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Abstract

We give a formula for the Laplacian of the second fundamental form of an n-dimensional compact
minimal submanifold M in a complex projective space CP™. As an application of this formula, we
prove that M is a geodesic minimal hypersphere in CP™ if the sectional curvature satisfies K > 1/n, if
the normal connection is flat, and if M satisfies an additional condition which is automatically satisfied
when M is a CR submanifold. We also prove that M is the complex projective space CP"/2 if K > 3/n,
and if the normal connection of M is semi-flat.
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1. Introduction

The theory of submanifolds in a complex projective space CP™ is one of the
most interesting objects in differential geometry. We have three typical classes
of submanifolds in CP™, complex submanifolds, totally real submanifolds and CR
submanifolds, according to the behavior of the tangent bundle of a submanifold with
respect to the action of the almost complex structure of the ambient manifold CP"™.
For these submanifolds, there are many interesting results (see [1, 6, 12]).

In the present paper, we first study general submanifolds in a complex projective
space CP™ of constant holomorphic sectional curvature 4, and give the Laplacian of
the second fundamental form of an n-dimensional minimal submanifold M in CP™,
which corresponds to a formula for the Laplacian of the second fundamental form of
a minimal submanifold in a unit sphere given by Simons [9].

Moreover, we prepare some inequalities for the second fundamental form which are
useful to prove pinching theorems. Based on these results we study an n-dimensional
compact minimal submanifold M in CP™ whose sectional curvature K satisfies
K > 1/n. In particular, we prove that if the sectional curvature K of an n-dimensional
compact minimal CR submanifold M in CP™ with flat normal connection satisfies
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K >1/n, then M is the geodesic minimal hypersphere in CP™. The geodesic
minimal hypersphere is given by (S (v/T/2m) x $?"~1(/@m — 1)/2m)) in CP™,
where 7 :§?"*t! — CP" is the Hopf fibration and S¥(r) is a k-dimensional
sphere (see [10]).

This is a generalization of the result in Kon [4] for a compact real minimal
hypersurface M in CP™ .

We also prove that if the sectional curvature K of an n-dimensional compact
minimal submanifold M in CP™ satisfies K > 3/n, then M is the complex projective
space CP"/? under the assumption that the normal connection of M is semi-flat.

The concept of a semi-flat normal connection of a submanifold in a complex
projective space is closely related to that of a flat normal connection of a submanifold
in a sphere.

2. Preliminaries

Let M denote a Kihler manifold of complex dimension m (real dimension 2m).
We denote by J the almost complex structure of M. The Hermitian metric of M is
denoted by g.

Let M be a real n-dimensional Riemannian manifold immersed in M. We denote
by the same g the Riemannian metric on M induced from that of M. We denote by
V the Levi-Civita connection in M and by V the connection induced on M. Then the
Gauss and Weingarten formulas are given respectively by

VxY =VxY 4+ B(X,Y), VxV=—AyX+ DxV,

for any vector fields X and Y tangent to M and any vector field V normal to M, where
D denotes the normal connection. A normal vector field V on M is said to be parallel
if DxV =0 for any vector field X tangent to M. We call both A and B the second
Sfundamental form of M that are related by g(B(X, Y), V) =g(Av X, Y).

For the second fundamental form B and A, we define VB and V A, the covariant
derivative of the second fundamental form, by

(VxB) (Y, Z) = Dx(B(Y, Z)) — B(VxY, Z) — B(Y, VxZ),
(VxA)vY =Vx(AvY) — Ap,vY — Ay (VxY).

Then we have g((VxB) (Y, Z), V) = g((VxA)vY, Z). The mean curvature vector
field u of M is defined to be u = (1/n)tr B, where tr B is the trace of B. If © =0,
then M is said to be minimal.

For any vector field X tangent to M, we put

JX=PX+ FX,

where P X is the tangential part of JX and F X is the normal part of JX. For any
vector field V normal to M, we put

JV =tV + fV,

https://doi.org/10.1017/5S0004972708000129 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000129

[3] Pinching theorems for a compact minimal submanifold 101

where ¢V is the tangential part of JV and fV is the normal part of JV. Then P and
f are skew-symmetric with respect to g and g(F X, V) = —g(X, tV). We also have
P?=—1—tF,FP+ fF=0,Pt+tf =0and f>=—1I — Fr.

