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Kirillov Theory for a Class of
Discrete Nilpotent Groups

Haryono Tandra and William Moran

Abstract. This paper is concerned with the Kirillov map for a class of torsion-free nilpotent groups G.

G is assumed to be discrete, countable and π-radicable, with π containing the primes less than or equal

to the nilpotence class of G. In addition, it is assumed that all of the characters of G have idempotent

absolute value. Such groups are shown to be plentiful.

1 Introduction

Kirillov [11] obtained an explicit and calculable 1–1 correspondence between the ir-

reducible unitary representations (up to equivalent) of nilpotent Lie groups G and

the so-called integral orbits of the co-adjoint action of G on the dual Gˆof its Lie al-

gebra G. This method has been extended to various levels of completeness in many

different directions (see [4],[9],[15]). The direction that concerns us here is exem-

plified by the paper [4] of Carey, Moran and Pearce. Here the group G in question

is a divisible (in the sense of [4]) nilpotent discrete group, and the dual objects the

primitive ideal space of Prim G of G. That paper shows a Kirillov correspondence be-

tween the integral quasi-orbits of the Pontryagin dual of the Lie algebra G (as defined

in Baumslag [2]) of G and the primitive ideal space. Moreover this correspondence

is shown to be topological. Interestingly the proof of the correspondence given there

has its topological nature as an essential part of the inductive proof, whereas the topo-

logical nature of the original Kirillov correspondence was demonstrated only several

years after Kirillov’s original work (see [11]).

Here we extend the methodology of [4] to handle a wider class of groups. A group

G is said to be π-radicable for a set of primes π if, for every n ∈ π and every a ∈ G, the

equation xn
= a has a solution. We show that, if G is π-radicable where π contains all

primes not exceeding the nilpotence class of G, then there is a Kirillov correspondence

in the sense of [4] and it is topological.

The methodology consists to some extent of extending the techniques of [4] to

this case. The key result of that paper (Theorem 4.2), however, makes full use of the

fact that the Lie algebra is a Q-vector space. Since this property is not available in our

context we have to find other techniques to overcome the problem. We assume that

all groups involved are discrete and countable.
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2 Notation and Terminology

If a1, a2, . . . , an are elements of a group, 〈a1, a2, . . . , an〉 is used to denote the sub-

group generated by the ai
′s. Let G be a group. We write H ⊳ G if H is a normal

subgroup of G, and [a, b] to denote a−1b−1ab, the commutator of a and b. We write

1G for the identy element of G, Z(G) for the centre of G, and for some B ⊳ G, we let

Z(G/B) := {x ∈ G : [x,G] ⊆ B}, where [x,G] := {[x, g] : g ∈ G}. We denote

the primitive ideal space of C∗(G) by Prim G. For a function ψ on G, we write ψ|A
to indicate the restriction of ψ to a subset A ⊆ G. If G is abelian, we write Gˆ for

the Pontryagin dual of G, that is the compact group of all complex homomorphisms

from G to the circle group T.

We recall that a group G is nilpotent if its upper central series defined by Z1(G) :=

Z(G), and Zk+1(G) := {x ∈ G : [x,G] ⊆ Zk(G)} for k ∈ {1, 2, . . . }, terminates

after a finite number of steps in G. The nilpotence class of G is the smallest n such that

Zn(G) = G.

A group G is called torsion-free if it has no elements of finite order. If G is torsion-

free and nilpotent, G̃ indicates its (Mal’cev) completion (see [2] or [14] for the defi-

nition). Let π be a set of primes. An integer is called a π-number if its prime divisors

lie in π. The group G is called π-radicable if, for every π-number n and every a ∈ G,

the equation xn
= a has a solution.

Suppose that G is discrete. A positive definite function ϕ : G → C satisfying

ϕ(g1g2) = ϕ(g2g1) for all g1, g2 ∈ G and ϕ(1G) = 1 (ϕ is normalized) is called a

trace of G. The set Tr(G) of all traces of G equipped with pointwise topology is a

compact convex set. The extreme points of this set (i.e., those f which cannot be

written as a convex combination of two different traces) are called characters of G.

We denote the set of all characters of G as Ch(G). A character ϕ ∈ G is said to be

faithful if k(ϕ) := {x ∈ G : ϕ(x) = 1} = (1G).

We recall that the subgroup G f of a group G comprises all x ∈ G such that xG :=

{g−1xg : g ∈ G} is finite. Evidently, G f is normal in G. The group G is said to be

flat if, for every x ∈ G f , xG is a coset of some subgroup of G, or equivalently, [x,G]

is a subgroup for all x ∈ G f . The group is termed a group with absolutely idempotent

characters (AIC for short) if for every character ϕ of G, we have |ϕ|2 ≡ |ϕ|, that

is |ϕ(g)| = 1 or 0 for each g ∈ G (Bagget, Kaniuth and Moran [1, p. 182]). This

is equivalent to say that for every character ϕ of G, ϕ ≡ 0 off Z(G/k(ϕ)). It is

straightforward to show that every nilpotent group of class 2 is AIC, and it is well

known that every radicable nilpotent group is AIC ([3, Theorem 4.2]).

