CONSTANT CURVED MINIMAL CR 3-SPHERES IN $\mathbb{C}P^n$

ZHEN-QI LI™ and AN-MIN HUANG

(Received 3 April 2003; revised 4 February 2004)

Communicated by C. D. Hodgson

Abstract

In this paper we prove that minimal 3-spheres of CR type with constant sectional curvature c in the complex projective space $\mathbb{C}P^n$ are all equivariant and therefore the immersion is rigid. The curvature c of the sphere should be $c = 1/(m^2 - 1)$ for some integer $m \ge 2$, and the full dimension is $n = 2m^2 - 3$. An explicit analytic expression for such an immersion is given.

2000 Mathematics subject classification: primary 53C42; secondary 53C55. Keywords and phrases: minimal, constant curvature, CR-submanifold, complex projective space.

1. Preliminary

In [1], Bejancu established the concept of CR-submanifold M in a Kähler manifold N. Namely, if there is a decomposition $TM = V_1 \oplus V_2$ with V_i a subbundle of TM, i = 1, 2, such that $JV_1 \subset T^{\perp}M$ and $JV_2 = V_2$, where J is the complex structure of N and $T^{\perp}M$ is the normal bundle on M, then M is called a CR-submanifold of N.

In this paper, we assume that N is the complex projective space $\mathbb{C}P^n$ with constant holomorphic sectional curvature 4.

The minimal surface theory in $\mathbb{C}P^n$ has made a great progress over the past thirty years. For constant curved minimal 2-spheres in $\mathbb{C}P^n$, the immersion $\varphi: S^2 \to \mathbb{C}P^n$ is uniquely determined by the induced metric, and φ can be constructed from its directrix $\varphi_0: S^2 \to \mathbb{C}P^n$ by using arithmetical procedure [2].

Up to now merely a few examples have been known for higher dimensional minimal submanifolds in $\mathbb{C}P^n$. There are some examples of holomorphic submanifolds and Lagrangian minimal submanifolds [3, 4, 6]. In [5] we studied equivariant minimal 3-spheres with constant (sectional) curvature c immersed in $\mathbb{C}P^n$. Here the terminology

Project supported by the NSFC (10261006), the NSFJP (0211005) and the FANEDD (200217).

^{© 2005} Australian Mathematical Society 1446-7887/05 \$A2.00 + 0.00

'equivariant' means that the immersion $\varphi: S^3 \to \mathbb{C}P^n$ is compatible with the Lie group structure on $S^3 = SU(2)$, that is, there exists a homomorphism $E: S^3 \to U(n+1)$ of Lie group such that $\varphi = A \circ \pi_2 \circ E$, where

$$\pi_2: \mathrm{U}(n+1) \to \mathbb{C}P^n = \mathrm{U}(n+1)/\mathrm{U}(1) \times \mathrm{U}(n)$$

is the natural projection and $A: \mathbb{C}P^n \to \mathbb{C}P^n$ is a holomorphic isometry. In [5], we provided two examples of minimal immersions from S^3 into $\mathbb{C}P^n$. One of these examples is below.

EXAMPLE 1. For a given integer $m \ge 2$, put k = (m-2)(m+1), l = (m-1)(m+2),

$$\cos^2 t = \frac{1}{2} - \frac{1}{2m} = \frac{m-1}{2m}, \quad \sin^2 t = \frac{1}{2} + \frac{1}{2m} = \frac{m+1}{2m},$$

where $t \in (0, \pi/2)$. Let

$$f = \sum_{j=0}^{k} \sqrt{\binom{k}{j}} z^{j} w^{k-j} \varepsilon_{j}, \quad g = \sum_{j=0}^{l} \sqrt{\binom{l}{j}} z^{j} w^{l-j} \varepsilon'_{j},$$

where $(z, w) \in S^3 = \{(z, w) \in \mathbb{C}^2 \mid z\bar{z} + w\bar{w} = 1\}$, and $\{\varepsilon_0, \dots, \varepsilon_k, \varepsilon_0', \dots, \varepsilon_l'\}$ is the natural basis of $\mathbb{C}^{k+l+2} = \mathbb{C}^{k+1} \oplus \mathbb{C}^{l+1}$. Let $\pi : S^{2n+1} \to \mathbb{C}P^n$ be the Hopf fibration. Define $\varphi = \pi \circ e_0 : S^3 \to \mathbb{C}P^{k+l+1}$, where

(1.1)
$$e_0 = (\cos tf, \sin tg) : S^3 \to S^{2(k+l)+3} \subset \mathbb{C}^{k+l+2}$$

Then

- (a) φ is an equivariant minimal immersion with respect to the induced metric ds^2 ;
- (b) φ is of CR type, that is, $\varphi(S^3)$ is a CR-submanifold of $\mathbb{C}P^n$;
- (c) The sectional curvature of the induced metric ds^2 is a constant $c = 1/(m^2 1)$.

