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Abstract

We give a formula for the Laplacian of the second fundamental form of an n-dimensional compact
minimal submanifold M in a complex projective space CPm . As an application of this formula, we
prove that M is a geodesic minimal hypersphere in CPm if the sectional curvature satisfies K ≥ 1/n, if
the normal connection is flat, and if M satisfies an additional condition which is automatically satisfied
when M is a CR submanifold. We also prove that M is the complex projective space CPn/2 if K ≥ 3/n,
and if the normal connection of M is semi-flat.
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1. Introduction

The theory of submanifolds in a complex projective space CPm is one of the
most interesting objects in differential geometry. We have three typical classes
of submanifolds in CPm , complex submanifolds, totally real submanifolds and CR
submanifolds, according to the behavior of the tangent bundle of a submanifold with
respect to the action of the almost complex structure of the ambient manifold CPm .
For these submanifolds, there are many interesting results (see [1, 6, 12]).

In the present paper, we first study general submanifolds in a complex projective
space CPm of constant holomorphic sectional curvature 4, and give the Laplacian of
the second fundamental form of an n-dimensional minimal submanifold M in CPm ,
which corresponds to a formula for the Laplacian of the second fundamental form of
a minimal submanifold in a unit sphere given by Simons [9].

Moreover, we prepare some inequalities for the second fundamental form which are
useful to prove pinching theorems. Based on these results we study an n-dimensional
compact minimal submanifold M in CPm whose sectional curvature K satisfies
K ≥ 1/n. In particular, we prove that if the sectional curvature K of an n-dimensional
compact minimal CR submanifold M in CPm with flat normal connection satisfies
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K ≥ 1/n, then M is the geodesic minimal hypersphere in CPm . The geodesic
minimal hypersphere is given by π(S1(

√
1/2m) × S2m−1(

√
(2m − 1)/2m)) in CPm ,

where π : S2m+1
−→ CPm is the Hopf fibration and Sk(r) is a k-dimensional

sphere (see [10]).
This is a generalization of the result in Kon [4] for a compact real minimal

hypersurface M in CPm .
We also prove that if the sectional curvature K of an n-dimensional compact

minimal submanifold M in CPm satisfies K ≥ 3/n, then M is the complex projective
space CPn/2 under the assumption that the normal connection of M is semi-flat.

The concept of a semi-flat normal connection of a submanifold in a complex
projective space is closely related to that of a flat normal connection of a submanifold
in a sphere.

2. Preliminaries

Let M̃ denote a Kähler manifold of complex dimension m (real dimension 2m).
We denote by J the almost complex structure of M̃ . The Hermitian metric of M̃ is
denoted by g.

Let M be a real n-dimensional Riemannian manifold immersed in M̃ . We denote
by the same g the Riemannian metric on M induced from that of M̃ . We denote by
∇̃ the Levi-Civita connection in M̃ and by ∇ the connection induced on M . Then the
Gauss and Weingarten formulas are given respectively by

∇̃X Y = ∇X Y + B(X, Y ), ∇̃X V = −AV X + DX V,

for any vector fields X and Y tangent to M and any vector field V normal to M , where
D denotes the normal connection. A normal vector field V on M is said to be parallel
if DX V = 0 for any vector field X tangent to M . We call both A and B the second
fundamental form of M that are related by g(B(X, Y ), V ) = g(AV X, Y ).

For the second fundamental form B and A, we define ∇ B and ∇ A, the covariant
derivative of the second fundamental form, by

(∇X B) (Y, Z) = DX (B(Y, Z)) − B(∇X Y, Z) − B(Y, ∇X Z),

(∇X A)V Y = ∇X (AV Y ) − ADX V Y − AV (∇X Y ).

Then we have g((∇X B) (Y, Z), V ) = g((∇X A)V Y, Z). The mean curvature vector
field µ of M is defined to be µ = (1/n)tr B, where tr B is the trace of B. If µ = 0,
then M is said to be minimal.

For any vector field X tangent to M , we put

J X = P X + F X,

where P X is the tangential part of J X and F X is the normal part of J X . For any
vector field V normal to M , we put

J V = tV + f V,
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where tV is the tangential part of J V and f V is the normal part of J V . Then P and
f are skew-symmetric with respect to g and g(F X, V ) = −g(X, tV ). We also have
P2

= −I − t F , FP + f F = 0, Pt + t f = 0 and f 2
= −I − Ft .

