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Abstract

A colouring of the vertices of a regular polygon is symmetric if it is invariant under some reflection of the
polygon. We count the number of symmetric r-colourings of the vertices of a regular n-gon.
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1. Introduction

Let G be a finite Abelian group and let r € N. An r-colouring of G is any mapping
x:G—1{0,1,...,r—1}. Let ¥% denote the set of all r-colourings of G. The group G
naturally acts on 7¢ by

(a+x)(x) =x(x - a).

Colourings y and i are equivalent if there is a € G such that y(x — a) = y/(x) for all
x € G (that is, if they belong to the same orbit).
A symmetry (proper symmetry) of G is a mapping

Goxa-xe€G (Gox-2a—-xel),

where a € G. A colouring y € r¢ is symmetric (properly symmetric) if there is a € G
such that

xla—-x)=x(x) ((2a-x)=xx)

for all x € G (that is, if it is invariant under some symmetry (proper symmetry)).

Of special interest is the case G = Z,,. Identifying Z, with the vertices of a regular
n-gon, we obtain that the symmetries (proper symmetries) of Z, are the reflections
of the polygon (reflections in an axis through one of the vertices). If n is odd,
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Ficure 1. Two colourings of Z;5,.

the proper symmetries are the same as the symmetries, but if n is even, the proper
symmetries form only half of the symmetries. A colouring of Z, is symmetric
(properly symmetric) if it is invariant under some reflection of the polygon (reflection
in an axis through one of the vertices). For example, in Figure 1 the first colouring
is properly symmetric, and the second is symmetric but not properly symmetric. Two
colourings of Z, are equivalent if one of them can be obtained from another by a
rotation of the polygon.

In the case of 7Z, proper symmetries look incomplete in comparison with
symmetries. However, proper symmetries can be defined on any group (by taking
them to be the mappings x — ax~'a), while symmetries cannot.

It is well known that there are

1
Ni(m) =~ > ("

dln

classes of equivalent r-colourings of Z,, where ¢ is the Euler function (see [2]). In [3]
it was shown that there are

~ pn+D/2 if nis odd,
$/(n) = 22 4 fm D2y if s even

classes of equivalent properly symmetric r-colourings of Z,, where m is the greatest
odd divisor of n, and

Z d ]_[(1 — p)r9*O2 it s odd,

dln pln/d
Sp(n)=
d 1_[ (1-prt  ifniseven
dmj2  plnj2d
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properly symmetric r-colourings of Z,, where p is a prime. Recently in [5], it was
shown that there are

AntD/2 if n is odd,
107+ %) if nis even

N:(n)={

classes of equivalent symmetric r-colourings of Z,.
In this note we count the number C;(n) of symmetric r-colourings of Z,. We prove
the following result.

TraeoreM 1.1. We have

Z d l_[(l — p)yrdrhr2 if nis odd,
dn pln/d
=124 [ | a=-pet+rh
dml2  pnj2d
- Z d 1_[ (1 = p)yr D2 ity is even,
dim  plm/d

where m is the greatest odd divisor of n.

As in [3], we first establish a general formula for counting the number C}(G)
of symmetric r-colourings of G (Section 2), and then deduce from it Theorem 1.1
(Section 3).

2. General formula

For every y € r9, let [y] and St (y) denote the orbit and the stabiliser of y, that is,
xl={a+x:aeG} and St(y)={acG:a+y=x}
Then |[y]| = |G : St (v)|, and for every € [x], St () = St (x). Also let
Z(y)={aeG:x(a— x)=y(x) forall xe G}.

Thus, a colouring y € r¢ is symmetric if and only if Z(y) # 0.
Lemma 2.1. If a € Z(y), then for every b € G, a + 2b € Z(b + y).

Proor. Indeed,

b+x)a+2b—-—x)=x(a+2b—x—-b)=x(a+b—-x)
=x(a—(x—D)=x(x—b)=(D+x)(x).