Since k and l are all even, the immersion φ in Example 1 induces an embedding $\psi : \mathbb{R}P^3 \to \mathbb{C}P^n$.

We will always assume that (S^3, ds^2) has constant sectional curvature c and we will identify S^3 with the Lie group SU(2). Up to an isometry of S^3 we may consider the metric ds^2 as a bi-invariant metric on SU(2). Two maps $\varphi, \psi : S^3 \to \mathbb{C}P^n$ are said to be *equivalent* if there is a holomorphic isometric $A : \to CP^n\mathbb{C}P^n$ such that $\psi = A \circ \varphi$. We have the following results from [5].

THEOREM 1.1 ([5]). Let $\varphi: S^3 \to \mathbb{C}P^n$ be an equivariant minimal immersion of CR type with constant curvature c. If φ is linearly full, then c = 2/(n+1) where $n = 2m^2 - 3$ for some integer $m \ge 2$. Moreover, up to an isometry of S^3 , φ is equivalent to the immersion defined in Example 1.

THEOREM 1.2 ([5]). Let $\varphi: S^3 \to \mathbb{C}P^n$ be a minimal immersion of CR type. Suppose that the induced metric is bi-invariant. If $\varphi^*\Omega$ is left-invariant, where Ω is the Kähler form of $\mathbb{C}P^n$, then φ is equivariant.

In the present paper we will prove the following

THEOREM 1.3. Up to an isometry of S^3 , a minimal immersion $\varphi: S^3 \to \mathbb{C}P^n$ of CR type with constant curvature c is equivariant.

Theorem 1.3 together with Theorem 1.1 implies that a compact minimal CR-submanifold M of dimension 3 with constant curvature c > 0 in $\mathbb{C}P^n$ is an embedded $\mathbb{R}P^3$, since the universal covering space of M is the 3-sphere S^3 with constant curvature c. It has rigidity. And the curvature $c = 1/(m^2 - 1)$ for some integer $m \ge 2$. If the immersion is full, then $n = 2m^2 - 3$. Up to a holomorphic isometry of $\mathbb{C}P^n$ and an isometry of S^3 , (1.1) is the unique analytic expression of the embedding.

2. Local formulae

Identify S^3 with the Lie group SU(2) with metric ds^2 of constant curvature c as follows

$$S^3 \ni (z, w) \longleftrightarrow \begin{pmatrix} z & -\bar{w} \\ w & \bar{z} \end{pmatrix} \in SU(2),$$

where the metric ds^2 is bi-invariant and is given by $ds^2 = c^{-1} \sum_{j=1}^3 \omega_j' \otimes \omega_j'$ with $\{\omega_i' \mid j=1,2,3\}$ being determined by

(2.1)
$$\begin{pmatrix} i\omega'_1 & -\omega'_2 + i\omega'_3 \\ \omega'_2 + i\omega'_3 & -i\omega'_1 \end{pmatrix} = \begin{pmatrix} \bar{z} & \bar{w} \\ -w & z \end{pmatrix} \begin{pmatrix} dz & -d\bar{w} \\ dw & d\bar{z} \end{pmatrix}, \quad (i = \sqrt{-1}).$$

Denote by $\mathfrak{su}(2)$ the set of all left-invariant vector fields on $S^3 (= SU(2))$. It is well known that $\mathfrak{su}(2)$ is a real vector space of dimension 3 and the dual space $\mathfrak{su}(2)^*$ consists of all left-invariant 1-forms on S^3 . The bi-invariant metric ds^2 defines an inner product on $\mathfrak{su}(2)$ in a natural way, and induces the inner product on $\mathfrak{su}(2)^*$ and $\mathfrak{su}(2)^* \wedge \mathfrak{su}(2)^*$ respectively.

