ON SETS OF ARCS CONTAINING NO CYCLES IN A TOURNAMENT*
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1. A tournament T with n nodes is a complete asymmetric
——— 'n

digraph [2]. A set S of arcs of a tournament is called consistent if
the tournament contains no oriented cycles composed entirely of arcs
of S [1]. The object of this note is to provide a new lower bound for
f(n), the greatest integer k such that every tournament with n nodes
contains a set of k consistent arcs. Erdos and Moon [1] showed that

[g—] [%1] < f(n) < (}—25-) (r21}\ , where [x] denotes the largest integer

not exceeding x, and the second inequality holds for any fixed ¢ > 0
and all sufficiently large n.

Consistent arcs are of interest, for example, in consistency of
paired comparison experiments [3]. The problem of finding largest
sets of consistent arcs in a tournament is an extension of the problem
of finding largest transitive subtournaments [4].

2. A T2m+1 is regular if the outdegree of each node is m.
A T2 is almost regular if m of the nodes have outdegree m -1 and
m oo e

m of the nodes have outdegree m.

LEMMA 1. If Tn is neither regular nor almost regular and

S is a consistent set of arcs in T  such that |S| is a maximum, then
n
n
[S| > f(n-1) + (31 + 1.
Proof. Since Tn is neither regular nor almost regular, T has
—_— n

anode v with outdegree not less than [=] + 1 or a node w with indegree

NP

not less than [-g—] + 1. The Tn "

v (or w) and its adjacent arcs contains a consistent set of at least

obtained from T by deleting
n
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f(n-1) arcs, which with the [12.1] +1 arcs in Tn directed away from
v (or directed towards w) forms a consistent set of at least

f(n-1) + [121] + 1 arcsin T . Thus, if S is as stated,
n

|s| > f(n-1) + [?] +1.

LEMMA 2. Every almost regular sz contains two nodes u

and v such that the outdegree of u is m-1, the outdegree of v is
m, and T contains an arc from u to v.

2m

Proof. For m =1, the result is clear. If there were m2 arcs
directed from the m nodes of outdegree . m to the m nodes of outdegree
m-1, then there could be no arc joining any two nodes of outdegree m
for then one of these nodes would have outdegree greater than m . This
is impossible when m > 2. Thus, sucha u and v are guaranteed in
every almost regular T-Zm

LEMMA 3. If S is a consistent set of arcs in an almost regular

sz (m > 2) such that [SI is a maximum, then lS] > f(2m-2) + 2m.

Proof. Let u and v be as in Lemma 2. Let A be the m
arcs directed away from v, and let B be the m arcs directed
towards u. Then AMB = ¢ since u is directed towards v. The

TZm-Z obtained from sz by deleting nodes u and v and all

their adjacent arcs contains a consistent set of at least f(2m-2) arcs,
which with AUB forms a consistent set of at least f(2m-2) + 2m arcs
in T, . Thus, if S is as stated, S| > f(2m-2) +2m.

n+3

J{==7] -1 for all integers n >

THEOREM 1. f(n) > | 2

AV
[\

NI

Proof. It is easy to see that equality holds for 2 < n < 4.
Let n > 5 and assume f(k) > [-125][}5;—3

4 < k< n-1. Let S bea consistent set of arcs in Tn such that IS]

] -1 for all k such that

is a maximum. If Tn is neither regular nor almost regular, then
by Lemma 1 and the induction hypothesis, ’SI > f(n-1) + [lzl] +1 >
n n 1

e [ R - I e N RS R

=By ntt ntl -
S I I
[3_;-_1][32_2_] -1 [%][—2—] -1. I Tn is regular (i.e. n=2m + 1

some m > 2) and v 1is a node of Tn' then the Tn 1 obtained from

Tn by deleting v and its adjacent arcs contains a consistent set of at

least f(n-1) = f(2m) arcs, which with the m arcs in Tn directed
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away from v forms a consistent set of at least f(2m) + m arcs in

T . Thus, if Tn is regular |S| > f(2m) + m > m(m +2) - 1 :[g][r%@] -1,
n = -

by the induction hypothesis. If Tn is almost regular (i.e. n =2m for

some m > 3), then by Lemma 3 and the induction hypothesis,

IS] > f(2m-2) + 2m > m(m +1) -1 = [?][%B] -1. Thus,
+
f(n) > [';i][ n_z_?:] - 1. By induction, the result follows.
n, nt3
3. For 2<n< 7, f(n) = [—2'][—2—] -1 as can be seen by

considering "extremal' tournaments where the lower bound in Theorem 1
is assumed for each such n. This is done in [5], but the arguments are
very special for each case so that only the results are given here. To

show f(2) =1, £(3) =2, and f(4) =5 simply consider the one TZ' the

strong T3 , and the strong T4 . To show {(5) =7, consider the
regular T5 . To show f(6) =11, consider the unique T, containing
no transitive T4 as a subtournament [4] To show f(7) =14, consider

the unique T, containing no transitive T, as a subtournament [4].

While Theorem 1 yields f(8) > 19, the exact value of £(8) is
20 [5]. To show £(8) > 20, the following result given in [5] is of help:
any T8 without a consistent set of 20 arcs is almost regular, contains

no regular T7 as a subtournament, but for every pair of nodes x and

y with outdegrees 4, the T6 obtained from T8 by deleting x and vy

and all their adjoining arcs is almost regular. But, on the other hand,
among the four nodes of outdegree 4 of sucha T_ there is a transitive

8

T so that deleting from T_ the transmitter and carrier [2] of this

3’ 8

T3 results in a T6 which is not almost regular. Thus, £(8) < 19,

is impossible so that f(8) > 20. To show f(8) < 20, consider the
T8 obtained from the unique T7 containing no transitive T4 by
adding a new node x and seven new arcs adjacent to x such that the
nodes joined by arcs directed towards x form a strong T3 .

While £(9) > 23 by Theorem 1, the exact value of f(9) is 24.
That f(9) > 24 follows easily from £(8) =20; to show f£(9) < 24, a
certain regular T9 (the composition or lexicographic product of the

two strong T3's) has no consistent set of 25 arcs.

Since f(8) = 20, we can use Lemmas 1 and 3 to proceed as in
Theorem 1 to obtain
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n+3

THEOREM 2. f{(n) > [1—12][—2—] for integers n > 8.
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