This completes the proof. O

CoroLLARY 2.2. If y is symmetric, so is every ¥ € [x].

https://doi.org/10.1017/S0004972713001147 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713001147

4 Y. Zelenyuk and Y. Zelenyuk (4]

Notice that the ‘proper’ version of Lemma 2.1 was better. If
Z'(x) ={a€G: x(2a — x) = x(x) for all x € G}

and a€Z'(y), then for every beG, a+beZ'(b+y), and consequently,
Uyery1 Z' (W) = G. This made counting properly symmetric colourings easier. Now
we can conclude only that if a € Z(y), then a + 2G C ey Z(¥), where

2G ={2x: x€G}.
Lemmva 2.3. Ifae€ Z(y) and Y = St (), then Z(y) =a + Y.
Proor. Tosee thata + Y C Z(y), letb € Y. Then
x(@+b—x)=x(a-(x—b)=x(x-b)= b+ =x(x),

soa+beZ(y).
To see that Z(y) Ca + Y, let c € Z(x). Then

(¢ —ay(x) = x(x = (¢ —a)) = x(a - (c = x)) = x(c = x) = x(X).

Consequently,c —a€Y,andsocea+Y.
Thus, Z(y)=a+ Y. O

From Lemmas 2.1 and 2.3 we obtain that the following corollary.

CoroLLARY 2.4. Ifa € Z(x) and Y = St (x), then foreverybe G, Z(b+ y)=a+2b+7,
and Uyep ZW) =a+2G +Y.

Define the subgroup B(G) of G by
B(G)={xeG:2x=0}.

Lemmva 2.5. If ae Z(y) and Y =St (y), then [y] decomposes into a disjoint union
of subsets (Y € [x]:ZW)=a+ S}, where S € 2QG+Y)/Y, and each of the subsets
consists of |B(G/Y)| colourings.

Proor. The first statement is obvious. For the second, it suffices to check that
v ell:ZW)=a+ Y} =IB(G/Y)I
Let b € G. Then by Corollary 2.4, Z(b + ) = a + 2b + Y. Consequently,
Zb+y)=a+Ye2beYob+YeBG/Y).
This completes the proof. O

Lemma 2.6. For every a € G,

(GHBGD/2  ifu e 2G
|{XerG:an(X)}|:{r v ’
G112

otherwise.
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Proor. The number on the left is equal to the number of r-colourings of the family
{{x, a — x} : x € G}. Since x = a — x if and only if 2x = a, that number is

AK+(GI=IKD/2 r(|G|+|Ka|)/2,

where K, ={xe€ G :2x=a}. If a ¢ 2G, then K, = (. Let a € 2G and pick xy € K,. We
claim that K, = xo + B(G).

To see that xy + B(G) C K, let y e B(G). Then 2(xp +y) =2xp + 2y =a, so xg +
yeK,.

To see the converse inclusion, let x € K,. From 2xy = a and 2x = a, we obtain that
2(x — xp) =0, whence x — xo € B(G), and so x € xy + B(G). O

Let u(Y, X) denote the Mobius function of the lattice of subgroups of A, that is,

1 ifY =X,
w, X)={" Z ulY,z) ify<X,
Y<Z<X
0 otherwise.

See [1, Ch. IV] for more information about the Mobius function and Mébius inversion.
For every subgroup Y <G, let R(Y) be a set of representatives of cosets of G by
2G + Y. Also forevery a € G and Y <G, let

5.(Y) = 1 ifae2G+Y,
“ 10 otherwise.

The next theorem gives us a general formula for counting the number C;(G).

TueoreMm 2.7. We have

. IG/Y|- p(¥, X) (1G/X1+6,(X)IBG/X)/2
C:(G) = : .
D=2 ) T 2

X<G Y<X aeR(Y)

Proor. For every a € G and for every Y <G, let C,(Y) (C4(G, Y)) denote the number
of all y €% such that a € Z(x) and Y =St (y) (Y € St(x)). Notice that C,(G,Y)=
Dv<x<a Co(X) and C,(G, Y) = C,1y(G/Y, 0). Consequently, by Lemma 2.6,

T oo HGIYHIBGIYD2 if 4 € 2G + ¥,
T G2 otherwise

(since a + Y €2(G/Y) if and only if a € 2G + Y). Using the function 6,(Y), we can

rewrite this as
Co(X) = HIO/ Y+ HBGIND/2,

Y<X<G

https://doi.org/10.1017/S0004972713001147 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713001147

6 Y. Zelenyuk and Y. Zelenyuk [6]

Then applying Md&bius inversion gives us

Cu(Y) = Z (Y, X)r1G/ X160 1BGI0D/2
Y<X<G

Now for every Y <G, let C(Y) denote the number of all symmetric colourings y
with St (y) =Y. From Lemma 2.5,