Let $\varphi: S^3 \to \mathbb{C}P^n$ be an isometric immersion of CR type. That is to say, $\varphi(S^3)$ is a CR-submanifold of $\mathbb{C}P^n$. Denote by g, Ω and J the metric, the Kähler form and the complex structure of $\mathbb{C}P^n$ respectively. The tensor field $\varphi^*\Omega$ defines a bundle endomorphism $F: TM \to TM$ by

$$(2.2) \quad ds^2(FX, Y) = -\varphi^*\Omega(X, Y) = g(J\varphi_*X, \varphi_*Y), \quad \forall X, Y \in T_p S^3, \ p \in S^3.$$

Since $\varphi^*\Omega$ is skew symmetric and φ is of CR type, $F_p: T_p S^3 \to T_p S^3$ has rank 2 for all $p \in S^3$. We then have a decomposition $TS^3 = V_1 \oplus V_2$ of F-invariant subbundle such that

$$(2.3) V_1 = \ker F, \quad (F|_{V_2})^2 = -I.$$

Here $F|_{V_2}$ determines an orientation of V_2 . Thus V_1 is orientable, and there is a unit section X_1 of V_1 . By definition $FX_1 = 0$. Take a local orthonormal frame $\{X_2, X_3\}$ of V_2 defined on some open subset U such that

$$(2.4) FX_2 = X_3, FX_3 = -X_2.$$

Let $\{\omega_1, \omega_2, \omega_3\}$ be the dual frame of $\{X_1, X_2, X_3\}$. We then have

(2.5)
$$ds^2 = \varphi^* g = \sum_{j=1}^3 \omega_j \otimes \omega_j, \quad -\varphi^* \Omega = \omega_2 \otimes \omega_3 - \omega_3 \otimes \omega_2 = \omega_2 \wedge \omega_3$$

on U by (2.2)–(2.4).

Denote by \langle , \rangle the canonical symmetric scalar product of \mathbb{C}^{n+1} . Choose a local unitary frame $\{e_0, e_1, \ldots, e_n\}$ of the trivial bundle $\underline{\mathbb{C}}^{n+1} = S^3 \times \mathbb{C}^{n+1}$ such that $\varphi = \pi \circ e_0$ on U. Set

$$\begin{cases} de_0 = i\rho_0 e_0 + \sum_A \theta_A e_A; \\ de_A = -\bar{\theta}_A e_0 + \sum_B \theta_{AB} e_B, \quad (A, B = 1, \dots, n), \end{cases}$$

where $i = \sqrt{-1}$ and $\rho_0 = -i\langle de_0, \bar{e}_0 \rangle$ is a real 1-form. From (2.5) we get (see, for example, [5])

(2.6)
$$\begin{cases} \varphi^* g = \frac{1}{2} \sum_{A} (\theta_A \otimes \bar{\theta}_A + \bar{\theta}_A \otimes \theta_A) = \sum_{j=1}^3 \omega_j \otimes \omega_j; \\ -\varphi^* \Omega = \frac{i}{2} \sum_{A} \theta_A \wedge \bar{\theta}_A = \omega_2 \wedge \omega_3. \end{cases}$$

Set
$$\theta_A = \sum_{j=1}^3 a_{Aj} \omega_j$$
 and $e'_j = \sum_{A=1}^n a_{Aj} e_A$. By (2.6), we have
$$\sum_A a_{Aj} \bar{a}_{Ak} = \delta_{jk} - i J_{jk},$$

where $J_{jk} = ds^2(FX_j, X_k) = g(J\varphi_*X_j, \varphi_*X_k)$. It follows that

$$\langle e_1', \bar{e}_2' \rangle = \langle e_1', \bar{e}_3' \rangle = 0, \quad \langle e_2', \bar{e}_3' \rangle = -i, \quad |e_1'|^2 = |e_2'|^2 = |e_3'|^2 = 1,$$