Next we define the covariant derivatives of P, F, ¢ and f by (VxP)Y = Vx(PY) —
PVxY,(VxF)Y = Dx(FY) — FVxY,(Vxt)V =Vx(tV) —tDxV and (Vx )V =
Dx(fV)— fDxV, respectively. We then have (VxP)Y =AryX +tB(X,Y),
(VxF)Y =—B(X, PY)+ fB(X,Y), (Vxt)V =—PAyX + ApyX and (Vx f)V =
—FAyX — B(X,tV).

We denote by T, (M) and T, (M )L the tangent space and the normal space of M
at x, respectively.

DEFINITION 2.1. A submanifold M in a Kéhler manifold M with almost complex
structure J is called a CR submanifold in M if there exists a differentiable distribution
D:x — Dy C Ty (M) on M satisfying the following conditions:

(i)  H is holomorphic, that is JD, = D, for each x € M; and
(i) the complementary orthogonal distribution Dl.x — DxL C Tx(M) is anti-
invariant, that is J D)JC- C Te(M)* foreachx € M.

In the following, we put & = dim Dy, ¢ = dim D;- and codim M =2m —n = p. If
q = 0, then a CR submanifold M is a complex submanifold in M, and if h = 0, then
M is a totally real submanifold in M. If p = ¢, then a CR submanifold M is called a
generic submanifold. Any real hypersurface is a generic submanifold.

We use the following theorem (see [12, p. 217]).

THEOREM 2.2. In order for a submanifold M in a Kdhler manifold M to be a CR
submanifold, it is necessary and sufficient that FP = 0.

We suppose that the ambient manifold Mis a complex projective space CP" of
constant holomorphic sectional curvature 4. The Riemannian curvature tensor R of
CP™ is given by

RX,V)Z = g(Y, D)X — g(X, 2)Y + g(JY, Z)J X
—-8(UX,Z)JY +2g(X,JY)JZ, (2.1)

for any vector fields X, Y and Z of CP™. Thus the equation of Gauss and the equation
of Codazzi are given respectively by

R(X,Y)Z = g(Y, Z)X — g(X, Z)Y + g(PY, Z)PX
—g(PX,Z)PY +2g(X, PY)PZ
+ Apw,2)X — Apx,2)Y,
(VxB) (Y, Z) — (VyB) (X, Z) = g(PY, Z)FX — g(PX, Z)FY 4+ 2g(X, PY)FZ.

We define the curvature tensor R* of the normal bundle of M by

RY(X,Y)V =DxDyV — DyDxV — Dix.y]V,
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where X and Y are vector fields tangent to M and V is a vector field normal to M.
Then we have the equation of Ricci:

g(RE(X, V)U, V) +g([Av, AylX, Y)
=g(FY,U)g(FX, V) —g(FX, U)g(FY, V) +2g(X, PY)g(fU, V),

where [Ay, Ayl = Ay Ay — Ay Ay . If the normal curvature tensor R of M satisfies
R(X,Y)V =0 for any vector fields X and Y tangent to M and any vector field
V normal to M, then the normal connection of M is said to be flar. If R+
satisfies R+ (X, Y)V = 2g(X, PY)fV, then the normal connection of M is said to

be semi-flat.
In the following, we denote by A, the second fundamental form in the direction of
V4, Where {v1, ..., vp} is an orthonormal basis for T (M), p =2m — n. We denote

by | - | the length of the tensor. From the equation of Ricci, we have the following.

LEMMA 2.3. Let M be an n-dimensional submanifold in CP™. If the normal
connection of M is flat, then

Z [Aa, AplI* =2 Z(g(rva, 104) g (tvp, 1vp) — &(tva, 1v5)%)
-3 Zg(tfva, tfva) +4 Zg(Pel, Pei)g(fva, fva),
Z ¢([Afar Adlei, Pei) =2 Z tr AgA o P
= 2(2 8(tfva, 1fva) = D g(Pei, Pen)g(fva. fva>),
> &([Aa, Apltvg, top) = Z(Z(Aarvb, Aptu0) — (Aatu, Apun))
" = uzl:‘(g(tva, 104)g(tvp, 1Vp) — &(tVa, 1Vp)*)
! > 8(tfva, tfva),

where we have put A sy = A fy,.

LEMMA 2.4. Let M be an n-dimensional submanifold in CP™. If the normal
connection of M is semi-flat, then

> " lAa. AplP =2 (8(tva. tva)g(tvp. tvp) — g(tva, tvp)?),
a,b a,b
Y e(Afa. Adlei, Pe)) =2 g(tfva. tfva).

