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Abstract

In this paper we prove that minimal 3-spheres of CR type with constant sectional curvature c in the
complex projective space CP" are all equivariant and therefore the immersion is rigid. The curvature c
of the sphere should be c = \/{m2 — 1) for some integer m > 2, and the full dimension is n = 2m2 - 3.
An explicit analytic expression for such an immersion is given.
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1. Preliminary

In [1], Bejancu established the concept of CR-submanifold M in a Kahler manifold N.
Namely, if there is a decomposition TM = V, © V2 with V; a subbundle of TM,
i = 1, 2, such that J V\ C TLM and J V2 = V2, where J is the complex structure
of N and TLM is the normal bundle on M, then M is called a CR-submanifold of N.

In this paper, we assume that N is the complex projective space CP" with constant
holomorphic sectional curvature 4.

The minimal surface theory in CP" has made a great progress over the past thirty
years. For constant curved minimal 2-spheres in CP", the immersion <p : S2 ->• CP"
is uniquely determined by the induced metric, and <p can be constructed from its
directrix <pQ : S2 —> CP" by using arithmetical procedure [2].

Up to now merely a few examples have been known for higher dimensional minimal
submanifolds in CP". There are some examples of holomorphic submanifolds and
Lagrangian minimal submanifolds [3, 4, 6]. In [5] we studied equivariant minimal 3-
spheres with constant (sectional) curvature c immersed in CP". Here the terminology

Project supported by the NSFC (10261006), the NSFJP (0211005) and the FANEDD (200217).
© 2005 Australian Mathematical Society 1446-7887/05 $A2.00 + 0.00

1

https://doi.org/10.1017/S1446788700009290 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009290
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'equivariant' means that the immersion <p : S3 —>• CP" is compatible with the Lie
group structure on S3 = SU(2), that is, there exists a homomorphism E : S3 ->
U(/i + 1) of Lie group such that (p = A o 7r2 O E, where

TT2 : U(n + 1) -> CP" = U(n + 1)/U(1) x U(n)

is the natural projection and A : CP" —> CP" is a holomorphic isometry. In [5],
we provided two examples of minimal immersions from S3 into CP". One of these
examples is below.

EXAMPLE 1. For a given integer m > 2, put/fc = ( m - 2 ) ( m + l ) , / = ( m - l ) ( m + 2 ) ,

, 1 1 m - 1 , 1 1 m + 1
cos2f = - - — = — , s i n 2 f = - + — = — ,

2 2m 2m 2 2m 2m

where t € (0, n/2). Let

where (z, u>) 6 53 = {(z, w) € C2 | zz + ww = 1}, and {e 0 , . . . , ek, e'o,..., ej) is the
natural basis of €k+l+2 = Ck+l © C'+1. Let n : 52n+1 -»• CP" be the Hopf fibration.
Define <p = n o e0 : S* -^ CPk+M, where

(1.1) e0 = (cos r/, sin tg) : 53 -> S2(t+')+3 C Ck+l+1.

Then

(a) <p is an equivariant minimal immersion with respect to the induced metric ds2;
(b) <p is of CR type, that is, ?>(S3) is a CR-submanifold of C P";
(c) The sectional curvature of the induced metric ds2 is a constant c = l/(m2 - 1).

Since it and I are all even, the immersion (p in Example 1 induces an embedding
\l/ : RP 3 -» CP".

We will always assume that (S3, ^s2) has constant sectional curvature c and we
will identify S3 with the Lie group SU(2). Up to an isometry of S3 we may consider
the metric ds2 as a bi-invariant metric on SU(2). Two maps <p, \jr : S3 -> CP" are
said to be equivalent if there is a holomorphic isometric A : ->CP"CP" such that
\jf = A o (p. We have the following results from [5].

THEOREM 1.1 ([5]). Let cp : S* -+ CP" be an equivariant minimal immersion of
CR type with constant curvature c. If <p is linearly full, then c = 2/{n + 1) where
n = 2m2 — 3 for some integer m > 2. Moreover, up to an isometry of S3, <p is
equivalent to the immersion defined in Example 1.
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THEOREM 1.2 ([5]). Let <p : S3 -> CP" be a minimal immersion of CR type.
Suppose that the induced metric is bi-invariant. If(p*Q is left-invariant, where £2 is
the Kdhler form ofCP", then (p is equivariant.

In the present paper we will prove the following

THEOREM 1.3. Up to an isometry of S3, a minimal immersion cp : S3 -> CP" of
CR type with constant curvature c is equivariant.

Theorem 1.3 together with Theorem 1.1 implies that a compact minimal CR-
submanifold M of dimension 3 with constant curvature c > 0 in €P" is an embedded
R P3, since the universal covering space of M is the 3-sphere S3 with constant curvature
c. It has rigidity. And the curvature c = l /(m2 — 1) for some integer m > 2. If the
immersion is full, then n = 2m2 — 3. Up to a holomorphic isometry of £P" and an
isometry of S3, (1.1) is the unique analytic expression of the embedding.