Next we define the covariant derivatives of P , F , t and f by (∇X P)Y = ∇X (PY ) −

P∇X Y , (∇X F)Y = DX (FY ) − F∇X Y , (∇X t)V = ∇X (tV ) − t DX V and (∇X f )V =

DX ( f V ) − f DX V , respectively. We then have (∇X P)Y = AFY X + t B(X, Y ),
(∇X F)Y = −B(X, PY ) + f B(X, Y ), (∇X t)V = −P AV X + Af V X and (∇X f )V =

−F AV X − B(X, tV ).
We denote by Tx (M) and Tx (M)⊥ the tangent space and the normal space of M

at x , respectively.

DEFINITION 2.1. A submanifold M in a Kähler manifold M̃ with almost complex
structure J is called a CR submanifold in M̃ if there exists a differentiable distribution
D : x −→Dx ⊂ Tx (M) on M satisfying the following conditions:

(i) H is holomorphic, that is JDx =Dx for each x ∈ M ; and
(ii) the complementary orthogonal distribution D⊥

: x −→D⊥
x ⊂ Tx (M) is anti-

invariant, that is JD⊥
x ⊂ Tx (M)⊥ for each x ∈ M .

In the following, we put h = dimDx , q = dimD⊥
x and codim M = 2m − n = p. If

q = 0, then a CR submanifold M is a complex submanifold in M̃ , and if h = 0, then
M is a totally real submanifold in M̃ . If p = q, then a CR submanifold M is called a
generic submanifold. Any real hypersurface is a generic submanifold.

We use the following theorem (see [12, p. 217]).

THEOREM 2.2. In order for a submanifold M in a Kähler manifold M̃ to be a CR
submanifold, it is necessary and sufficient that FP = 0.

We suppose that the ambient manifold M̃ is a complex projective space CPm of
constant holomorphic sectional curvature 4. The Riemannian curvature tensor R̃ of
CPm is given by

R̃(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)J X

− g(J X, Z)JY + 2g(X, JY )J Z , (2.1)

for any vector fields X , Y and Z of CPm . Thus the equation of Gauss and the equation
of Codazzi are given respectively by

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(PY, Z)P X

− g(P X, Z)PY + 2g(X, PY )P Z

+ AB(Y,Z)X − AB(X,Z)Y,

(∇X B) (Y, Z) − (∇Y B) (X, Z) = g(PY, Z)F X − g(P X, Z)FY + 2g(X, PY )F Z .

We define the curvature tensor R⊥ of the normal bundle of M by

R⊥(X, Y )V = DX DY V − DY DX V − D[X,Y ]V,
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where X and Y are vector fields tangent to M and V is a vector field normal to M .
Then we have the equation of Ricci:

g(R⊥(X, Y )U, V ) + g([AV , AU ]X, Y )

= g(FY, U )g(F X, V ) − g(F X, U )g(FY, V ) + 2g(X, PY )g( f U, V ),

where [AV , AU ] = AV AU − AU AV . If the normal curvature tensor R⊥ of M satisfies
R⊥(X, Y )V = 0 for any vector fields X and Y tangent to M and any vector field
V normal to M , then the normal connection of M is said to be flat. If R⊥

satisfies R⊥(X, Y )V = 2g(X, PY ) f V , then the normal connection of M is said to
be semi-flat.

In the following, we denote by Aa the second fundamental form in the direction of
va , where {v1, . . . , vp} is an orthonormal basis for Tx (M)⊥, p = 2m − n. We denote
by | · | the length of the tensor. From the equation of Ricci, we have the following.

LEMMA 2.3. Let M be an n-dimensional submanifold in CPm . If the normal
connection of M is flat, then∑

a,b

|[Aa, Ab]|
2

= 2
∑
a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2)

− 8
∑

a
g(t f va, t f va) + 4

∑
i,a

g(Pei , Pei )g( f va, f va),∑
i,a

g([A f a, Aa]ei , Pei ) = 2
∑

a
tr Aa A f a P

= 2
(∑

a
g(t f va, t f va) −

∑
i,a

g(Pei , Pei )g( f va, f va)

)
,∑

a,b

g([Aa, Ab]tva, tvb) =

∑
a,b

(g(Aa tvb, Abtva) − g(Aa tva, Abtvb))

=

∑
a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2)

− 2
∑

a
g(t f va, t f va),

where we have put A f a = A f va .