and from $|e'_2 + ie'_3|^2 = 0$, we obtain $e'_3 = ie'_2$. We have proved

LEMMA 2.1. Let $\varphi: S^3 \to \mathbb{C}P^n$ be an isometric immersion of CR type. Then $TS^3 = V_1 \oplus V_2$ where $V_1 = \ker F$, V_2 is perpendicular to V_1 and $(F|_{V_2})^2 = -\operatorname{id}$. Furthermore, locally we have an orthonormal frame $\{\omega_1, \omega_2, \omega_3\}$ of T^*S^3 with ω_1 a section of V_1^* , and a unitary frame $\{e_0, e_1, \ldots, e_n\}$ of $\underline{\mathbb{C}}^{n+1}$ such that $\varphi = \pi \circ e_0$ satisfying $de_0 = i\rho_0 e_0 + \omega_1 e_1 + \omega e_2$, where $\omega = \omega_2 + i\omega_3$.

Exterior differentiating (2.1) gives

(2.7)
$$d\omega'_1 = 2\omega'_2 \wedge \omega'_3, \quad d\omega'_2 = 2\omega'_3 \wedge \omega'_1, \quad d\omega'_3 = 2\omega'_1 \wedge \omega'_2,$$

which implies that $d: \mathfrak{su}(2)^* \to \mathfrak{su}(2)^* \wedge \mathfrak{su}(2)^*$ is an isomorphism between vector spaces.

A local section σ of T^*S^3 is said to be *left-invariant* if there are real numbers a_1 , a_2 , a_3 such that $\sigma = a_1\omega_1' + a_2\omega_2' + a_3\omega_3'$. Note that a left-invariant local 1-form σ can be extended uniquely as a left-invariant 1-form $\tilde{\sigma} \in \mathfrak{su}(2)^*$. We have the following

LEMMA 2.2. Suppose $\{\omega_1, \omega_2, \omega_3\}$ is a local orthonormal frame of T^*S^3 defined on an open subset U of S^3 . If

$$(2.8) d\omega_1 = 2a\omega_2 \wedge \omega_3, d\omega_2 = 2a\omega_3 \wedge \omega_1, d\omega_3 = 2a\omega_1 \wedge \omega_2$$

for some constant a, then $a^2 = c$ and ω_j is left-invariant for j = 1, 2, 3.

PROOF. Let $\{\omega_{jk} \mid j, k = 1, 2, 3\}$ be the connection forms satisfying

$$\nabla X_j = -\sum_k \omega_{jk} X_k,$$

where $\{X_j\}$ is the dual of $\{\omega_j\}$ and ∇ is the Levi-Civita connection. The structure equations for S^3 are

(2.10)
$$\begin{cases} d\omega_{j} = -\sum_{k} \omega_{jk} \wedge \omega_{k}, & \omega_{jk} + \omega_{kj} = 0; \\ d\omega_{jk} = -\sum_{l} \omega_{jl} \wedge \omega_{lk} + c\omega_{j} \wedge \omega_{k}. \end{cases}$$

From (2.8) we know that $\omega_{12}=a\omega_3$, $\omega_{23}=a\omega_1$, $\omega_{31}=a\omega_2$, $c=a^2$.

Since $\{\tilde{\omega}_j = (1/\sqrt{c})\omega'_j \mid j = 1, 2, 3\}$ is a global orthonormal frame of T^*S^3 , we set $\omega_j = \sum_k u_{jk}\tilde{\omega}_k$, where u_{jk} (j, k = 1, 2, 3) are defined on U and satisfy

(2.11)
$$\sum_{l} u_{lj} u_{lk} = \delta_{jk} = \sum_{l} u_{jl} u_{kl}.$$

Without loss of generality we set $a = \sqrt{c}$ and

$$\omega_1 \wedge \omega_2 \wedge \omega_3 = *1 = \tilde{\omega}_1 \wedge \tilde{\omega}_2 \wedge \tilde{\omega}_3$$

where *1 denotes the the volume element of S^3 .

