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Abstract

In this paper we prove that minimal 3-spheres of CR type with constant sectional curvature ¢ in the
complex projective space CP" are all equivariant and therefore the immersion is rigid. The curvature ¢
of the sphere should be ¢ = 1/(m? — 1) for some integer m > 2, and the full dimension is n = 2m? - 3.
An explicit analytic expression for such an immersion is given.
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1. Preliminary

In [1], Bejancu established the concept of CR-submanifold M in a Kédhler manifold V.
Namely, if there is a decomposition TM = V; @ V, with V; a subbundle of TM,
i =1,2,suchthat JV; C T*M and JV, = V;, where J is the complex structure
of N and T+ M is the normal bundle on M, then M is called a CR-submanifold of N.

In this paper, we assume that N is the complex projective space CP" with constant
holomorphic sectional curvature 4.

The minimal surface theory in CP” has made a great progress over the past thirty
years. For constant curved minimal 2-spheres in CP", the immersion ¢ : §2 — CP"
is uniquely determined by the induced metric, and ¢ can be constructed from its
directrix ¢y : §* — CP" by using arithmetical procedure [2].

Up to now merely a few examples have been known for higher dimensional minimal
submanifolds in CP". There are some examples of holomorphic submanifolds and
Lagrangian minimal submanifolds [3, 4, 6]. In [5] we studied equivariant minimal 3-
spheres with constant (sectional) curvature ¢ immersed in CP”". Here the terminology
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‘equivariant’ means that the immersion ¢ : §* — CP" is compatible with the Lie
group structure on S° = SU(2), that is, there exists a homomorphism E : §* —
U(n + 1) of Lie group such that ¢ = A o m, o E, where

m:Un+1) - CP"=U(n+ 1)/ U1) x Un)

is the natural projection and A : CP" — CP" is a holomorphic isometry. In [5],
we provided two examples of minimal immersions from §® into CP”. One of these
examples is below.

EXAMPLE 1. Foragivenintegerm > 2,putk = (m—2)(m+1),l = (m—1)(m+2),

coszt—l l—m_l sinzt—1+1—m+1
T2 2m 2m’ T2 2m 2m

where 1 € (0, 1/2). Let

k ]
k\ . . A .
f=§: (J.)Z-ka—jb‘j, g=§: (})zjwl—lg;,
j=0 j=0

where (z, w) € §* = {(z, w) € C* | 22+ ww =1}, and (&0, ..., &, &, - . ., £} is the
natural basis of C¥**2 = Ck! @ C**!. Let w : §*+! — CP" be the Hopf fibration.
Definep = m o ey : S — CPHH1 where

(1.1) ey = (costf,sintg) : S§3 5 §+D+3 cC ChH+2,

Then

(@) ¢ is an equivariant minimal immersion with respect to the induced metric ds?;
(b) ¢ is of CR type, that is, ¢(S*) is a CR-submanifold of CP";
(c) The sectional curvature of the induced metric ds? is a constant ¢ = 1/(m? — 1).

Since k and [ are all even, the immersion ¢ in Example 1 induces an embedding
v:RP}— CP".

We will always assume that (53, ds?) has constant sectional curvature ¢ and we
will identify $* with the Lie group SU(2). Up to an isometry of S*> we may consider
the metric ds? as a bi-invariant metric on SU(2). Two maps ¢, ¢ : §> - CP" are
said to be equivalent if there is a holomorphic isometric A : — CP"CP" such that
¥ = A o ¢. We have the following results from [5].

THEOREM 1.1 ([5]). Let ¢ : S — CP" be an equivariant minimal immersion of
CR type with constant curvature c. If ¢ is linearly full, then ¢ = 2/(n + 1) where
n = 2m? — 3 for some integer m > 2. Moreover, up to an isometry of S, ¢ is
equivalent to the immersion defined in Example 1.
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THEOREM 1.2 ([5)). Let ¢ : §* — CP" be a minimal immersion of CR type.
Suppose that the induced metric is bi-invariant. If ¢*Q is left-invariant, where S2 is
the Kdhler form of CP", then g is equivariant.

In the present paper we will prove the following

THEOREM 1.3. Up to an isometry of S°, a minimal immersion ¢ : §> — CP" of
CR type with constant curvature c is equivariant.

Theorem 1.3 together with Theorem 1.1 implies that a compact minimal CR-
submanifold M of dimension 3 with constant curvature ¢ > 0in CP" is an embedded
R P3, since the universal covering space of M is the 3-sphere > with constant curvature
c. It has rigidity. And the curvature ¢ = 1/(m? — 1) for some integer m > 2. If the
immersion is full, then n = 2m? — 3. Up to a holomorphic isometry of CP" and an
isometry of S, (1.1) is the unique analytic expression of the embedding.