Let H be a normal subgroup of a group G. Suppose that G acts on Tr(H) by conju-

gation, that is if g ∈ G andϕ ∈ Tr(H), g ·ϕ := ϕg whereϕg(h) := ϕ(g−1hg), h ∈ H.

A trace ϕ ∈ Tr(H) is called G-invariant if ϕg
= ϕ for all g ∈ G. It is well known that,

if ϕ is an G-invariant trace of H, then ψ on G with ψ|H = ϕ and ψ is 0 off H, is a

trace of G (see [17]), and therefore it is easy to show that ϕ extends to some character

of G. We write TrG(H) for the compact convex set (in the pointwise topology) of all

such traces, and write ChG(H) for that of their extreme points.
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3 The Lie Algebra of G and the Space of G-Quasi-Orbits on Its Dual

Let G be a torsion-free nilpotent group of class at most c. Suppose that G is π-

radicable, where π is a set of primes containing all primes less than or equal to c.

We shall assume the properties of G for remainder of the paper. Let QG be a group

algebra of G over the rationals Q . Write QG for the completion of QG in the vector

space topology given by the powers of the augmentation ideal as a neighbourhood

base (see Jacobson [10, p. 27]). As in [4], we note that

log g := −
∞∑

n=1

1

n
(1 − g)n ∈ QG.

Here we now define the Lie algebra G of G as the R-module {log g : g ∈ G}, where

R :=
{ m

n
: (m, n) = 1 and n is a π-number

}
.

As a substructure of the Lie algebra of G̃ defined in [2], that is the Q-vector space

{log g : g ∈ G̃}, G has nilpotence class at most c. We define an action of G on G ,̂

called co-adjoint action, by

(h · f )(log g) := f (log(h−1gh)).

Two elements, f and f ′ in G ,̂ are in the same quasi-orbit if Cl(G · f ) = Cl(G · f ′)

(see [5]). We denote by O the space of G-quasi-orbits in Gˆwith the topology induced

from G .̂

4 The Construction of the Kirillov Map

Assume that G is AIC. We shall construct the so-called Kirillov map κ : O → Ch(G).

Let f ∈ G ,̂ and consider

ker f := {x ∈ G : f (x) = 1};

I( f ) := the largest ideal contained in ker f ;

Z( f ) := {x ∈ G : [x,G] ⊆ I( f )}.

Let χ f be defined as

χ f (g) := f (log g), g ∈ Z( f ).

As f is a circle-valued homomorphism on G, by the Baker-Campbell-Hausdorff for-

mula, it is easy to see that χ f is a complex homomorphism on exp Z( f ).

We call the length of a repeated commutator the number of the group elements

of it. For example, [a, b], [log a, log b] are of length 2, [[a, b], c], [c, [a, b]] and

[log b, [log a, log b]] are of length 3, etc.
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Lemma 4.1 If gi ∈ G, then

[log gn, [log gn−1, . . . , [log g2, log g1] · · · ]] =

log[gn, [gn−1, . . . , [g2, g1] · · · ]] + S

(4.1)

where each term of S is a commutator of higher length in log gi and has coefficients in R.

Proof Use the Baker-Campbell-Hausdorff formula.

Using Lemma 4.1, it is easy to show that k(χ f ) := {g ∈ exp Z( f ) : χ f (g) = 1}
is normal in G. The first item of the following lemma contains the part (1) of

Lemma 3.1 in [4].

Lemma 4.2

(i) I( f ) = Z( f ) ∩ ker f .
(ii) log k(χ f ) = I( f ).
(iii) If N ⊳ G, then log N is an additive subgroup of log G.

Proof For part (i), we note first that, if y ∈ Z( f ), then for every x ∈ G, [x, y] ∈
I( f ) ⊆ Z( f )∩ker f . It follows that Z( f )∩ker f is an ideal of G, so that Z( f )∩ker f ⊆
I( f ), and hence (i) follows. For part (ii), we first note that I( f ) ⊆ log k(χ f ). On the

other hand we notice that

k(χ f ) ⊆ exp(Z( f ) ∩ ker f ) = exp I( f ).

Hence I( f ) = log k(χ f ). For part (iii), we first note that, by the Campbell-Hausdorff

formula,

(4.2) log a + log b = log(a · b) −
1

2
[log a, log b] + S,

where each term in S is a commutator of higher length in log a and log b with a coef-

ficient in R. Note that if m
n
∈ R, then for g ∈ G we have m

n
log g = log g

m
n , where g

m
n

is the nth-root of gm. Then, by formula (4.2), each term in − 1
2
[log a, log b] + S can

be written in the form

log[gk, [gk−1, . . . , [g2, g1] · · · ]]

where either g1 or g2 is in {a, b}. Since {a, b} ⊆ N and N ⊳ G,

[gk, [gk−1, . . . , [g2, g1] · · · ]] ∈ N.