The Hodge's star operator induces a bundle homomorphism $*: T^*U \to (T^*U) \land (T^*U)$ by

$$*\sigma \wedge \tau = \langle \sigma, \tau \rangle * 1, \quad \forall \sigma, \tau \in T_p^* U, \ p \in U.$$

It is clear that $*(f \sigma) = f * \sigma$ for all $\sigma \in C^{\infty}(T^*U)$ and $f \in C^{\infty}(U)$. From (2.8) we see that $d\omega_j = 2\sqrt{c} * \omega_j$ for j = 1, 2, 3. On the other hand, $d\tilde{\omega}_j = 2\sqrt{c} * \tilde{\omega}_j$ (j = 1, 2, 3) by (2.7). Thus

(2.12)
$$\sum_{k} u_{jk} d\tilde{\omega}_{k} = 2\sqrt{c} \sum_{k} u_{jk} * \tilde{\omega}_{k} = 2\sqrt{c} * \omega_{j}$$
$$= d\omega_{j} = \sum_{k} (du_{jk} \wedge \tilde{\omega}_{k} + u_{jk} d\tilde{\omega}_{k}) \quad (j = 1, 2, 3).$$

If we set $du_{jk} = \sum_{l} u_{jk,l} \tilde{\omega}_{l}$, then $u_{jk,l} = u_{jl,k}$ (j, k, l = 1, 2, 3) by (2.12). From (2.11) we see that $\sum_{j} u_{jm} u_{jk,l} = 0$ for m, k, l = 1, 2, 3. Consequently u_{jk} are constants for j, k = 1, 2, 3.

LEMMA 2.3. Suppose $\{\omega_1, \omega_2, \omega_3\}$ is a local orthonormal frame of T^*S^3 defined on an open subset U of S^3 . If $d\omega_1 = 2a\omega_2 \wedge \omega_3$ for some constant $a \neq 0$, then ω_1 is left-invariant.

PROOF. Let $\{X_i\}$ be the dual of $\{\omega_i\}$. Set

(2.13)
$$Z = (X_2 - iX_3)/2, \quad \omega = \omega_2 + i\omega_3, \quad \sigma = \omega_{12} + i\omega_{13},$$

where $\{\omega_{jk}\}$ are the connection forms determined by (2.9). Then (2.10) can be rewritten as

(2.14)
$$\begin{cases} d\omega_1 = -(\bar{\sigma} \wedge \omega + \sigma \wedge \bar{\omega})/2, & d\omega = \sigma \wedge \omega_1 + i\omega_{23} \wedge \omega, \\ d\sigma = i\omega_{23} \wedge \sigma + c\omega_1 \wedge \omega, & d\omega_{23} = i(\sigma \wedge \bar{\sigma} + c\omega \wedge \bar{\omega})/2. \end{cases}$$

By assumption we have $-(\bar{\sigma} \wedge \omega + \sigma \wedge \bar{\omega})/2 = 2a\omega_2 \wedge \omega_3 = ia\omega \wedge \bar{\omega}$. This forces $\sigma(X_1) = 0$. We set $\sigma = \lambda\omega + \mu\bar{\omega}$ with $\lambda - \bar{\lambda} = -2ia$. Thus $\lambda = \lambda_1 - ia$ for some real λ_1 . Using (2.14) we get

(2.15)
$$\left[d\lambda_1 - (\lambda_1 - ia)^2 \omega_1 - (|\mu|^2 + c)\omega_1 \right] \wedge \omega$$

$$+ \left[d\mu - 2\mu\lambda_1\omega_1 - 2i\mu\omega_{23} \right] \wedge \bar{\omega} = 0,$$

which implies that $X_1(\lambda_1) - (\lambda_1 - ia)^2 - (|\mu|^2 + c) = 0$. Since X_1 is real and $a \neq 0$, we get $\lambda_1 = 0$ and

If $a^2 \neq c$, we set $\mu = be^{it}$ with $b = \sqrt{a^2 - c}$. From (2.15) we know that $d\mu = 2i\mu\omega_{23} + \nu\bar{\omega}$. This gives $idt = 2i\omega_{23} + \mu^{-1}\nu\bar{\omega}$. Thus $\nu = 0$ and $\omega_{23} = dt/2$. Using (2.14) we get $|\mu|^2 = |\lambda|^2 + c = a^2 + c$, contradicting (2.16).