2. Local formulae

Identify S* with the Lie group SU(2) with metric ds® of constant curvature ¢ as
follows

$® 5 (z, w) «—> (: ‘;’) € SUQ),

—1 3

where the metric ds? is bi-invariant and is given by ds® = ¢ i
g y j=1

{w; 1j = 1,2, 3} being determined by

iw) —wytivy\ _(z w\(dz —dw Y et
1) (w’2+iw’3 —iw, >-(—w z)(dw dz |}’ 0= b

Denote by su(2) the set of all left-invariant vector fields on S3(= SU(2)). It is
well known that su(2) is a real vector space of dimension 3 and the dual space su(2)*
consists of all left-invariant 1-forms on S*. The bi-invariant metric ds defines an
inner product on su(2) in a natural way, and induces the inner product on su(2)* and
su(2)* A su(2)” respectively.

Let ¢ : $* - CP" be an isometric immersion of CR type. That is to say, ¢(S*)
is a CR-submanifold of CP". Denote by g, 2 and J the metric, the Kihler form
and the complex structure of CP”" respectively. The tensor field ¢*2 defines a bundle
endomorphism F : TM — TM by

/ ’ M
w; @ w; with

(2.2) ds*(FX,Y)=—¢*Q(X,Y) =g(Je.X,0.Y), VX, YeT,S peS.
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Since ¢* 2 is skew symmetric and ¢ is of CR type, F, : T, S*> — T, S® has rank 2 for
all p € S°. We then have a decomposition TS* = V; @ V, of F-invariant subbundle
such that

(2.3) Vi=kerF, (F|y)=-1I

Here F|y, determines an orientation of V;. Thus V; is orientable, and there is a unit
section X of V. By definition FX; = 0. Take a local orthonormal frame {X,, X3}
of V, defined on some open subset U such that

(24) FX2=X3, FX3=—
Let {0, w2, w3} be the dual frame of {X, X,, X;}. We then have

3
2.5) ds2=<p*g=z:wj®wj, -0 QU= Qs — W3 @ Wy, = wy A
j=1

on U by (2.2)-(2.4).

Denote by { , ) the canonical symmetric scalar product of C**!. Choose a local
unitary frame {ey, ey, . . ., e,} of the trivial bundle C"*' = §* x C**! suchthatp = moe,
on U. Set

dey = ipgey + ZBAEA’

A

deA=_éAe0+ZeABer (AaB=1v"'vn)!
B

where i = —1 and py = —i(de, &) is a real I-form. From (2.5) we get (see, for
example, [5])

v'g= Z(9A®9A+9A®9A)_Zw,®w,,
(2.6) j=1
—(p*Q = EZA:GA ABy = wy A ws.

Set 6, = Z; 1 aajw; and € =), _, aajeq. By (2.6), we have
ZaAj&Ak =&k — iJji,
A

where J;;, = ds*(FX;, Xi) = g(Je. X, 9. X)). It follows that
(ely ez) (el’ 63) - ; (e,21 é;) = _iv Ielll2 |82|2 le3l2 - 1

and from |¢, + i€}|> = 0, we obtain ¢} = iej. We have proved
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LEMMA 2.1. Let ¢ : §* — CP" be an isometric immersion of CR type. Then
TS = Vi ® V, where Vi = ker F, V, is perpendicular to V; and (F|y,)* = —id.
Furthermore, locally we have an orthonormal frame {w,, w2, w;} of T*S* with w,
a section of V¥, and a unitary frame {e;, ey, .. ., €,} of C**' such that ¢ = 7 o ¢
satisfying dey = ipgey + w e + we,y, where w = w, + iws.

Exterior differentiating (2.1) gives
(2.7) dw, =2wy Awy, dw, =2w; A, doj=2w|Aw,,

which implies that d : su(2)* — su(2)* A su(2)* is an isomorphism between vector
spaces.

A local section o of T*S? is said to be left-invariant if there are real numbers
ay, az, az such that o = a,0] + a0}, + a;w;. Note that a left-invariant local 1-form o
can be extended uniquely as a left-invariant 1-form & € su(2)*. We have the following

LEMMA 2.2. Suppose {w, w,, s} is a local orthonormal frame of T*S® defined on
an open subset U of §. If

(2.8) dw; =2aw; A w3, dwy =2aws Aw,, dw;=2aw Aw,
for some constant a, then a*> = c and w; is left-invariant for j = 1,2, 3.