> g([Aa. Apltva, top) = Y (g(tva. 1v2)g(tvp, 1vp) — g(tva, tp)?).
a,b a,b
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In the following we give an example of a compact CR submanifold in CP" with
semi-flat normal connection.

EXAMPLE 1. Let §2"*! be a (2m + 1)-dimensional unit sphere and N be a (n +
1)-dimensional submanifold immersed in $?”"*!. With respect to the Hopf fibration
7§21 s CP™, we consider the following commutative diagram (see [3, 8, 12]):

|

M —— CP™.

We denote by (¢, &, n, G) the contact metric structure on §2m+1 - The horizontal
lift with respect to the connection n will be denoted by *. Then (JX)* = ¢X* and
G(X*, Y*)=g(X, Y)* for any vectors X and Y tangent to CP™. A submanifold N in
§?m+1 s tangent to the totally geodesic fibre of 7 and the structure vector field & is
tangent to N.

Let o be the second fundamental form of N in S2”*!. Then we have the relations
of the second fundamental form o of N and B of M:

(Vxra) (Y*, Z*)=[(VxB) (Y, Z) + g(PX, Y)FZ + g(PX, Z)FYT",
(Vxra) (Y*, §) =[fB(X,Y) — B(X, PY) — B(Y, PX)T",
(Vx+a) (§, §) = —2(FPX)",

for any vectors X, Y and Z tangent to M. From the third equation, we see that if the
second fundamental form « of N is parallel, then FP = 0 and M is a CR submanifold
of CP™ by Theorem 2.2.

Let K1 be the curvature tensor of the normal bundle of N. Then

G(KH(X*, Y*)V*, U*) = [g(R*(X, V)V, U) — 2g(X, PY)g(fV, )],
G(KH(X*, §)V*, UM =g(Vx )V, U)*
for any vectors X and Y tangent to M and any vectors V and U normal to M.

Therefore, the normal connection of N in $>"*! is flat if and only if the normal
connection of M is semi-flat and V f = 0 (see [7, 8, 12]).

We put
k k
N=S8"(r) x - x ™), n+l1=> m, 1=) r},
i=1 i=1
where my, . .., my are odd numbers. Then n + & is also odd. The second fundamental

form « of N is parallel in $>"+!. We can see that M = 7 (N) is a generic submanifold
in CP™tk=1D/2 with flat normal connection. 7 (S!(r1) x $™(r)) is called a geodesic
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hypersphere in CP"*+D/2 (see [10]). Moreover, M is a CR submanifold in CP™
(m > (n 4+ k — 1)/2) with semi-flat normal connection and V f = 0.

If ri =(@m;/(n+1)> (@ =1,...,k), then M is a generic minimal submanifold
in CP""tk=1D/2 Then we have |[A]? =Y, tr A2=(n— 1)q, g =k — 1.

If M is a complex submanifold in CP™, the normal connection of M is semi-flat if
and only if M is totally geodesic (see [3]).

3. Minimal submanifolds with flat normal connection

In this section, we give a pinching theorem for n-dimensional compact minimal
submanifolds in a complex projective space CP™ with flat normal connection. For
the proof of a theorem, we first give the Simons’ type integral formula for a compact
minimal submanifold in CP™ (see [9]).

We use the following lemma [2, p. 81].

LEMMA 3.1. Let M be a minimal submanifold in a Riemannian manifold M. Then

(V°B) (X, ¥) =) (V;Ve,B) (X, Y)
= > ((Reei. X0B) (ei, V) + (Vx(Reei, Vet + (Ve (Reer, HO17H7E),

where {e1, . .., e,} denotes an orthonormal basis of T,(M), and V is the Levi-Civita
connection in M.