LEMMA 2.4. Let M be an n-dimensional submanifold in CPm . If the normal
connection of M is semi-flat, then∑

a,b

|[Aa, Ab]|
2
= 2

∑
a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2),∑

i,a

g([A f a, Aa]ei , Pei ) = 2
∑

a
g(t f va, t f va),∑

a,b

g([Aa, Ab]tva, tvb) =

∑
a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2).
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In the following we give an example of a compact CR submanifold in CPm with
semi-flat normal connection.

EXAMPLE 1. Let S2m+1 be a (2m + 1)-dimensional unit sphere and N be a (n +

1)-dimensional submanifold immersed in S2m+1. With respect to the Hopf fibration
π : S2m+1

−→ CPm , we consider the following commutative diagram (see [5, 8, 12]):

N

��

// S2m+1

��
M // // CPm .

We denote by (φ, ξ, η, G) the contact metric structure on S2m+1. The horizontal
lift with respect to the connection η will be denoted by *. Then (J X)∗ = φX∗ and
G(X∗, Y ∗) = g(X, Y )∗ for any vectors X and Y tangent to CPm . A submanifold N in
S2m+1 is tangent to the totally geodesic fibre of π and the structure vector field ξ is
tangent to N .

Let α be the second fundamental form of N in S2m+1. Then we have the relations
of the second fundamental form α of N and B of M :

(∇X∗α) (Y ∗, Z∗) = [(∇X B) (Y, Z) + g(P X, Y )F Z + g(P X, Z)FY ]
∗,

(∇X∗α) (Y ∗, ξ) = [ f B(X, Y ) − B(X, PY ) − B(Y, P X)]∗,

(∇X∗α) (ξ, ξ) = −2(FPX)∗,

for any vectors X , Y and Z tangent to M . From the third equation, we see that if the
second fundamental form α of N is parallel, then FP = 0 and M is a CR submanifold
of CPm by Theorem 2.2.

Let K ⊥ be the curvature tensor of the normal bundle of N . Then

G(K ⊥(X∗, Y ∗)V ∗, U∗) = [g(R⊥(X, Y )V, U ) − 2g(X, PY )g( f V, U )]∗,

G(K ⊥(X∗, ξ)V ∗, U∗) = g((∇X f )V, U )∗

for any vectors X and Y tangent to M and any vectors V and U normal to M .
Therefore, the normal connection of N in S2m+1 is flat if and only if the normal
connection of M is semi-flat and ∇ f = 0 (see [7, 8, 12]).

We put

N = Sm1(r1) × · · · × Smk (rk), n + 1 =

k∑
i=1

mi , 1 =

k∑
i=1

r2
i ,

where m1, . . . , mk are odd numbers. Then n + k is also odd. The second fundamental
form α of N is parallel in S2m+1. We can see that M = π(N ) is a generic submanifold
in CP(n+k−1)/2 with flat normal connection. π(S1(r1) × Sn(r2)) is called a geodesic
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hypersphere in CP(n+1)/2 (see [10]). Moreover, M is a CR submanifold in CPm

(m > (n + k − 1)/2) with semi-flat normal connection and ∇ f = 0.
If ri = (mi/(n + 1))1/2 (i = 1, . . . , k), then M is a generic minimal submanifold

in CP(n+k−1)/2. Then we have |A|
2
=

∑
a tr A2

a = (n − 1)q , q = k − 1.
If M is a complex submanifold in CPm , the normal connection of M is semi-flat if

and only if M is totally geodesic (see [3]).

3. Minimal submanifolds with flat normal connection

In this section, we give a pinching theorem for n-dimensional compact minimal
submanifolds in a complex projective space CPm with flat normal connection. For
the proof of a theorem, we first give the Simons’ type integral formula for a compact
minimal submanifold in CPm (see [9]).

We use the following lemma [2, p. 81].