C© [G/Y]-Cu)
C(Y)‘a;n BGIV

Consequently,

Cw) = Z Z w,,(IG/X|+6a(X)-|B(G/x)|)/2
R voxee  1BGIY)

Z w Z r(|G/X|+5a(X)-|B(G/X)|)/2.
IB(G/Y)I

Y<X<G aeR(Y)

Finally, since C}(G) = Y y<g C(Y),

) — G/ Y] u(¥, X) (1G/X143,0-1BG X))/
C@=2, 2 TG 2

Y<G Y<X<G acR(Y)
-y e x) IG/Y] - p¥, X) 3 G 001BG0N 2
X<G Y<X IB(G/Y)| aeR(Y)
completing the proof. m|

3. Proof of Theorem 1.1
Recall that the classical Mobius function is defined by

1 ifn=1,
u(n) ={ (=D if nis a product of k distinct primes,

0 otherwise,

and that it is in fact the Mobius function of the lattice of natural numbers with respect to
the divisibility: if d | n, then u(d, n) = u(n/d). Also recall that a function f: N — C is
multiplicative if f(1)=1 and f(mn) = f(m)f(n) whenever m, n are relatively prime.
For example, the functions u(n) and f(n) =n are multiplicative. The product of
multiplicative functions is also a multiplicative function. If f is a multiplicative
function, then for every n € N, one has

> u@f@ =] Ja-ren

dln pln
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(see [4, Theorem I1.3.b]). Here, p is a prime, and for n = 1, the right-hand side of the
equality is defined to be 1.
Define the function é(n) by

1 ifnisodd,
6(n) = .
0 ifniseven.

Both ¢6(n) and 1/(2 — 6(n)) are multiplicative functions [3, Lemma].
Proor or THEorREM 1.1. For every subgroup Y of Z,, define R(Y) by

1} if2Z,+Y+2Z,,
R(Y) = {0,1} 1 + *
{0} otherwise.
Let d, k denote the orders of subgroups X, Y of Z,,. Then u(Y, X) = u(d/k), |B(G/Y)| =
2-46(n/k),
1} if i
R(Y) = {0,1} ifn/k 1§ even,
{0} otherwise,

00X) =1, 6:(X)=6(n/d), and 651(X)-|B(G/X)|=6(n/d)2 - 6n/d)=d6n/d). It
follows from Theorem 2.7 that

k'u( ) ((”/d)+2—5("/d))/2 n ((n/d)+6(n/d))/2
Crm = Zzz 5(2 )( +(1_6(%))r )

din kld
_ () (r(d+276(d))/2 + (1 B (5(2 ))r(d+6(d))/2)
k

din kn/d 2-6(3)
= d M( (d+2-6(d))/2 + (1 6(dk)) (d+6(d))/2)
dn  kind 2 = 6(dk)

If n is odd, then 6(d) = 6(dk) = 1, and so

Cin) = Z d Z k(P2 = Z d 1_[(1 _ pyrsnr,

dn kln/d dn pln/d

Now suppose that n is even. Write C;(n) =S| — §,, where

ku(k) (d+2-8(d))/2 | (d+5(d)/2
Si=),d ) 5o (r +r )

dn kln/d 6(dk)
kS(diOpk) (avo0a 2
S, =34 Hd+o(d)/
dzn: oy 2 — 6(dk)
Consider S . If 4 is odd, then
kuk) ku(k) l—[(l I 4 ):0
Frog? 2 — o(dk) Frog? 2 —6(k) oinjd 2—-06(p)
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since f(k) = k/(2 — d(k)) is a multiplicative function, n/d is even and f(2) = 1. Thus,
_ ku(k) dnR+l |, dpR
Sl—de%;jT(r + i),

where the first sum is taken over all even d | n. Hence,

Si=>1d Y koo™ =" d [ ]a-pet+r.

dn/2  kin/2d din/2  pln/2d

Consider S,. If d is odd, then

ko(dkyu(k) ké(k)u(k) 1 po(p) '\ _ 1= p.
[10-22)- [To-»

2-6k) A 2-0k) LIV 2-6(p)

kin/d kl pln/d

since f(k) = ko(k)/(2 — 6(k)) is a multiplicative function, n/d is even and f(2) = 0. If
d is even, then
3 Kb _,

& 2 — o(dk)

Sa=>d [ [(1=prehr o

dim  plm/d

Hence,

This completes the proof.
In this way one can also determine the number N;(n). However, in [5] it is done
more simply.
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