PROOF. Let {w;; | j, k = 1, 2, 3} be the connection forms satisfying

2.9) VX; =— ) wjXe
k

where {X;}] is the dual of {w;} and V is the Levi-Civita connection. The structure
equations for §> are

da)j = - E Wik Ny, Wjp + Wy =0;
k

dwj, = — E wji A Wy + cwj A wy.
!

(2.10)

From (2.8) we know that w;; = aws, w3 = aw,, w3 = aw,, ¢ = a*.
Since {@; = (l/ﬁ)wj’. | j =1,2,3}is a global orthonormal frame of T*S3, we
set w; = Zk uj @y, where uj, (j, k = 1, 2, 3) are defined on U and satisfy

2.11) Z ujuy = 8 = Z UjUg.
! !
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Without loss of generality we set a = /c and
W AWy Awy =%l = @1 A@y A s,

where x1 denotes the the volume element of S°.
The Hodge’s star operator induces a bundle homomorphism x : T*U — (T*U)A
(T*U) by

*ag AT =(0,7) %], VO,‘[GT;*U,pEU.

It is clear that x(f o) = f xo forallo € C®(T*U) and f € C®(U). From (2.8)
we see that dw; = 2./c % w; for j = 1,2,3. On the other hand, d@; = 2./c * @;
G =1,2,3)by (2.7). Thus

(2.12) Y updin =242 ujx @y = 24/c x
k

k
=dw; =) (duji A @+ updd) (G =1,2,3).
k

Ifwesetduj, = Y, uji @, thenujey = uj i G, k, I = 1,2, 3) by (2.12). From (2.11)
we see that Z:j Ujmijry = 0form, k,1 = 1,2, 3. Consequently u;, are constants for
J. k=123 O

LEMMA 2.3. Suppose {w;, s, w3} is a local orthonormal frame of T*S® defined on
an open subset U of $°. If dw, = 2aw; A w; for some constant a # 0, then w, is
left-invariant.

PROOF. Let {X;} be the dual of {w;}. Set
(213) Z = (X2—1X3)/2, a)=a)2+ia)3, [0} =w12+iw13,

where {w;,} are the connection forms determined by (2.9). Then (2.10) can be rewritten
as

(2.14) dwy,=—(0 Aw+ 0 Aw)/2, dw =0 ANw + ion A w,
' do =iwpn Ao +cw Aw, dwy =i(0 Ao+ cwAw)/2.

By assumption we have —(0 Aw+ 0 A®)/2 = 2aw; A w; = iaw A w. This forces
o(X;) =0. Weset o = Aw + uw with A — A = —2ia. Thus A = A, — ia for some
real A;. Using (2.14) we get

(2.15) [dr — 0 = ia) 0y — (ul* + o | A @
+ [d/L — 2/,1)\](1)] — 2i,lLa)23] Aw =0,
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which implies that X;(A;) — (A; — ia)?> — (Ju|* + ¢) = 0. Since X, is real and a # 0,
we get A; = 0 and

(2.16) ju)* =a*—c.

If a*> # ¢, we set 4 = be* with b = +/a? — c. From (2.15) we know that
dp = 2ipwy + va. This gives idt = 2iwy; + w™'v@. Thus v = 0 and wy; = dt/2.
Using (2.14) we get |u|* = |A|* + ¢ = a® + c, contradicting (2.16).

Therefore, we have a®> = c and u = 0. Then 0 = —iaw, that is, w;; = aw; and
w3 = aw,. Now we have dwy; = ia*w A @ = 2a*w, Aws = adw, by (2.14). Locally
we set wy = aw, + df forsome f € C*(U). Choose frame

{§1=X,, X, = cosf X, + sin f X3, i;:—-sianz-i—cost;}

and let {&, } be the dual frame of {ij }. Then @; = w;, @ = cos f w, + sin f w3 and
@; = —sin f w; + cos f w;.
From (2.10) we have

dC:)l = 2067)2 AN 5)3, d&)z = 205)3 A CZ)], d(b_?, = 2(1(1)1 N 6)2.

Thus w; = @ is left-invariant by virtue of Lemma 2.2. O

3. Proof of Theorem 1.3

Let ¢ : §* — CP" be a minimal immersion of CR type with induced metric
ds* = ¢7' 3, o) ® o). It is sufficient to prove that ¢*< is left-invariant by virtue of

Theorem 1.2.
Since V) = ker F is orientable, we have a unit section w; of V. Using Lemma 2.1,
for any p € S* we have a local unitary frame {eg, e, ..., ¢,} of C"*' and a local

orthonormal frame {w;, w;} of V;* defined on an open neighbourhood U of p such that
de() = ipoeo + we) + wey;

n
d€| = —w € + ip]e1 + 91262 + ZOlAeA;
A=3

G.1) o . .
de, = —wey — Bpey + ipres + ZOZA €as

A=3

dey = —0ipe) — Ornes + ZOABeB (A=3,...,n),
B=3

where @ = w; + iwy and 45 + 04 =0for3 <A, B < n.
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The exterior differential of (3.1) gives