LEMMA 3.1. Let M be a minimal submanifold in a Riemannian manifold M̄. Then

(∇2 B) (X, Y ) =

∑
i

(∇ei ∇ei B) (X, Y )

=

∑
i

(
(R(ei , X)B) (ei , Y ) + (∇̄X (R̄(ei , Y )ei )

⊥)⊥ + (∇̄ei (R̄(ei , X)Y )⊥)⊥
)
,

where {e1, . . . , en} denotes an orthonormal basis of Tx (M), and ∇̄ is the Levi-Civita
connection in M̄.

We compute the equation in Lemma 3.1 for an n-dimensional minimal submanifold
M in a complex projective space CPm of constant holomorphic sectional curvature 4.
Since CPm is locally symmetric, using (2.1),∑

i

(∇̄X (R̄(ei , Y )ei )
⊥)⊥

=

∑
i

(R̄(B(X, ei ), Y )ei + R̄(ei , B(X, Y ))ei

+ R̄(ei , Y )B(X, ei ))
⊥

−

∑
i

B(X, (R̄(ei , Y )ei )
T ),

= 3( f B(X, PY ) + Ft B(X, Y ) − B(X, P2Y ) + F AFY X),∑
i

(∇̄ei (R̄(ei , X)Y )⊥)⊥

=

∑
i

(R̄(B(ei , ei ), X)Y

+ R̄(ei , B(ei , X))Y + R̄(ei , X)B(ei , Y ))⊥ −

∑
i

B(ei , (R̄(ei , X)Y )T )

= F AF X Y − F AFY X + f B(X, PY ) + 2 f B(P X, Y )

− 3B(P X, PY ) − 2
∑

i

g(AFei ei , X)FY −

∑
i

g(AFei ei , Y )F X.
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Thus we obtain

g(∇2 B, B) =

∑
i, j,k

g((∇ei ∇ei B) (e j , ek), B(e j , ek))

=

∑
i, j,a

g((R(ei , e j )A)aei , Aae j ) + 3
(∑

a
tr AFtva Aa

− 2
∑

a
tr Aa A f a P −

∑
a

tr P2 A2
a +

∑
a

tr (Aa P)2

+

∑
a,b

g(Aa tva, tvb)tr Ab

+

∑
a,b

(g(Aa tvb, Abtva) − g(Aa tva, Abtvb))

)
.

On the other hand, ∑
a

tr AFtva Aa = −

∑
a

tr A2
a +

∑
a

tr A2
f a,

−

∑
a

tr P2 A2
a +

∑
a

tr (Aa P)2
=

1
2

∑
a

|[P, Aa]|
2.

Hence we have the following lemma.

LEMMA 3.2. Let M be an n-dimensional minimal submanifold in CPm . Then

g(∇2 B, B) = g(∇2 A, A)

=

∑
i, j,a

g((R(ei , e j )A)aei , Aae j )

+ 3
(

−

∑
a

tr A2
a +

∑
a

tr A2
f a − 2

∑
a

tr Aa A f a P +
1
2

∑
a

|[P, Aa]|
2

+

∑
a,b

(g(Aa tvb, Abtva) − g(Aa tva, Abtvb))

)
.

We prepare the following lemma.

LEMMA 3.3. Let M be an n-dimensional minimal submanifold in CPm . If U is a
parallel section in the normal bundle of M, then

div(∇tU tU ) = (n − 1)g(tU, tU ) + 3g(PtU, PtU ) −

∑
a

g(Aa tU, Aa tU )

+ tr A2
f U − tr A2

U − 2tr AU A f U P +

∑
a

g(AU tva, AU tva)

+
1
2
|[P, AU ]|

2.
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PROOF. For any vector field X on a Riemannian manifold, we generally have the
equation [11]

div(∇X X) − div((divX)X) = S(X, X) +
1
2 |L X g|

2
− |∇ X |

2
− (divX)2, (3.1)

where S denotes the Ricci tensor and (L X g) (Y, Z) = g(∇Y X, Z) + g(∇Z X, Y ).
Suppose that U is a parallel section of the normal bundle of M . From the equation

of Gauss,

S(tU, tU ) = (n − 1)g(tU, tU ) + 3g(PtU, PtU ) −

∑
a

g(Aa tU, Aa tU ).