Therefore, we have $a^2=c$ and $\mu=0$. Then $\sigma=-ia\omega$, that is, $\omega_{12}=a\omega_3$ and $\omega_{31}=a\omega_2$. Now we have $d\omega_{23}=ia^2\omega\wedge\bar{\omega}=2a^2\omega_2\wedge\omega_3=a\,d\omega_1$ by (2.14). Locally we set $\omega_{23}=a\omega_1+df$ for some $f\in C^\infty(U)$. Choose frame

$$\{\widetilde{X}_1 = X_1, \ \widetilde{X}_2 = \cos f X_2 + \sin f X_3, \ \widetilde{X}_3 = -\sin f X_2 + \cos f X_3\}$$

and let $\{\tilde{\omega}_j\}$ be the dual frame of $\{\tilde{X}_j\}$. Then $\tilde{\omega}_1 = \omega_1$, $\tilde{\omega}_2 = \cos f \omega_2 + \sin f \omega_3$ and $\tilde{\omega}_3 = -\sin f \omega_2 + \cos f \omega_3$.

From (2.10) we have

$$d\tilde{\omega}_1 = 2a\tilde{\omega}_2 \wedge \tilde{\omega}_3, \quad d\tilde{\omega}_2 = 2a\tilde{\omega}_3 \wedge \tilde{\omega}_1, \quad d\tilde{\omega}_3 = 2a\tilde{\omega}_1 \wedge \tilde{\omega}_2.$$

Thus $\omega_1 = \tilde{\omega}_1$ is left-invariant by virtue of Lemma 2.2.

3. Proof of Theorem 1.3

Let $\varphi: S^3 \to \mathbb{C}P^n$ be a minimal immersion of CR type with induced metric $ds^2 = c^{-1} \sum_j \omega'_j \otimes \omega'_j$. It is sufficient to prove that $\varphi^*\Omega$ is left-invariant by virtue of Theorem 1.2.

Since $V_1 = \ker F$ is orientable, we have a unit section ω_1 of V_1^* . Using Lemma 2.1, for any $p \in S^3$ we have a local unitary frame $\{e_0, e_1, \ldots, e_n\}$ of \mathbb{C}^{n+1} and a local orthonormal frame $\{\omega_2, \omega_3\}$ of V_2^* defined on an open neighbourhood U of P such that

(3.1)
$$\begin{cases} de_0 = i\rho_0 e_0 + \omega_1 e_1 + \omega e_2; \\ de_1 = -\omega_1 e_0 + i\rho_1 e_1 + \theta_{12} e_2 + \sum_{A=3}^n \theta_{1A} e_A; \\ de_2 = -\bar{\omega} e_0 - \bar{\theta}_{12} e_1 + i\rho_2 e_2 + \sum_{A=3}^n \theta_{2A} e_A; \\ de_A = -\bar{\theta}_{1A} e_1 - \bar{\theta}_{2A} e_2 + \sum_{B=3}^n \theta_{AB} e_B \quad (A = 3, ..., n), \end{cases}$$

where $\omega = \omega_2 + i\omega_3$ and $\theta_{AB} + \bar{\theta}_{BA} = 0$ for $3 \le A$, $B \le n$.

The exterior differential of (3.1) gives

$$id\rho_0 = -\omega \wedge \bar{\omega} = -2i\varphi^*\Omega$$

by (2.6) and

$$(3.3) d\omega_1 = i(\rho_0 - \rho_1) \wedge \omega_1 + \bar{\theta}_{12} \wedge \omega, d\omega = i(\rho_0 - \rho_2) \wedge \omega - \theta_{12} \wedge \omega_1,$$

(3.4)
$$\omega_1 \wedge \theta_{1A} + \omega \wedge \theta_{2A} = 0 \quad (A = 3, \ldots, n),$$

(3.5)
$$id\rho_{1} = -\theta_{12} \wedge \bar{\theta}_{12} - \sum_{A=3}^{n} \theta_{1A} \wedge \bar{\theta}_{1A},$$

$$id\rho_2 = \omega \wedge \bar{\omega} + \theta_{12} \wedge \bar{\theta}_{12} - \sum_{A=3}^n \theta_{2A} \wedge \bar{\theta}_{2A},$$

(3.6)
$$d\theta_{12} = -\omega_1 \wedge \omega + i(\rho_1 - \rho_2) \wedge \theta_{12} - \sum_{A=1}^n \theta_{1A} \wedge \bar{\theta}_{2A},$$

(3.7)
$$d\theta_{1A} = i\rho_1 \wedge \theta_{1A} + \theta_{12} \wedge \theta_{2A} + \sum_{B=3}^{n} \theta_{1B} \wedge \theta_{BA}, \quad (A \ge 3).$$