2. Local formulae

Identify S3 with the Lie group SU(2) with metric ds1 of constant curvature c as
follows

cS3 B (z, w) <—> ( ^ J~ ) e SU(2),

where the metric ds2 is bi-invariant and is given by ds2 = c~l ]T\3
=1 ^ ® ^i w ' m

( ^ 17 = 1 , 2, 3} being determined by

Yo>2 + 'Wj — ico\ J \—w z J \dw dz J '

Denote by su(2) the set of all left-invariant vector fields on 53(= SU(2)). It is
well known that 5u(2) is a real vector space of dimension 3 and the dual space su(2)*
consists of all left-invariant 1-forms on S3. The bi-invariant metric ds2 defines an
inner product on su(2) in a natural way, and induces the inner product on su(2)* and
su(2)* A 5u(2)* respectively.

Let cp : S3 —> CP" be an isometric immersion of CR type. That is to say, <p(S3)
is a CR-submanifold of CP". Denote by g, Q and J the metric, the Kahler form
and the complex structure of CP" respectively. The tensor field <p*£l defines a bundle
endomorphism F : TM —> TM by

(2.2) ds2(FX, Y) = -<p*Q.(X, Y) = g(J<ptX, <ptY), VX, Y e TPS3, p e S3.
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Since <p* £2 is skew symmetric and <p is of CR type, Fp : Tp S3 -> Tp S3 has rank 2 for
all p € S3. We then have a decomposition TS3 = Vi © V2 of F-invariant subbundle
such that

(2.3) V , = k e r F , (F|V2)2 = - / .

Here F\v2 determines an orientation of V2. Thus V\ is orientable, and there is a unit
section X\ of V\. By definition FXi = 0. Take a local orthonormal frame {X2, X3]
of V2 defined on some open subset U such that

(2.4) FX 2 = X3, FX3 = -X2.

Let [a)\, 0)2,(1)2,} be the dual frame of [X\, X2, X3}. We then have

(2.5) ds2 = (p*g = = a>2 A

on [/ by (2.2H2.4).
Denote by ( , ) the canonical symmetric scalar product of C"+1. Choose a local

unitary frame {e0, et,..., en}ofthe trivial bundle Cn+1 = 5 3 x C + 1 suchthatip = noe0

on U. Set

where i = •>/—I and p0 = —i{de0, e0) is a real 1-form. From (2.5) we get (see, for
example, [5])

(2.6)
eA+eA® eA) =

= W2A(»3.

Set GA = £ ; . = 1 aAJcoj and e] = JjA=i aAjeA. By (2.6), we have

^QAjQAk — Ojk — Mjk,
A

where Jjk = ds2(FXj, Xk) = g(J<ptXj, <ptXk). It follows that

{e\, e'2) = (e\, ?3> = 0,

\2 =

= - i , \e\\2 = \e'2\
2 = \e'3\

2 =

and from \e'2 + ie'3\
2 = 0, we obtain e'3 = ie'2. We have proved
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LEMMA 2.1. Let <p : S3 -> CP" be an isometric immersion of CR type. Then
75 3 = V, © V2 where V, = kerF, V2 is perpendicular to V, and (F|V2)2 = - id.
Furthermore, locally we have an orthonormal frame {a>\, co2, co-j] of 7**S3 with a>\
a section of V*, and a unitary frame [e0, e\,..., en) o/C"+ 1 such that (p — it o e0

satisfying de0 = ipoeQ + u>\e\ + coe2, where co = 0)2 + ico^.

Exterior differentiating (2.1) gives

(2.7) dco\ = 2co'2 A a>v dco'2 = 2co'3 A co'x, dco'3 = 2co\ A co'2,

which implies that d : su(2)* —> su(2)* A su(2)* is an isomorphism between vector
spaces.

A local section a of T*S3 is said to be left-invariant if there are real numbers
a\, a2, «3 such that a = a\co'x + a2co'2 + a^coy Note that a left-invariant local 1-form a
can be extended uniquely as a left-invariant 1-form <x e 5u(2)*. We have the following

LEMMA 2.2. Suppose {cou co2, co3] is a local orthonormal frame ofT*S3 defined on
an open subset U of S3. If

(2.8) doi\ = 2aa>2 A OJ3, da>2 = 2aco->, A u>\, dco^ = 2aa>i A a>2

for some constant a, then a2 = c and a>j is left-invariant for j = 1, 2, 3.

PROOF. Let {a>jk | j , k = 1, 2, 3} be the connection forms satisfying

(2.9) Y

where {X,} is the dual of [COJ } and V is the Levi-Civita connection. The structure
equations for S3 are

(2.10)
A

From (2.8) we know that coi2 — aco3, co23 = aco\, atu = aa>2, c = a1.