On the other hand, since (∇X t)V = −P AV X + Af V X for any V normal to M , we
have ∇X (tU ) = −P AU X + A f U X . This implies that div(tU ) = tr A f U = 0. Also

|∇tU |
2
= tr A2

f U + tr A2
U − 2tr AU A f U P −

∑
a

g(AU tva, AU tva),

|L tU g|
2
= |[P, AU ]|

2
+ 4tr A2

f U − 8tr AU A f U P.

Substituting these equations into (3.1), we have our lemma. 2

LEMMA 3.4. Let M be an n-dimensional minimal submanifold in CPm with flat
normal connection. Then

−g(∇2 A, A) − 2
∑
i,a

g(Pei , Pei )g(tva, tva) − 2
∑

i

g(FPei , FPei )

+
1
2

(∑
a

tr A2
f a +

∑
a

|[P, Aa]|
2
− 4

∑
a

tr Aa A f a P

)
+

∑
a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2)

=

∑
a

tr A2
a −

∑
i, j,a

g((R(ei , e j )A)aei , Aae j )

+ 8
∑

i

g(FPei , FPei ) −
1
2

∑
a

tr A2
f a − 2

∑
a

div(∇tva tva).

PROOF. By a straightforward computation, we obtain∑
a

g(t f va, t f va) =

∑
a

g(Ptva, Ptva) =

∑
i

g(FPei , FPei ), (3.2)∑
a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2)

= (n − 1)
∑

a
g(tva, tva) −

∑
i,a

g(Pei , Pei )g(tva, tva)

+

∑
a

g(Ptva, Ptva). (3.3)
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Thus, using Lemmas 2.3 and 3.2,

−g(∇2 A, A) = −

∑
i, j,a

g((R(ei , e j )A)aei , Aae j ) + 3
∑

a
tr A2

a − 3
∑

a
tr A2

f a

+ 6
∑

a
tr Aa A f a P −

3
2

∑
a

|[P, Aa]|
2
− 2(n − 1)

∑
a

g(tva, tva)

+ 2
∑
i,a

g(Pei , Pei )g(tva, tva) + 4
∑

a
g(Ptva, Ptva)

−

∑
a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2).

Since the normal connection of M is flat, we can choose an orthonormal basis {va} of
T (M)⊥ such that Dva = 0 for all a. Thus, from Lemma 3.3,

div(∇tva tva) = (n − 1)g(tva, tva) + 3g(Ptva, Ptva)

+ tr A2
f a − tr A2

a − 2tr Aa A f a P +
1
2 |[P, Aa]|

2.

From these equations, we have our assertion. 2

If M is compact, we have
∫

M |∇ A|
2
= −

∫
M g(∇2 A, A) (see [9]). Therefore

Lemma 3.4 implies the following.

THEOREM 3.5. Let M be an n-dimensional compact minimal submanifold in a
complex projective space CPm with flat normal connection. Then∫

M

(
|∇ A|

2
− 2

∑
i,a

g(Pei , Pei )g(tva, tva) − 2
∑

i

g(FPei , FPei )

+
1
2

(∑
a

tr A2
f a +

∑
a

|[P, Aa]|
2
− 4

∑
a

tr Aa A f a P

)
+

∑
a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2)

)
=

∫
M

(∑
a

tr A2
a −

∑
i, j,a

g((R(ei , e j )A)aei , Aae j )

+ 8
∑

i

g(FPei , FPei ) −
1
2

∑
a

tr A2
f a

)
.

We next consider the properties of some terms of the equation in Theorem 3.5.

LEMMA 3.6. Let M be an n-dimensional submanifold in CPm . Then

|∇ A|
2
≥ 2

∑
i,a

g(Pei , Pei )g(tva, tva) + 2
∑

i

g(FPei , FPei ).
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PROOF. We put

T1(X, Y, Z) = (∇X B) (Y, Z) + g(P X, Y )F Z + g(P X, Z)FY.

Then we obtain

|T1|
2

= |∇B|
2
+ 2

∑
i,a

g(Pei , Pei )g(tva, tva) + 2
∑

i

g(FPei , FPei )

+ 4
∑
i, j

g((∇ei B) (Pei , e j ), Fe j ).