We compute the equation in Lemma 3.1 for an n-dimensional minimal submanifold
M in a complex projective space CP" of constant holomorphic sectional curvature 4.
Since CP™ is locally symmetric, using (2.1),

> (Vx(R(ei, Y)e )t
=Y (R(B(X, e)), Y)e; + R(ei, B(X, Y))e;
+ R(ei, Y)B(X, e)™ = Y B(X, (R(ei, V)en)"),

=3(fB(X, PY)+ FtB(X,Y) — B(X, P’Y) + FApyX),
> (Ve (R(er, X)Y)H)*t

=Y (R(B(ei, e), X)Y
+ R(e;, B(ei, X))Y + R(ei, X)B(ei, Y)" = > Blei, (R(ei, X)¥))

= FApxY — FApyX + fB(X, PY) +2fB(PX,Y)
—3B(PX, PY)—2 Z g(Apeei, X)FY — Z g(Apeei, Y)FX.
i i
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Thus we obtain

g(V2B. B) = g((Ve,Ve,B) (e). ex). Blej. er)
i,j.k

=Y g((R(ei, e))A)aci, Age;) + 3(2 tr Apiy, Ag
isjaa a

-2 Z tr AgA s P — Z tr P2A2 4 Z tr (AgP)?
a a a

+ Z g(Aqtvg, tup)tr Ay
a,b

+ > (8(Aatvp, Aptvg) — g(Aatva, Abrvb))).
a,b

On the other hand,

ZtrAszaAa =— ZtrAﬁ —}—ZtrA%ca,
a a a

- Xa: tr P2A2 + za: tr (AgP)? = % za: I[P, Adll?.
Hence we have the following lemma.
LEMMA 3.2. Let M be an n-dimensional minimal submanifold in CP™. Then
g(V?B, B) = g(V*A, A)
=Y g((R(ei, e))A)aci. Age;)

i,j,a

1
+3( =Y wA2+Y waA2 -2 wrALALP 4+~ P, A,])?
(Z st AT =2 3w AP 5 STIIP. A

+ > (8(Aatvy, Aptvg) — g(Aatva, Abrvb»).
a,b

We prepare the following lemma.

LEMMA 3.3. Let M be an n-dimensional minimal submanifold in CP™. If U is a
parallel section in the normal bundle of M, then

div(VigtU) = (n — D)g(tU, tU) +3g(PtU, PtU) — Y g(AqtU, AgtU)
a

+ir A3y —tr A —2r AyApy P + Z g(Aytvg, Autvg)
a

! 2
—i—EI[P,Au]I .
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PROOF. For any vector field X on a Riemannian manifold, we generally have the
equation [11]

div(Vy X) — div((divX)X) = S(X, X) + $|Lxg|* — |VX|* — (divX)?, (3.1)

where S denotes the Ricci tensor and (Lxg) (Y, Z) = g(Vy X, Z) + g(VzX, Y).
Suppose that U is a parallel section of the normal bundle of M. From the equation
of Gauss,

S(U. tU) = (n — 1)g(tU, tU) + 3g(PtU, PtU) — Y _ g(AqtU, AgtU).
a

On the other hand, since (Vxt)V = —-PAyX + ApyX for any V normal to M, we
have Vx(tU) = —PAy X + Ayy X. This implies that div(tU) =tr Ayy = 0. Also

IVIUP =tr Ay +tr Ay —2r AyA gy P — Z g(Aytvg, Aytvg),
a
IL:ygl? =[P, Ayl + 4tr Asz —8tr Ay A sy P.
Substituting these equations into (3.1), we have our lemma. O

LEMMA 3.4. Let M be an n-dimensional minimal submanifold in CP™ with flat
normal connection. Then

—g(V?A, A) =2 " g(Pei, Pei)g(tva. tvg) —2 Y g(FPe;, FPe;)
i,a i

1

+ 5(2 tr A%, + D 1P AP —4) AaAfaP>

a a a

+ Y (g(tva, tva)g(tvp, tvp) — g(tva, tp)?)

a,b
=Y A7 =) g((R(ei, ej)A)aci, Age;)
a i,j,a

1
+8> " g(FPe;, FPe;) — 5 D w At =2 div(Vig,tva).
i a a

PROOF. By a straightforward computation, we obtain

> 8(tfva. tfva) =Y g(Ptvg, Ptvg) =Y  g(FPei, FPe;), (3.2)

a a l

> (8(tva, tva)g(tvp, tvp) — g(tva, tvp)*)
a,b
=(n—1) ) g(tva, tva) — Y _ g(Pe;, Pe)g(tva, tv,)
a i,a

+ ) g(Ptvg, Ptuy). (3.3)
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Thus, using Lemmas 2.3 and 3.2,

—g(VZA, A) ==Y g((R(ei, ej)A)aci, Agej) +3 Y _tr AL =3 trA%,
a

i,j.a a
3 2
+6 Z rAuAsaP =3 Z [P, Ad* —2(n — 1) Z 8(tva. 1vg)