Comparing (3.3) with (2.14) and noting that ω_1 , ω_{23} , ρ_0 , ρ_1 and ρ_2 are all real-valued 1-forms, we get

(3.8)
$$\begin{cases} i(\rho_0 - \rho_1) \wedge \omega_1 = (\theta_{12} \wedge \bar{\omega} - \bar{\theta}_{12} \wedge \omega)/2; \\ (\sigma + \theta_{12}) \wedge \bar{\omega} + (\bar{\sigma} + \bar{\theta}_{12}) \wedge \omega = 0; \\ i(\rho_0 - \rho_2 - \omega_{23}) \wedge \omega = (\sigma + \theta_{12}) \wedge \omega_1. \end{cases}$$

The third equation in (3.8) gives $(\rho_0 - \rho_2 - \omega_{23})(\overline{Z}) = 0$, where $\overline{Z} = \frac{1}{2}(X_2 + iX_3)$. Thus $\rho_0 - \rho_2 - \omega_{23} = \lambda_0 \omega_1$ for some real-valued function λ_0 and therefore $\sigma + \theta_{12} = -i\lambda_0 \omega + \mu_0 \omega_1$.

From (3.8) one gets $\lambda_0 = \mu_0 = 0$. Therefore,

(3.9)
$$\sigma = -\theta_{12}, \quad \omega_{23} = \rho_0 - \rho_2 \quad \text{and}$$

(3.10)
$$i(\rho_0 - \rho_1) \wedge \omega_1 = (\bar{\sigma} \wedge \omega - \sigma \wedge \bar{\omega})/2.$$

Since φ is minimal, we have [5]

(3.11)
$$\operatorname{tr}\{\nabla\omega_{1} - i\rho_{0} \otimes \omega_{1} + i\rho_{1} \otimes \omega_{1} - \bar{\theta}_{12} \otimes \omega\} = 0,$$

$$(3.12) tr\{\theta_{1A} \otimes \omega_1 + \theta_{2A} \otimes \omega\} = 0 (A = 3, ..., n).$$

According to (2.9), $\nabla \omega_1 = -\omega_{12} \otimes \omega_2 - \omega_{13} \otimes \omega_3 = -(\bar{\sigma} \otimes \omega + \sigma \otimes \bar{\omega})/2$. Substituting it into (3.11) and using (3.9), we have

$$(3.13) tr \left\{ -i(\rho_0 - \rho_1) \otimes \omega_1 + (\bar{\sigma} \otimes \omega - \sigma \otimes \bar{\omega})/2 \right\} = 0.$$

If we set

$$i(\rho_0 - \rho_1) = 2i\lambda\omega_1 + \mu\omega - \bar{\mu}\bar{\omega}$$

for some real-valued function λ defined on U, then

(3.15)
$$\sigma = -2\bar{\mu}\omega_1 - i\lambda\omega + \nu\bar{\omega}$$

by (3.10) and (3.13). Similarly, we may set

(3.16)
$$\theta_{1A} = \lambda_A \omega$$
 and $\theta_{2A} = \lambda_A \omega_1 + \mu_A \omega$ $(A = 3, ..., n)$

by (3.4) and (3.12).

Exterior differentiating (3.9) and using (2.14), (3.6), (3.9), (3.14) and (3.15) we get

$$(3.17) \bar{\mu}^2 = i\lambda \nu,$$

(3.18)
$$\sum_{A=3}^{n} \lambda_A \bar{\mu}_A = \mu \nu - i \lambda \bar{\mu},$$

(3.19)
$$\sum_{A=3}^{n} |\lambda_A|^2 + 2(\lambda^2 + |\mu|^2) = 1 - c.$$

Now we claim that (1) $\mu \equiv 0$ and (2) $\nu \equiv 0$ on U.