Hence log a + log b =

∑
log hi , where h1 = a · b and, for i 6= 1, hi is a commutator

in gi which is in N . Now apply formulae (4.2) and (4.1) in the summation to obtain

a form of log x + T, where x ∈ N and every term in T is of the form log xi , with xi

is a commutator of higher length in gi . Applying these formulae repeatedly, we see

that the length will eventually be higher than the nilpotence class of G, so that we can

finally obtain that log a + log b = log y with y ∈ N .
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Proposition 4.3 If Z(χ) := {g ∈ G : [g,G] ⊆ k(χ f )}, then Z(χ) = exp Z( f ).

Proof Let g ∈ exp Z( f ), that is [log g, log g ′] ∈ I( f ) for every g ′ ∈ G. According to

Lemma 4.1, we have

log[g, g ′] = [log g, log g ′] + S

where each term of S can be written as a commutator

[log gk[logk−1, . . . , [log g1] · · · ]]

where either g1 or g2 is equal to g. Then, by Lemma 4.2 (iii), log[g, g ′] ∈ I( f ).

Therefore [g, g ′] ∈ k(χ f ) for every g ′ ∈ G, so that g ∈ Z(χ). Thus we have proved

that exp Z( f ) ⊆ Z(χ).

Now suppose that g ∈ Z(χ), that is [g, g ′] ∈ k(χ f ) for every g ′ ∈ G. We note that

[log g, log g ′] = log[g, g ′] + T

where T, again by using Lemma 4.1, can be written as a sum of terms of the form

log[gℓ, [gℓ−1, . . . , [g2, g1] · · · ]]

in which either g1 or g2 is equal to g. Since [g, g ′] ∈ k(χ f ), so is

[gℓ, [gℓ−1, . . . , [g2, g1] · · · ]].

By Lemma 4.2 (ii) and (iii), [log g, log g ′] ∈ I( f ) for every g ′ ∈ G, that is log g ∈
Z( f ), or g ∈ exp Z( f ). Hence Z(χ) ⊆ exp Z( f ), and this completes the proof.

Observe that the normality of k(χ f ) implies the normality of Z(χ). We now define

φ f : G → C as follows:

(4.3) φ f (g) :=

{
χ f (g) if g ∈ exp Z( f )

0 otherwise.

By Proposition 3.3 of [16] and Proposition 4.3, φ f is a character of G.

Lemma 4.4 If f and f ′ belong to the same G-quasi-orbit, then φ f = φ f ′ .

Proof Suppose that we have such f and f ′. Suppose that gn · f → f ′ for some

sequence (gn) in G. Let x ∈ Z( f ). Then we have

log(g−1
n · exp x · gn) = log(exp x · [exp x, gn])

= x + log[exp x, gn] +
1

2
[x, log[exp x, gn]] + S
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where each term in S is a commutator of higher length in x and log[gn, exp x] with a

coefficient in R, so it is in I( f ). Thus all terms, except x, are in I( f ), so that

(4.4) (gn · f )(x) = f (log(g−1
n · exp x · gn)) = f (x).

From (4.4) we first notice that if g ∈ exp Z( f ) and χ f (g) = f (log g) = 1, then

χ f ′(g) = f ′(log g) = 1. Hence k(χ f ) ⊆ k(χ f ′). By symmetry, as f and f ′ are in

the same G-quasi-orbit, k(χ f ) = k(χ f ′), so that by Proposition 4.3, Z( f ) = Z( f ′).

Secondly, from (4.4), again we see that f (x) = f ′(x) for x ∈ Z( f ). We thus conclude

that φ f = φ f ′ .

The assignment f 7→ φ f defines the desired Kirillov map κ : O → Ch(G).

5 The Bijectivity of the Map

The following proposition uses quite different methods from the proof of the corre-

sponding result in [4].

Proposition 5.1 The map κ is surjective.

Proof Let φ ∈ Ch(G) and Z(φ) := Z(G/k(φ)). Define fφ with

fφ(log g) := φ(g), g ∈ Z(φ).

Notice that by repetitive use of Lemma 4.1 and formula (4.2), we have for g1, g2 ∈
Z(φ), log g1 + log g2 = log(g1 · g2 · h), with h ∈ k(φ). Since φ is a homomorphism

on Z(φ), it follows that fφ is a homomorphism on log Z(φ) as an additive group.

Thus, we have an homomorphism extension f of fφ on log G (we use property A.7

in [8]). By routine arguments using Lemma 4.1 and Lemma 4.2 (iii), it follows from

the normality of k(φ) in G that log k(φ) is an ideal. Since log k(φ) ⊆ ker f , we have

log k(φ) ⊆ I( f ). Again, using the same argument, it follows that Z(φ) ⊆ exp Z( f ).