3.2) idpg = —w A= —2ip*Q
by (2.6) and
(B3) dor=ilpp—p) AW +0pAw, do=i(p—p)Aw—0p Ao,
34 WO AO4F+wnby,, =0 (A=3,...,n),
(3.5) idpy = —6;p A 612 ~ Zem A 9—1A,
A=3

idp2='w/\6)+9l2/\9—12—292,4 /\0-2,4,

A=3
(3.6) df; = —w Aw+ (o) — p2) ANOiz — Zem A oy,
=3
3.7 db\s = ipi AGia + 012 A Oy + 2913 AOgs, (A =3).
5=3

Comparing (3.3) with (2.14) and noting that w;, w», po, 1 and p, are all real-valued
1-forms, we get

i(po— P) A = Oa "D — 02 Aw)/2;
(3.8) C+0) A+ +0) Aw=0;

i(pg— pr —wn) Aw = (0 +6i2) A wy.
The third equation in (3.8) gives (py — p2 — 0)23)(-2—) = 0, where Z = %(Xz + iX,).
Thus py — p; — wi3 = Aew, for some real-valued function Ay and therefore o + 6;; =

—iAow + ow;.
From (3.8) one gets A = o = 0. Therefore,

3.9 0 =—0n, wp3=p—p, and
3.10) i(pp—p)Aw =0 Aw—0 Aw)/2.

Since ¢ is minimal, we have [5]

3.1 tr{Vw, — ipg @ w; + ip ® w; — 0, @ w) =0,
(3.12) {0, Q@w +0, QW =0 (A=3,...,n).

According to (2.9), Vo, = —0;Qw; —w;3Qw; = —(0 Quw+0 ®w)/2. Substituting
it into (3.11) and using (3.9), we have

(3.13) tr{ —i(po—p)@w+ (6 Qw—0 Qw)/2} =0.
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If we set

(3.14) i(po — p1) = 2ihw + pw —

for some real-valued function A defined on U, then

3.15) o= 20w, — ilw + v

by (3.10) and (3.13). Similarly, we may set

(3.16) G1a =rw and Gy =0 +uw (A=3,...,n)

by (3.4) and (3.12).
Exterior differentiating (3.9) and using (2.14), (3.6), (3.9), (3.14) and (3.15) we get

3.17 Qi =iy,
(3.18) D Aafia = py = iri,
A=3
(3.19) Dol 207 + ) =1~c.
A=3

Now we claim that (1) « =0and 2) v =0on U.
In fact, if 4 # O at a point g € U, then > = iAv # Onearq. Thus ), Aafis =
v(A2 + [1]®)/i # 0 by (3.18) and therefore Y 4 Aaea # 0locally. By taking new

frame
, ZAA’AeA ’ /
&, €, 6,6=7—="——,€...,€,
{0 b |ZA)‘A"A| *
wesetA; #0and Ay = --- = A, = 0in (3.16). From (3.7) we have

[d).} + ik3(w23 - 01+ p3) + /,L30'] Nw= —2).30' ANw = 213(1).0) - U(I)) A )

by (3.15), where p; = —i6;3. This gives v = 0, a contradiction by (3.17). Thus u =0
on U.

It follows that if v # 0 at some point p, € U, then A = O near p, by (3.17). Locally
we have py = p; by (3.14) and 0 = v by (3.15), then

n n
~wA®=idpy = idpy = —0 NG — ) B4 AOis = (|v|2—2|x,,12)w/\5)

A=3 A=3

by (3.2), (3.5) and (3.9). This together with (3.19) leads to

n
W= Ml —1=—c
A=3
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a contradiction. So we have v =0o0on U.
Now 0 = —iAw and therefore

AMp Aw+coyAw=do = —idh Aw+ AAw, A w+ w3 A w)

by (2.14). It follows that [idA + (c — A®)wy] A w = 0. Set id: + (¢ — A)w; = pw.
We then get A2 = ¢ since X is real.

From (2.14) we see that dw; = iAw A @ = 20w, A w3, where A = £./c # 0. Thus
w is left-invariant by virtue of Lemma 2.3. Since w, is a global section of V*, we
know w, € su(2)*. Then by (3.2) we finally obtain

; 1
0*Q = —%w AB = —dwr € d(5u(2)") = su(D)* Asu(d)".

This completes the proof of Theorem 1.3. a
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