Since [ibj = (l/s/c)co'j | j = 1, 2, 3} is a global orthonormal frame of T*S3, we
set a>j = J^k ujk&k, where ujk (j, k = 1, 2, 3) are defined on U and satisfy

(2.H) y^,uijUik=sJk = y^
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Without loss of generality we set a = -^/c and

C0\ A O>2 A O>3 = * 1 = C0\ A O>2 A 0)3,

where *1 denotes the the volume element of S3.
The Hodge's star operator induces a bundle homomorphism * : T*U —• (T*U)A

(T*U) by

*a A r = <cr, r) * 1, VCT, r € T*U, p e U.

It is clear that *{f a) = f * a for all a e C°°(T*U) and / e C°°(U). From (2.8)
we see that dcoj = 2^/c * coj for j = 1, 2, 3. On the other hand, dcbj = 2^/c * o>;

(/ = 1,2, 3) by (2.7). Thus

(2.12) 2 _ , Ujkda>k = 2-y/c Y ^ Myt *a>k = 2-J~c * (Oj
k k

^2ujk A Q)k + Ujkdcbk) (j = 1, 2, 3).

= £ , Ujk,icoi,thenii,^/ = Ujiik(j,k,l = 1, 2, 3)by(2.12) . From(2.11)

we see that £ ujmUjk,i = 0 for m,k,l = 1, 2, 3. Consequently w;-t are constants for

j,k= 1 , 2 , 3 . D

LEMMA 2.3. Suppose {a>i, 0^2. ^3} " a /oca/ orthonormal frame o / 7 * S 3 definedon

an open subset U o / 5 3 . If dco\ = 2aa>2 A co^for some constant a ^ 0 , r/ien a>i IJ

PROOF. Let {X,} be the dual of {COJ }. Set

(2.13) Z = (X2-iXi)/2, a> = a>2 + ia>i, a = a)n+icou,

where {&>,*} are the connection forms determined by (2.9). Then (2.10) can be rewritten
as

I du>\ = — (d A co + a A OS) 12, dco = a A a)\ + ico23 A co,

do = ia)23 Acr + c a>\ A co, dcoii = i(cr A a + c co A co)/2.
By assumption we have — (CT A CO + a A co)/2 = 2aco2 A % = iaco A co. This forces

o(X\) = 0. We set a = Xco + IJLCO with k — X = — 2ia. Thus A = ki - ia for some
real A.i. Using (2.14) we get

(2.15) [dkx - (A, - ia)2coi - (|/x|2 + c)(ox] A co
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which implies that X! (Xx) — (Xx — id)1 — (|/n|2 + c) = 0. Since X! is real and a ^ 0,
we get Xx =0 and

(2.16) |/x|2 = a1 - c.

If a2 ^ c, we set /x = be" with b = *Ja2 — c. From (2.15) we know that
d\i = 2iixa>2s + vco. This gives idt = 2/a)23 + M~lv&>- Thus v = 0 and <w23 = rff/2.
Using (2.14) we get |/x|2 = \X\2 + c = a2 + c, contradicting (2.16).

Therefore, we have a2 = c and /x = 0. Then a = —iaco, that is, a>i2 = a<w3 and
0)31 = ao>2- Now we have Jo>23 = ia2a> Aw = 2a2a>2Aa>i = ada>\ by (2.14). Locally
we set o>23 = aa>! + df for some / e C°°(U). Choose frame

{ X 1 = X 1 , X2 = c o s / X 2 + s in /X 3 , X3 = - s i n / X 2 + c o s / X 3 }

and let [ebj} be the dual frame of {X;}. Then a>\ = u>\, o>2 = c o s / a>2 + s in / <w3 and
a>3 = — s in / w2 + c o s / a>3.

From (2.10) we have

AJa>i = 2act>2 A <y3,

Thus a)] = <£>i is left-invariant by virtue of Lemma 2.2.

A

•

3. Proof of Theorem 1.3

Let <p : S3 -*• €P" be a minimal immersion of CR type with induced metric
ds2 = c~l J^. Co', ®co'j. It is sufficient to prove that <p*£l is left-invariant by virtue of
Theorem 1.2.