We shall now show that Z(φ) = exp Z( f ).

Suppose that Z(φ) ⊂ exp Z( f ). Let φ f be a character obtained from f according

to (4.3), so that exp Z( f ) = Z(φ f ), that is Z(G/k(φ f )). Notice that

H := exp Z( f ) ∩ Z(G/Z(φ)) ⊃ Z(φ)

and H satisfies [G,H] ⊆ Z(φ) ⊂ H. Observe that φ1 := φ f |H ∈ ChG(H). We

also have that φ2 := φ|H ∈ ChG(H), for if not, then there exists ψ1, ψ2 ∈ TrG(H)

such that φ2 = αψ1 + (1 − α)ψ2 for some α, 0 < α < 1. If we let ψ1 ≡ ψ1 on H

and ψ1 ≡ 0 off H, ψ2 ≡ ψ2 on H and ψ2 ≡ 0 off H, then ψ1, ψ2 ∈ Tr(G), so that

φ = αψ1 + (1 − α)ψ2, which contradicts the fact that φ is a character of G. Next,

noting that φ1|Z(φ) = φ2|Z(φ) and employing Lemma 2.2 of [3], we have γφ1 = φ2

for some γ ∈ (H/Z(φ))ˆ. We have a contradiction since φ2(g) = φ(g) = 0 and

|φ1(g)| = |φ f (g)| = 1 whenever g ∈ H \ Z(φ). Therefore Z(φ) = exp Z( f ), and this

completes the proof.
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The proofs of the following lemmas are modified from those of Lemma 3.4 and

Lemma 3.5 of [4]. Parts of the proofs follow the same details as those in [4]. We

observe that Lemma 3.7 of [4], which states that quasi-orbits of G in Gˆ are closed,

works for G in our case here.

Lemma 5.2 Let D be the centralizer of Z2(G) := Z(G/Z(G)) in G. Then D is normal

in G, G/D is abelian and D has smaller nilpotence class than G. As G is π-radicable, so

is D.

Proof To prove both the normality of D and the commutativity of G/D, we can

simply use the formula

[[x, y], z]y−1

[[y−1, z], x]z−1

[[z, x], y−1]x−1

= 1.

As is mentioned in [4], D has nilpotence class at most c − 1. Now, since G is π-

radicable, so is Z2(G) (we use 4.12 from [18] which is given there for radicable

groups, but easily extends to π-radicable groups). As is shown in [4], we conclude

that D is also π-radicable.

Consider θ ∈ O. Then, Lemma 4.4 and 4.2 (i) imply that I( f ) is constant for any

f ∈ θ, and we write I( f ) as I(θ). We also write

D(θ) := {g ∈ G : [g, g ′] ∈ exp I(θ), ∀g ′ ∈ Z2(G/ exp I(θ))}

where Z2(G/ exp I(θ)) := {g ∈ G : [g,G] ⊆ Z(G/ exp I(θ))}.

Lemma 5.3 Suppose that θ ∈ O such that I(θ) = (0), and

rθ : Gˆ→ log D(θ)ˆ

is the restriction map. If θ ′ is a G-quasi-orbit in G ,̂ then rθ(θ
′) is a G-quasi-orbit in

log D(θ) ,̂ and θ = r−1
θ (rθ(θ)).

Proof Let f ∈ θ ′. Then it is obvious that rθ(θ
′) is contained in the G-quasi-orbit

containing rθ( f ). Suppose now that f1 ∈ D(θ)ˆsuch that Cl(G · rθ( f )) = Cl(G · f1).

Then gnrθ( f ) → f1 for some sequence (gn) in G. The countability of G implies that

gnk
f → f2 for some subsequence (gnk

) of (gn), where f2 ∈ θ ′ as θ ′ is closed by

Lemma 3.7 of [4]. Therefore we have f1 = rθ( f2) ∈ rθ(θ
′). Hence rθ(θ

′) is a G-quasi-

orbit containing rθ( f ). The proof of θ = r−1
θ (rθ(θ)) is the same as that of Lemma 3.5

of [4] (it is even simpler in our case since I(θ) = (0) ).

Lemma 5.4 Let D be as in Lemma 5.1 and ϕ ∈ ChG(D). Assume that ϕ is faithful.

Then the function ϕ defined by

ϕ(g) :=

{
ϕ(g) if g ∈ D,

0 otherwise,

is a character of G.
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Proof Note that ϕ is a restriction of some character ψ of G. As ϕ is faithful and

Z(G) ⊆ D, k(ψ) ∩ Z(G) = (1G). Since G is nilpotent, it follows that ψ is faithful.

Since G is AIC, it follows that ψ is 0 off Z(G), so that ψ = ϕ.

