;& < wy . In particular, the Radon—Nikodym density
h:= dug/du is an element of L*° (M, wy).

We use [33, Theorem VII.14] to see that the flow is weakly mixing if and only if the
only eigenvalue is 1 and it is a simple eigenvalue. In other words, if

Xf =iAf,
f=inf )
feL WM, ny)
has no solution except for A = 0 and f constant. However, then, we have shown that 4 is a
non-trivial solution of the above system which contradicts weak mixing. [

5. Other critical axes and regularity of the pressure
In this section, we will prove the statement about critical axes of Theorem 1.1 as well as
Corollary 1.1.

Proof. We start from the Guillemin trace formula,

T,:e” YTy w(akp,)
|det(Id — Py)|

M0 (gt (P g —2)H =)

yell

We know by Lemma 4.2 that the critical axis of (P) gls is {Re(A) = P(V)}. We will prove
0

that the other functions are analytic in a half-plane {Re(A) > P(V) — €} for some € > 0.
We list the eigenvalues of the Poincaré map

ekT(V) <...< e)ht;u(y) < _e’?Ty < enTy < EAT(V) <...< e)L:Jrs()’) (70)
for some uniform constant n > 0 given by the Anosov property. Now we can compute

- - + +
tr(AkSD,,) = o (M), W W) et )y,
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where oy is the kth symmetric polynomial. We see that the maximum value of tr(Aku)
is attained at k = d, where one can choose all eigenvalues larger than 1 without choosing
any other eigenvalues. In particular, there is a constant C > 0, independent of y and k such
that if k # d;, then

ltr(AFP,)| < C (A% P, )e 7.

However now, we know that for k = d;, the trace is analytic and converges in {Re(X) >
P(V)}. In particular, because all terms are positive, if € < 7, then for any A € (P(V) — e,
P(V)), one has

Z T,:e” VT w(akp,)

=C).
= |det(Id — P,)| =

T e~ Gty r(A%P,)
|det(Id — P,)|

and this shows that the left-hand side is analytic in the region {Re() > P(V) — €} as
claimed. O]

Now we prove Corollary 1.1.

Proof. From [3, Theorem 1], we can find a C! neighborhood U of (Xg, Vp) and an
anisotropic Sobolev space H* such that for any (X, V) € U, the operator —X + V has
discrete spectrum in {Re(A) > —1}. Now, the pressure Px (V 4 J“) is obtained as a simple
eigenvalue (from Theorem 1.1) of a smooth family of operators acting on H*°. One deduces
the regularity statement by a perturbation argument of the resolvent, just like in the proof
of [3, Corollary 2]. The regularity of Px (V) is obtained by the same argument but on
dg-forms. O]
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A. Appendix. Holder continuity of a distributional product

In this appendix, we fix a continuous function ¢ and an order zero distribution 6 such that
WF(0) C E;. This means that the distributional product (84 (4, @) is well defined. We
will prove the following result.

PROPOSITION A.l. There exists C(¢) > 0, a > 0 and € > 0 such that if d(x, x') < ¢,
then

| (x)> 98) — By (xry> 90)| < Cl@)d (x, x')*. (A.1)
Here, the exponent a only depends on the unstable foliation.

Proof. The proof is mostly contained in the proof of [38, Proposition 6]. Indeed, to
get equation (A.1), one needs to prove superpolynomial decay of the Fourier transform
of Sy (yy — Sy (yry for & ¢ Q, where a small conic neighborhood of Ej @ Ej; with a
constant that is Holder continuous. In other words,

https://doi.org/10.1017/etds.2024.131 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.131

2474 T. Humbert

forall & ¢ @, |8qyn(r) (€) — Sqpuien (E)] < Cnd(x, x) (€)Y,

where the Fourier transforms should be, strictly speaking, defined locally using charts.
The super polynomial decay is proved in [38, Proposition 6] using integration by parts.
Inspection of the proof shows that all C* norms of the operator L;, which is used to
integrate by parts, depend Holder continuously on the base point x. Weich only uses
continuity in the proof to get uniform constant Cy, but using the Holder continuity instead
to bound the difference yields the refinement above.

On €2, we use the fact that the Fourier transform of 6 decays super polynomially and
that |%(§) - SW) (&)] has order zero. Actually, using the Holder continuity of the
foliation, the above difference is again controlled by d(x, x")* and using the definition of

the distributional product yields equation (A.1). O
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