Since Vj = ker F is orientable, we have a unit section &>i of V*. Using Lemma 2.1,
for any p e 53 we have a local unitary frame [e0, elt ..., en] of Cn+1 and a local
orthonormal frame {a>2, o>3} of V2* defined on an open neighbourhood U of p such that

(3.1)

= ipoeo

dex = -

• (veil
n

+ 0\ie2 + Y^e^eA\
/t=3

B=3

/i=3

(A = 3, . . . , « ) ,

where o> = co2 + ico^ and 9AB + 0BA = 0 for 3 < A, B < n.
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The exterior differential of (3.1) gives

(3.2) idp0 = -co AGO = -2i<p*£2

by (2.6) and

(3.3) du>\ — i(po — px) A co, +6n Aco, dco = i(p0 - p2) Aco- 0,2 Acou

(3.4) ax A9XA+COAG2A = 0 (A = 3, . . . , « ) ,

[8]

(3.5) = - 0 1 2 A 012 - ^ 0 M A 0 M ,

A =3

= & A 0) A 0,2 —

(3.6)

(3-7)

dex2 = -cox A co + i{px - p2) A 0 U - 2_^ 0M A 62A,
A=3

n

dQxA = ip\ A 0M + 0i2 A 02A + ^ 0 1 B A 9BA, (A > 3).
S=3

'(PO - Pi) ACOx = (012 A 0) - 012 A (0)/2\

(a + 0,2) Ao) + (ff + 0,2) A &J = 0;

'(Po — fh — «23) A CO = (a + 0,2) A <D,.

Comparing (3.3) with (2.14) and noting that co,, co2i, Po, Pi and p2 are all real-valued
1-forms, we get

(3.8)

The third equation in (3.8) gives (po — P2 — 6J23XZ) = 0, where Z = | (X 2 + 1X3).
Thus po — P2 — W23 = ^ocox for some real-valued function ^0 and therefore a + 012 =
-iX0co + fi0(Ox.

From (3.8) one gets k0 = /x0 = 0. Therefore,

(3.9)

(3.10)

a = -0,2, (023 = Po - P2

i(p0 — px) A coi = (a A co — a A o>)/2.

Since <p is minimal, we have [5]

(3.11) tr{Vco, - ipo ® cox + ipx ® cox - 9~x2 ® co} = 0,

(3.12) tr{0M ® to, + 0n ® a>} = 0 (A = 3 , . . . , n ) .

According to (2.9), Vo>, = — a>,2<8>a>2-a>i3<g>a)3 = —{a®co+a®co)/2. Substituting
it into (3.11) and using (3.9), we have

(3.13) tr { — u>\ + (a ® co — cr — 0.
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[9] Constant curved minimal CR 3-spheres in CP" 9

If we set

(3.14) /(p0 — p{) = likcoi + ixco — {xu>

for some real-valued function X defined on U, then

(3.15) a = —2/iftJi — iXoo + vco

by (3.10) and (3.13). Similarly, we may set

(3.16) 0 1 A = X A c o a n d 6U = XAcox + /xAco (A = 3 , . . . , « )

by (3.4) and (3.12).
Exterior differentiating (3.9) and using (2.14), (3.6), (3.9), (3.14) and (3.15) we get

(3.17) p,2 = iXv,

(3.18)

(3.19) ^ | X / , | 2

/t=3

Now we claim that (1) \i = 0 and (2) v = 0 on U.
In fact, if /x ^ 0 at a point q e U, then /x2 = iXv ^ 0 near g. Thus

v(X2 + \n\2)/p. ^ 0 by (3.18) and therefore ^ XAeA # 0 locally. By taking new
frame

j e0, e u e2, e3 = . A A A., e'4...,e'n\

we set Xi ^0 and X4 = • • • = Xn = 0 in (3.16). From (3.7) we have

+ /A.3(o;23 — Pi + Pi) + Al3Or] A w = —2A.3cr A o ) | = 2A.3(/A.o; — va>) A

by (3.15), where p3 = — /#33. This gives v = 0, a contradiction by (3.17). Thus ii = 0
on [/.

It follows that if v ^ Oat some point px e f/, then X = Onearpi by (3.17). Locally
we have p0 = Pi by (3.14) and a = vco by (3.15), then

—co A cb = W p o = ' ^ P i = —0 A C T — y ^ 0\A A 6 \ A = [ \v\2 — 2 _ \ \ X A \ 2 \ c o Aco
.4=3 \ A=3 /

by (3.2), (3.5) and (3.9). This together with (3.19) leads to

A=3
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a contradiction. So we have v = 0 on U.

Now a = —ikco and therefore

A.a>23 A co 4- cu>\ A co = (icr = — idk A co + k(kco\ A co + co^i A <y)

by (2.14). It follows that [idk + (c - X2)cu,] Aco = 0. Set /JA. + (c - A.2)a>, = ^,a>.

We then get k2 = c since A. is real.

From (2.14) we see that dcox = ikco Acb = 2kcj>i A o)3, where A. = ±y/c ^ 0. Thus

co\ is left-invariant by virtue of Lemma 2.3. Since u>\ is a global section of V,*, we

know cox e su(2)*. Then by (3.2) we finally obtain

<p*Q = —co A co = dcox € d(su(2)*) = 5u(2)* A su(2)*.

This completes the proof of Theorem 1.3. •
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