We recall that each character φ of C∗(G) corresponds to

J(φ) := {x ∈ C∗(G) : φ(x∗x) = 0},

which is a primitive ideal of C∗(G). We note that, as G is AIC, the assignment φ 7→
J(φ) is a 1-1 correspondence (see [3]). Now let J(φ)D := J(φ) ∩C∗(D). We have the

following lemma.

Lemma 5.5 Let D be as before, and ϕ1, ϕ2 ∈ ChG(D). Let ϕ1 and ϕ2 be characters

obtained from ϕ1 and ϕ2 as in Lemma 5.4. Regarding ϕ1 and ϕ2 as traces on C∗(G) we

obtain that, if J(ϕ1)D = J(ϕ2)D, then J(ϕ1) = J(ϕ2).

Proof Let a =

∑n
i=1 αigi . Suppose that h1D, h2D, . . . , hℓ0

D are distinct cosets such

that
⋃ℓ0

k=1 hkD =

⋃n
i=1 giD. Let Dk = hkD ∩ {g1, g2, . . . , gn}, k ∈ {1, 2, · · · , ℓ0}. Let

ϕ1(a∗a) = 0. As we have

ϕ1(a∗ a) =

∑

g−1

i g j∈D

αi α j ϕ1(g−1
i g j) +

∑

g−1

i g j /∈D

αi α j ϕ1(g−1
i g j)

with the second term 0, we obtain

∑

g−1

i g j∈D

αi α j ϕ1(g−1
i g j) = 0,

that is
ℓ0∑

k=1

∑

gik,g jk∈Dk

αik α jk ϕ1(g−1
ik g jk) = 0.

We notice that for every i, j and k, if gik, g jk ∈ Dk, then g−1
ik g jk = d−1

ik d jk for some

dik, d jk ∈ D. Thus we have
∑ℓ0

k=1 ϕ1(b∗k bk) = 0, where bk =

∑|Dk|
i=1 αik dik. Since

ϕ1(b∗k bk) ≥ 0, we have ϕ1(b∗k bk) = 0 for every k ∈ {1, 2, . . . , l0}. Since J(ϕ1)D =

J(ϕ2)D, it follows that

ϕ2(a∗ a) =

∑

g−1

i g j∈D

αi α j ϕ2(g−1
i g j)

=

ℓ0∑

k=1

ϕ2(b∗k bk)

= 0.

Hence J(ϕ1) ⊆ J(ϕ2). By symmetry, we have J(ϕ1) = J(ϕ2).

https://doi.org/10.4153/CJM-2004-040-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-040-5


Kirillov Theory for a Class of Discrete Nilpotent Groups 891

Let G be a group acting on Prim A, where A is a C∗-algebra. Let I ∈ Prim A. We

recall that I is said to be G-invariant if G · I ⊆ I. By the G-kernel of I we mean the

largest G-invariant ideal contained in I. The G-quasi-orbit of I in Prim A is the set

of all primitive ideals of A whose G-orbit closures in Prim A coincide with that of I;

or equivalently, whose G-kernels are the same as that of I. (See Green [7].)

Returning now to the groups G and D we are considering, we have the following

lemma.

Lemma 5.6 Let k1 : ϕ 7→ ϕ be a map from ChG(D) to Ch(G) according to Lemma 5.4,

k2 : ϕ 7→ J(ϕ) be the map from Ch(G) to Prim G as is stated earlier, and let

k3 : J(ϕ) 7→ a quasi-orbit of J(ϕ)D in Prim D.

Then l = k3 ◦ k2 ◦ k1 is a 1-1 correspondence between ChG(D) and G-quasi-orbits in

Prim D if they are restricted to the corresponding faithful characters of G which vanish

off D.

Proof The surjectivity of l is obvious. We now show that l is injective. Suppose that

ϕ1, ϕ2 ∈ ChG(D) such that ℓ(ϕ1) = ℓ(ϕ2), that is, J(ϕ1)D and J(ϕ2)D belong to

the same quasi-orbit in Prim D. Since J(ϕ1)D and J(ϕ2)D are G-invariant, they must

coincide with their G-kernel, so that J(ϕ1)D = J(ϕ2)D. This implies, by Lemma 5.5,

J(ϕ1) = J(ϕ2). Therefore ϕ1 = ϕ2, and hence ϕ1 = ϕ2.

We now have the following proposition whose proof is based on our claim that the

map is a homeomorphism. Recall that, as the group G we are considering is nilpotent

and AIC, we can identify Ch(G) with Prim G through the map J we stated earlier (see

also [3]).

Proposition 5.7 The map κ is injective.

Proof We prove this by induction on the nilpotence class of G. Suppose that we have

the homeomorphism property of the map κ for all groups whose nilpotence class

is lower than that of G. Let θ1 and θ2 be quasi-orbits in Gˆ such that θ1 6= θ2 and

κ(θ1) = κ(θ2). Let f1 ∈ θ2 and f2 ∈ θ2. Then φ f1
= φ f2

= ϕ. This implies that

Z(φ f1
) = exp Z( f1) = Z(φ f2

) = exp Z( f2).