+2) " g(Pei, Pe;)g(tva, tva) +4 Y g(Ptva, Ptug)

i,a a

— ) (8(tva. tva)g(tvp, tvp) — g(tva, tvp)?).
a,b

Since the normal connection of M is flat, we can choose an orthonormal basis {v,} of
T (M)* such that Dv, = 0 for all a. Thus, from Lemma 3.3,

div(Viy,tvg) = (n — 1)g(tvg, tvg) + 3g(Ptvg, Ptug)
+trAG, —tr A] —2tr AgApa P + 3|[P, AqlI%.
From these equations, we have our assertion. a

If M is compact, we have [, [VA|*>=— [}, g(V?A, A) (see [9]). Therefore
Lemma 3.4 implies the following.

THEOREM 3.5. Let M be an n-dimensional compact minimal submanifold in a
complex projective space CP™ with flat normal connection. Then

f (|VA|2 ~2)  g(Pei, Pei)g(tva, 1va) =2 ) | g(FPe;, FPe;)
M

i,a i
1
+ E(Z tr A%, + Z I[P, Aq]l? —4ZtrAaAfaP)
a a a

+ D (8(tva, 1va)g(tvp, 1vp) — gtvg, tvb)z))
a,b

= /M<2a: tr A7 — Z g((R(ei, ej)A)qei, Agej)

i,j,a
1
+8 Z g(FPe;, FPe;) — - >t A2-a>.
1 a

We next consider the properties of some terms of the equation in Theorem 3.5.

LEMMA 3.6. Let M be an n-dimensional submanifold in CP". Then

VAP =2 " g(Pe;, Pei)g(tva, tva) +2 ) g(FPe;, FPe;).

i,a i
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PROOF. We put
(X,Y, Z2)=(VxB) (Y, Z)+g(PX,Y)FZ+ g(PX, Z)FY.
Then we obtain

ITi* = VB> +2 ) g(Pei, Pei)g(tva, tva) +2 ) g(FPei, FPe;)

i,a i

+4Zg((ve,~B) (Pei, €j), Fej).
i,j

From the equation of Codazzi,

Y 8((VeB) (Peise)), Fej) = Y g((Ve; B) (ei, Pey), Fej)
i,J i,j
—Z g(Pej, Pej)g(tvg, tvy) —Z g(FPe;, FPe;).

i,a i

Since B is symmetric and P is skew-symmetric, the first term on the right-hand side
of the equation vanishes. So we have our assertion. O

LEMMA 3.7. Let M be an n-dimensional submanifold in CP™ with parallel mean
curvature vector field. If the equality

VAP =2 g(Pe;, Pei)g(tva, tva) +2 Y  g(FPei, FPe;)

i,a i
holds, then M is a CR submanifold.

PROOF. By the proof of Lemma 3.6, the equation holds if and only if 77 = 0.
Suppose that 71 = 0. Then

Y 8((Ve; B) (i, X), va) = g(FPX, va)

for any X and v,. On the other hand, since the mean curvature vector field is parallel,
the equation of Codazzi implies that

Y 8((Ve; B) (i, X), va) = 3g(FPX, vg).

From these equations, we have FP=0. Then, from Theorem 2.2, M is a CR
submanifold. O

LEMMA 3.8. Let M be a n-dimensional submanifold of CP™. Then

DAL+ P AP —4) trAgAsa P > 0.
a a a
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PROOF. We put

To(X,Y)= fB(X,Y) — B(X, PY) — B(PX, Y).

Then
IT2|> =) |fBei, ¢j) — Blei, Pej) — B(Pei, e))?
ij
= Z tr A%, + Z I[P, Agll> — 4 Ztr AqA P,
a a a
Thus we have our inequality. O

REMARK. In Example 1, when the mean curvature vector field of M in CP™ is
parallel, by Lemma 3.7, we see that the second fundamental form of a submanifold
N in §¥"*+1 is parallel if and only if the second fundamental form M in CP™ satisfies
T1 =0 and T, = 0. We see that the submanifold 7 (S™1(r1) x - - - x §™(ry)) in CP™
satisfies 71 =0 and 7> = 0. a

THEOREM 3.9. Let M be an n-dimensional compact minimal submanifold in a
complex projective space CP™ with flat normal connection. If the second fundamental
form A satisfies )", tr A?a > 16|FP|?, and if the sectional curvature K of M

satisfies K > 1/n, then M is the geodesic minimal hypersphere w(S'(/T/2m) x
§2m=1(/@m = 1)/2m)) in CP™.