In fact, if $\mu \neq 0$ at a point $q \in U$, then $\bar{\mu}^2 = i\lambda\nu \neq 0$ near q. Thus $\sum_A \lambda_A \bar{\mu}_A = \nu(\lambda^2 + |\mu|^2)/\bar{\mu} \neq 0$ by (3.18) and therefore $\sum_A \lambda_A e_A \neq 0$ locally. By taking new frame

$$\left\{e_{0}, e_{1}, e_{2}, e'_{3} = \frac{\sum_{A} \lambda_{A} e_{A}}{\left|\sum_{A} \lambda_{A} e_{A}\right|}, e'_{4} \dots, e'_{n}\right\}$$

we set $\lambda_3 \neq 0$ and $\lambda_4 = \cdots = \lambda_n = 0$ in (3.16). From (3.7) we have

$$[d\lambda_3 + i\lambda_3(\omega_{23} - \rho_1 + \rho_3) + \mu_3\sigma] \wedge \omega = -2\lambda_3\sigma \wedge \omega_1 = 2\lambda_3(i\lambda\omega - \nu\bar{\omega}) \wedge \omega_1$$

by (3.15), where $\rho_3 = -i\theta_{33}$. This gives $\nu = 0$, a contradiction by (3.17). Thus $\mu \equiv 0$ on U.

It follows that if $\nu \neq 0$ at some point $p_1 \in U$, then $\lambda = 0$ near p_1 by (3.17). Locally we have $\rho_0 = \rho_1$ by (3.14) and $\sigma = \nu \tilde{\omega}$ by (3.15), then

$$-\omega \wedge \bar{\omega} = id\rho_0 = id\rho_1 = -\sigma \wedge \bar{\sigma} - \sum_{A=3}^n \theta_{1A} \wedge \bar{\theta}_{1A} = \left(|\nu|^2 - \sum_{A=3}^n |\lambda_A|^2 \right) \omega \wedge \bar{\omega}$$

by (3.2), (3.5) and (3.9). This together with (3.19) leads to

$$|\nu|^2 = \sum_{A=3}^n |\lambda_A|^2 - 1 = -c,$$

a contradiction. So we have $v \equiv 0$ on U.

Now $\sigma = -i\lambda\omega$ and therefore

$$\lambda\omega_{23}\wedge\omega+c\omega_1\wedge\omega=d\sigma=-id\lambda\wedge\omega+\lambda(\lambda\omega_1\wedge\omega+\omega_{23}\wedge\omega)$$

by (2.14). It follows that $[id\lambda + (c - \lambda^2)\omega_1] \wedge \omega = 0$. Set $id\lambda + (c - \lambda^2)\omega_1 = \mu_1\omega$. We then get $\lambda^2 = c$ since λ is real.

From (2.14) we see that $d\omega_1 = i\lambda\omega \wedge \bar{\omega} = 2\lambda\omega_2 \wedge \omega_3$, where $\lambda = \pm\sqrt{c} \neq 0$. Thus ω_1 is left-invariant by virtue of Lemma 2.3. Since ω_1 is a global section of V_1^* , we know $\omega_1 \in \mathfrak{su}(2)^*$. Then by (3.2) we finally obtain

$$\varphi^*\Omega = -\frac{i}{2}\omega \wedge \bar{\omega} = -\frac{1}{2\lambda}d\omega_1 \in d(\mathfrak{su}(2)^*) = \mathfrak{su}(2)^* \wedge \mathfrak{su}(2)^*.$$

This completes the proof of Theorem 1.3.

References

- [1] A. Bejancu, Geometry of CR-submanifolds (D. Reidel Publishing Company, Dordrecht, 1986).
- [2] J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward, 'On conformal minimal immersions of S² into CPⁿ', Math. Ann. 279 (1988), 599-620.
- [3] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, 'An exotic totally real minimal immersion of S³ in CP³ and its characterization', Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 153-165.
- [4] ——, 'Lagrangian isometric immersions of a real space form $M^n(c)$ into a complex space form $\tilde{M}^n(4c)$ ', Math. Proc. Cambridge Philos. Soc. 124 (1998), 107-125.
- [5] Z. Q. Li, 'Minimal S^3 with constant curvature in $\mathbb{C}P^{n}$ ', J. London Math. Soc. (2) 68 (2003), 223–240.
- [6] K. Ogiue, 'Differential geometry of Kaehler submanifolds', Adv. Math. 13 (1974), 73-114.

Department of Mathematics
Nanchang University
Nanchang 330047
P. R. of China
Current address:
Lab. of Math. for Nonlinear Sciences
Fudan University
Shanghai 200433
P. R. of China

e-mail: zhenqili@263.net

Department of Mathematics
Nanchang University
Nanchang 330047
P. R. of China
e-mail: anminhuang@163.com