Since I( fi) = ker fi ∩ Z( fi), i ∈ {1, 2}, and f1|Z( f1) = f2|Z( f2), we have I( f1) =

I( f2) = I, say. Suppose now that ϕ is defined on G = G/k(ϕ) from ϕ and fi are

defined on log G/I from fi , i ∈ {1, 2}, where log G/I = log G as I = log k(ϕ).

Let θ1 and θ2 be G-quasi-orbits in log G containing respectively f 1 and f 2. Then

κ(θ1) = κ(θ2). Since I( f1) = I( f2), it follows that D(θ1) = D(θ2) = D, where

D = {g ∈ G : [g, g ′] = 1G, ∀g ′ ∈ Z2(G)}. As θ1 6= θ2, by Lemma 5.3, r(θ1) 6= r(θ2).

As we have Lemma 5.2, then according to our inductive hypothesis, D-quasi-orbits

in (log D)ˆis homeomorphic to Prim D. Since the corresponding homeomorphism is

G-equivariant, it induces a bijection between G-quasi-orbits in (log D)ˆand G-quasi-

orbits in Prim D. By Lemma 5.6, the fact that r(θ1) 6= r(θ2) would give distinct

characters, which contradicts κ(θ1) = κ(θ2).
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6 The Kirillov Homeomorphism

We need the following definition for the next lemma. A positive definite function

ϕ is said to be associated with the subgroup-representation 〈π,K〉 (see Fell [6] for

the definition) if ϕ is defined on K and there exists a cyclic vector ξ in Hπ such that

ϕ(g) = 〈π(g)ξ, ξ〉 for all g ∈ K. If, in addition to that, ϕ is a trace, then every ϕ1,

with ϕ1(g) = 〈π(g)ξ1, ξ1〉 for some ξ1, is also a trace, and hence ϕ1 = ϕ. Let R(G)

denote the space of subgroup-representations.

Lemma 6.1 Let (〈πn,Kn〉) be a sequence of elements of R(G) and 〈π,K〉 be an element

of R(G). Let φ be a positive definite function associated with 〈π,K〉. If 〈πn,Kn〉 →
〈π,K〉, then for each subsequence (〈πni

,Kni
〉) there exists a subsequence (〈πik

,Kik
〉) of

this subsequence, and a sequence (φk), such that φk → φ (pointwise), where for every k,

φk is a finite sum of positive definite functions associated with 〈πik
,Kik

〉.

Proof (This lemma is a special case of Theorem 3.1 ′ in [6].)

If in the lemma above, all ϕn associated with πn are traces, then for every k, the

finite sum of positive definite functions φk is of the form nkϕk, where nk is a positive

integer and ϕk is a unique trace associated with 〈πik
,Kik

〉. If φ is a trace, then nkϕk →
φ implies that nk = 1 eventually as all traces are normalized.

Recall that if φ is a character of G, we write Z(φ) := Z(G/k(φ)) and χφ := φ|Z(φ).

Then we notice that χφ is 1-dimensional character, so that it can be considered as

a (1-dimensional) representation of Z(φ) with which χφ is associated. We have the

following lemma.

Lemma 6.2 (Carey, Moran and Pearce [4, Theorem 4.1].) Let (φn) be a sequence in

Ch(G). Suppose that φn → φ in the hull-kernel topology on Ch(G) identified through

the bijection with Prim G. Then there exists a subsequence (φni
) of (φn) such that

(i) φni
→ φ pointwise on some Z0 ⊆ Z(φ); and

(ii) 〈χφni
,Z(φni

)〉 → 〈χφ,Z0〉,

where the convergence in (ii) is in the sense of the inner hull-kernel topology of R(G).

Conversely, let the sequence (φn) and a character φ in Ch(G)be given such that

〈χφn
,Z(φn)〉 → 〈χφ,Z0〉. Then φn → φ0 in the hull-kernel topology on Ch(G), where

φ0 is any character whose associated representation is weakly contained in the represen-

tation of G induced by the character χφ of Z0.

Proof (See the proof of Theorem 4.1 of [4].)

The next theorem is the key result. Its proof differs significantly from that of the

corresponding result of [4].

Theorem 6.3 The map κ is a homeomorphism.
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Proof We shall first show the continuity of κ. Let (θn) be a sequence of quasi-orbits

such that θn → θ. Consider a sequence ( fn), fn ∈ θn such that fn → f for some

f ∈ θ. Then, it suffices to show that for any subsequence ( fni
) of ( fn), there exists

a subsequence (h j) of ( fni
) such that κ(h j) → κ( f ). Let the arbitrary subsequence

( fni
) be given. Since the space of subgroup representations is compact, there exists

a subsequence (gk) of ( fni
) such that

〈
χκ(gk),Z(κ(gk))

〉
converges to some 〈χ0,Z0〉,

where χκ(gk) = gk ◦ log. Suppose that φ0 is the character of G induced from χ0

on Z0. By Lemma 6.2, (κ(gk)) converges to any character φ which is weakly con-

tained in φ0. As all characters weakly contained in φ0 are identified with the same

element in Prim G, we need to check that κ( f ) is weakly contained in φ0. In fact,

since
〈
χκ(gk),Z(κ(gk)

〉
converges to 〈χ0,Z0〉, it follows from Lemma 6.1 (see com-

ments following this lemma) that χκ(h j ) → χ0 (pointwise) for some subsequence

(h j) of (gk). Hence χ0 ◦ exp = f as χκ(h j ) ◦ exp = h j and h j → f . Thus κ( f ) is

weakly contained in φ0.