PROOF. From Lemmas 3.6 and 3.8, we see that the left-hand side of the equation in
Theorem 3.5 is non-negative. Next we prove that the right-hand side of this equation
is non-positive.

Choosing an orthonormal basis {e;} of T, (M) such that A e; = hie;,i=1,...,n,

> 8((R(ei, ep)A)aei, Agej) =Y g(R(ei, ej)Aqei, Aqej)
i,j i,j
- Z g(AuR(ei, ej)e;, Agej)

LJ
1
= > (¢ — hK;,
i

where K;; denotes the sectional curvature of M with respect to the section spanned by
e; and e;. Since K;; > 1/n, we obtain

1
D 8((R(ei e)A)aci, Aaej) = 2 D (hf — h§)? = A7,
[ LJ

https://doi.org/10.1017/5S0004972708000129 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000129

110 M. Kon [12]

The left-hand side of this inequality is independent of the choice of an orthonormal
basis {¢;}. Hence

D wA; =) g((Rlei ej)A)aei, Agej) <0.

a i,j,a
Consequently, Theorem 3.5 and Lemmas 3.6 and 3.8 imply that

IVA> =2 " g(Pe;, Pe;)g(tva. tvg) =2 Y g(Ptvg, Ptog) =0,  (3.4)

i,a a

> (8(tva, tva)g(tvp, tvp) — g(tva, tvp)?) =0, (3.5)
a,b

1 2
8 Xa: g(FPei, FPei) — Xa: tr A2, =0. (3.6)

By (3.4) and Lemma 3.7, M is a CR submanifold. Thus, from (3.6), we have A, =0
for all v,. On the other hand, (3.5) implies thatg = 1 or g = 0.
Suppose that g = 1. Using Lemma 2.3, we obtain

> g([Asa. Adlei. Pei) =—2h(p — 1) =0.

i,a

When p = 1, from the theorem in [4], M is a geodesic minimal hypersphere. When
h=0,wehaven =¢ =1 and K = 0. This is a contradiction.

We next suppose that ¢ =0. Then M is a complex submanifold and n = 4. On
the other hand, again using Lemma 2.3, we have hp =0, and hence 7 = 0. This is
a contradiction. O

When M is a CR minimal submanifold, by Theorem 2.2, we have FP = 0. Hence
the condition ), tr A? 0> 16|FP|? in Theorem 3.9 is automatically satisfied. So we
have the following theorem.

THEOREM 3.10. Let M be an n-dimensional compact minimal CR submanifold
in a complex projective space CP™ with flat normal connection. If the sectional
curvature K of M satisfies K > 1/n, then M is the geodesic minimal hypersphere

7 (SY(V/1/2m) x §?"~1(/@m —1)/2m)) in CP™.

4. Minimal submanifolds with semi-flat normal connection

In this section we give pinching theorems for minimal submanifolds in CP™ with
semi-flat normal connection. First of all, using (3), (4) and Lemmas 2.4 and 3.2 we
have the following lemma.
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LEMMA 4.1. Let M be an n-dimensional compact minimal submanifold in CP™
with semi-flat normal connection. Then

/ <|VA|2 —2 " g(Pei, Pei)g(tva. tvg) —2 ) g(FPe;, FPe;)
M

i,a i
3
+ 5(2 AT, + D 1P AP =) 4 AaAfaP>
a a a

+4>  g(FPe;, FPel-)>
i

Z/ (‘ 3 g(Reer, ey Aaei, Aae)) +3 3 tr A2
M

isjaa a
3
-3 Y owAG, 20— 1)) g(tva, tv,)
a a

— D (8(tva, 1va)g(tvp, tvp) — g(tva, tvb>2)).

a,b
From this, we have the following theorem.

THEOREM 4.2. Let M be an n-dimensional compact minimal submanifold in a
complex projective space CP™ with semi-flat normal connection. If the sectional
curvature K of M satisfies K > 3/n, then M is the complex projective space CP"/?

in CP™,

PROOF. From Lemmas 3.6 and 3.8, we see that the left-hand side of the equation
in Lemma 4.1 is non-negative. Next we prove that the right-hand side of this equation
is non-positive.