We shall now prove the continuity of κ−1. Let (φn) be a sequence in Ch(G) with

φn → φ (hull-kernel). Let κ( fn) = φn, κ( f ) = φ. We will show that for any

subsequence ( fni
) of ( fn), there exists a subsequence (k) of (ni) and a sequence (hk)

such that hk → f , where for every k, hk and fk belong to the same quasi-orbit. Now

let the subsequence ( fni
) be given. By Lemma 6.2, there exists a subsequence (k) of

(ni) such that for some Z0 ⊆ Z(φ), Z(φk) → Z0 and φk → φ0 pointwise for some φ0

on Z0. Since fk = χφk
◦ exp and f = χφ ◦ exp, it follows that fk → f on Z0 := log Z0.

It suffices to find a sequence (hk) in Gˆ such that for every k, hk = fk on Z( fk) and

hk → f on G.

For any a1, a2, . . . , am ∈ G we shall show that for every ǫ > 0, there exists h ∈ G

such that h = fk0
on Z( fk0

) for sufficiently large k0 and |h(ai) − f (ai)| < ǫ for

i ∈ {1, 2, . . . ,m}. Let W := 〈a1, a2, . . . , am〉 and T0 := W ∩ Z0. Then W/T0 is a

direct sum of finitely many cyclic subgroups with generators

b1, b2, . . . , bl, bl+1, . . . , br

where for i ∈ {1, 2, . . . , l}, bi := bi + T0 is of order ni and for i ∈ {l + 1, l + 2, . . . , r},

bi is torsion-free. It is evidently enough to prove our assertion with bi ’s in place of

ai ’s. For given ǫ > 0, we shall choose γ ∈ (W/T0)ˆ such that by choosing k0 large,

we have for all i ∈ {1, 2, . . . , r},

(6.1)
∣∣∣γ(bi) −

f (bi)

fk0
(bi)

∣∣∣ <
ǫ

2
.

Consider first for bi , i ∈ {1, 2, . . . , l}. As fk → f on Z0, since nibi ∈ Z0, we have

f (nibi)

fk(nibi)
=

(
f (bi)

fk(bi)

)ni

→ 1.

This implies that, by passing successively to subsequences and relabelling if necessary,

we may assume f (bi)/ fk(bi) tends to some ni-th root of unity as k tends to infinity.

Hence by choosing k0 large enough, we can define γ such that (6.1) holds for i ∈
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{1, 2, . . . , l}. Now let N be a multiple of the torsion of W/T0. Then we can consider

(W/T0)/N(W/T0) as having generators bl+1, bl+2, . . . , br, each of which has order

N . As
〈

bl+1, bl+2, . . . , br

〉
∼
= Z(N)r−l, we can choose N large enough so that we can

define γ on (W/T0)/N(W/T0) (and hence on W/T0) such that γ satisfies (6.1) for

i ∈ {l + 1, l + 2, . . . , r}. Therefore we have the required γ. Next let Tk := W ∩Z( fk).

Note that we can write W/T0 = St ⊕ Stf , where St :=
〈

b1, b2, . . . , bl

〉
and Stf :=〈

bl+1, bl+2, . . . , br

〉
. We also note that γ can be written as γ = γtγtf, where

(6.2) γtf(bi) =

{
γ(bi) if bi ∈ Stf

1 if bi ∈ St ,

and

(6.3) γt(bi) =

{
γ(bi) if bi ∈ St

1 if bi ∈ Stf.

Since Stf
∼
= Zr−l, arguing as in [4], there exists a character γ0 of Stf such that for k0

large, γ0(b + T0) = 1 for b ∈ Tk0
and for i ∈ {l + 1, l + 2, . . . , r},

(6.4) |γ0(bi) − γtf(bi)| <
ǫ

2
.

Then we have γ1 ∈ (W/T0)ˆ such that

(6.5) γ1(bi) =

{
γ0(bi) if bi ∈ Stf

1 if bi ∈ St .

Now set γ2 := γ1γt . Since St is finite and Tk → T0, we can choose k0 such that

Tk0
∩ St = (0). In addition to that, as W is finitely generated, we can also make k0

large enough such that T0 ⊆ Tk for all k ≥ k0. Note that, by (6.3) and (6.5), we have

(6.6) |γ2(bi) − γ(bi)| = 0

if bi ∈ St , while by (6.2), (6.3), (6.4) and (6.5), we have

(6.7) |γ2(bi) − γ(bi)| = |γ1(bi) − γtf (bi)| = |γ0(bi) − γtf (bi)| <
ǫ

2

if bi ∈ Stf . Since we see that γ2 ≡ 1 on Tk0
/T0, γ2 determines the character γ ′

2 of

(W/T0)/(Tk0
/T0) defined by γ ′

2((b + T0) + Tk0
/T0) := γ2(b + T0) for all b ∈ W .

Notice that (W/T0)/(Tk0
/T0) ∼= W/Tk0

with the corresponding map

(b + T0) + Tk0
/T0 7→ b + Tk0

.

We then have the character γ ′ ′
2 of W/Tk0

defined by

γ ′ ′
2 (b + Tk0

) := γ ′
2((b + T0) + Tk0

/T0).
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It follows that γ ′′
2 (b + Tk0

) = γ2(b + T0) for all b ∈ W , and hence from (6.1), (6.6)

and (6.7) we have ∣∣∣γ ′ ′
2 (bi + Tk0

) −
f (bi)

fk0
(bi)

∣∣∣ < ǫ

for all i ∈ {1, 2, . . . , r}. Note that (W/Tk0
) ∼= (W + Z( fk0

))/Z( fk0
). Let

π : W + Z( fk0
) −→ (W + Z( fk0

))/Z( fk0
)

be the quotient projection. We can extend γ ′ ′
2 ◦ π to a character γ ′ ′

2 of G. Now

set h := γ ′ ′
2 fk0

. Then we have h ∈ Gˆ which satisfies the required conditions, that

is h = fk0
on Z( fk0

) and |h(bi) − f (bi)| < ǫ for all i ∈ {1, 2, . . . , r}. Therefore,

enumerating G as (an)n=∞
n=1 , we can choose hki

∈ Gˆ for each i such that hki
= fki

on

Z( fki
), and for each n,

|hki
(an) − f (an)| <

1

i

for i ≥ n, that is hki
→ f . This completes the proof.

7 Example

We conclude this paper with examples of a 3-step nilpotent group which is torsion-

free, π-radicable, AIC, but, in general, not complete. Let π := {2, 3} and

Qπ := {
m

n
: m ∈ Z, n is a π-number}.

(Note that we may choose any other π as long as π ⊇ {2, 3}.) Consider the group

G =

{



1 a d f

0 1 b e

0 0 1 c

0 0 0 1


 : a, d, f ∈ Q, b, c, e ∈ Qπ

}
,

which is 3-step and π-radicable (but not complete). We shall show that G is AIC.

In view of Theorem 2.4 of [1], it suffices to show that for all N ⊳ G, [xN,G/N] =

[x,G]N/N is a subgroup of G/N for all elements xN of finite conjugacy class of G/N .

For convenience, write an arbitrary x ∈ G as (a, b, c, d, e, f ) := x. Now let x1 :=

(a1, b1, c1, d1, e1, f1) ∈ G. Then we have the following formula:

[x1, x] = (0, 0, 0, ba1 − ab1, cb1 − bc1,

− c1a1b + ac1b1 − bca1 + ea1 + cd1 + cab1 − ae1 − dc1).

Now consider the set

[x1,G] := {[x1, x] : x ∈ G}.

Suppose that either a1 6= 0 or c1 6= 0. Substituting x = (0, 0, 0, d, e, f ), we have

[x1, x] = (0, 0, 0, 0, 0, ea1 − dc1). Then we see that [x1,G] contains the centre Z(G)
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of G. As G is 3-step, it is easy to observe that [x1,G] is a subgroup of G, and hence

for all N ⊳ G, [x,G]N/N is a subgroup of G/N . Now suppose that both a1 = 0 and

c1 = 0. Then

(7.1) [x1, x] = (0, 0, 0,−ab1, cb1, cd1 + cab1 − ae1).

If b1 = 0, then it is obvious that [x1,G]N/N is a subgroup of G/N for all N ⊳ G.

Now let b1 6= 0. Let N ⊳ G. If N ⊇ Z(G), then it is straightforward that [x1,G]N/N

is a subgroup. Next, let N 6⊇ Z(G). As the set of all components cd1 + cab1 − ae1 in

(7.1) is equal to Q , and we know that Q has no proper subgroup of finite index (see

Kurosh [12, pp. 61–62], or more generally in [13, p. 234]), it follows that [x1,G]N/N

is an infinite subset of G/N , and hence x1N is not an element of finite conjugacy class

of G/N . This completes the proof that G is AIC.

Symmetrically, it is easy to see that another combination for the matrix G which

gives an example is G := {(a, b, c, d, e, f ) : a, b, d ∈ Qπ, c, e, f ∈ Q}.
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