Since K;; > 3/n, by a similar method in the proof of Theorem 3.9, we obtain

— D" 8((Rer, ey Aaei, Age)) +3 ) tr A2 <0,

i,j,a a

Consequently,
3 2
32 WAL +201 = 1) Y g(tva, 1v4) =0.
a a

Thus, we obtain A y, = 0 for all v, and t = 0. Therefore M is a complex submanifold
in CP" and A, = O for all v,. Thus M is areal n-dimensional totally geodesic complex
submanifold in CP™, that is, CP"/2. a

Next we give a pinching theorem for a compact minimal CR submanifold in CP™"
with semi-flat normal connection.

https://doi.org/10.1017/5S0004972708000129 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000129

112 M. Kon [14]

THEOREM 4.3. Let M be a compact n-dimensional minimal CR submanifold in
a complex projective space CP™ with semi-flat normal connection. If the sectional
curvature K of M satisfies K > (1/n), then M is a totally geodesic complex
projective space CP"? or a geodesic minimal hypersphere 7w (S'(/T/(n + 1)) x
S"(/nJ(n + 1)) of some CP""TD/2 iy cP™,

PROOF. Since M is a CR submanifold in CP™, we can take an orthonormal basis
{va) of Ty (M)* such that {vy, ..., vy} form an orthonormal basis of FT,(M) and
{vg+1, ..., vp} form an orthonormal basis of f7) (M)*.

If ¢ =0, M is a complex submanifold in CP™. Then the normal connection of M
is semi-flat if and only if M is a totally geodesic complex projective space CP"/? by a
theorem of Ishihara [3].

We next suppose that ¢ > 1. Since the normal connection of M is semi-flat, we
have Apy PX =0 and AyytU = BtU for any vector X tangent to M and any vectors
U, V normal to M (see Chen [I, Lemmas 5.3 and 5.6]). Thus, by the minimality of
M, we see that B =0 and Afy =0.

Let V bein FT(M). Then

g(fDxV, fU) = =g((VV, fU)
=g(FAyX, fU) +g(B(X, V), fU)
= g(A;uX, 1V) =0.

This means that F'T (M) is parallel, that is, DxV is in FT (M). Moreover, we have

RY(X,Y)V =0 for any V € FT(M). So we can choose an orthonormal basis {v } in

such a way that Dxv, =0, A =1, ..., g. We notice that Vyrv), = —PA; X. Hence

we have div(tv,) = —tr PA, = 0 since P is skew-symmetric and A, is symmetric.
From Lemmas 2.4 and 3.2, we obtain

g(VZA, A) =" ¢((Rei, e))A)sei, Ase;)
i,7,A

1
3(=) rA?+ - P, A;117) +3q(q — D).
+ ( ;r ,\+2;I[ Al >+ (g —1)
On the other hand, Lemma 3.3 implies that
. 1
; div(Viy, 1v3) = (n — 1)g — ; A+ ; P, A%
Using these equations,
1
—g(V?A, A) —2hq + = Y I[P, A1 +q(q — 1)
245

=Y A7 =) g((Rei. e)A)sei, Arej) =2 Y div(Viy, 1v3).
A

i,j,h X
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Thus

1
/ (|VA|2 —2hg+ 5 ) IIP, AP +4(q — 1))
M )

= /M (Z tr A)% - Z g((R(e;, €j)A)}L€,', A}ﬁj)).
A

i,j,\

By Lemma 3.6, we see that the left-hand side of this equation is non-negative. Next
we prove that the right-hand side of the equation above is non-positive. From the
assumption on the sectional curvature of M, we have, by a similar method in the proof
of Theorem 3.9,

YAl =Y g((Rei. ep)Aser, Asej) <O0.
A

i joh
Consequently, we obtain
IVAP? =2hq, PA,=AP, q(g—1)=0.

Hence we have ¢ = 1 and M is a real hypersurface in some CP”"*D/2 in CP™ (see
[10, p. 227]). Therefore, using Theorem 3.10, we have our result (see also [4]). d

Ifn > p +2, we see that V f =0 and M is a CR submanifold in CP™ with Ary =0
for any vector V normal to M (see Okumura [7, 8]). Therefore, Theorem 4.3 implies
the following result.

THEOREM 4.4. Let M be a compact n-dimensional minimal submanifold in CP™
with semi-flat normal connection. If the sectional curvature K of M satisfies K > 1/n,
and if n> p+2, then M is a totally geodesic complex projective space CP"/?

or a geodesic minimal hypersphere n(Sl(«/l/(n + 1)) x §"(/n/(n + 1))) of some
CP"+D/2 iy CP™,
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