From the equation of Codazzi,∑
i, j

g((∇ei B) (Pei , e j ), Fe j ) =

∑
i, j

g((∇e j B) (ei , Pei ), Fe j )

−

∑
i,a

g(Pei , Pei )g(tva, tva) −

∑
i

g(FPei , FPei ).

Since B is symmetric and P is skew-symmetric, the first term on the right-hand side
of the equation vanishes. So we have our assertion. 2

LEMMA 3.7. Let M be an n-dimensional submanifold in CPm with parallel mean
curvature vector field. If the equality

|∇ A|
2
= 2

∑
i,a

g(Pei , Pei )g(tva, tva) + 2
∑

i

g(FPei , FPei )

holds, then M is a CR submanifold.

PROOF. By the proof of Lemma 3.6, the equation holds if and only if T1 = 0.
Suppose that T1 = 0. Then∑

i

g((∇ei B) (ei , X), va) = g(FPX, va)

for any X and va . On the other hand, since the mean curvature vector field is parallel,
the equation of Codazzi implies that∑

i

g((∇ei B) (ei , X), va) = 3g(FPX, va).

From these equations, we have FP = 0. Then, from Theorem 2.2, M is a CR
submanifold. 2

LEMMA 3.8. Let M be a n-dimensional submanifold of CPm . Then∑
a

tr A2
f a +

∑
a

|[P, Aa]|
2
− 4

∑
a

tr Aa A f a P ≥ 0.
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PROOF. We put

T2(X, Y ) = f B(X, Y ) − B(X, PY ) − B(P X, Y ).

Then

|T2|
2

=

∑
i, j

| f B(ei , e j ) − B(ei , Pe j ) − B(Pei , e j )|
2

=

∑
a

tr A2
f a +

∑
a

|[P, Aa]|
2
− 4

∑
a

tr Aa A f a P.

Thus we have our inequality. 2

REMARK. In Example 1, when the mean curvature vector field of M in CPm is
parallel, by Lemma 3.7, we see that the second fundamental form of a submanifold
N in S2m+1 is parallel if and only if the second fundamental form M in CPm satisfies
T1 = 0 and T2 = 0. We see that the submanifold π(Sm1(r1) × · · · × Smk (rk)) in CPm

satisfies T1 = 0 and T2 = 0. 2

THEOREM 3.9. Let M be an n-dimensional compact minimal submanifold in a
complex projective space CPm with flat normal connection. If the second fundamental
form A satisfies

∑
a tr A2

f a ≥ 16|FP|
2, and if the sectional curvature K of M

satisfies K ≥ 1/n, then M is the geodesic minimal hypersphere π(S1(
√

1/2m) ×

S2m−1(
√

(2m − 1)/2m)) in CPm .

PROOF. From Lemmas 3.6 and 3.8, we see that the left-hand side of the equation in
Theorem 3.5 is non-negative. Next we prove that the right-hand side of this equation
is non-positive.

Choosing an orthonormal basis {ei } of Tx (M) such that Aaei = ha
i ei , i = 1, . . . , n,∑

i, j

g((R(ei , e j )A)aei , Aae j ) =

∑
i, j

g(R(ei , e j )Aaei , Aae j )

−

∑
i, j

g(Aa R(ei , e j )ei , Aae j )

=
1
2

∑
i, j

(ha
i − ha

j )
2Ki j ,

where Ki j denotes the sectional curvature of M with respect to the section spanned by
ei and e j . Since Ki j ≥ 1/n, we obtain

∑
i, j

g((R(ei , e j )A)aei , Aae j ) ≥
1

2n

∑
i, j

(ha
i − ha

j )
2
≥ tr A2

a .
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The left-hand side of this inequality is independent of the choice of an orthonormal
basis {ei }. Hence ∑

a
tr A2

a −

∑
i, j,a

g((R(ei , e j )A)aei , Aae j ) ≤ 0.

Consequently, Theorem 3.5 and Lemmas 3.6 and 3.8 imply that

|∇ A|
2
− 2

∑
i,a

g(Pei , Pei )g(tva, tva) − 2
∑

a
g(Ptva, Ptva) = 0, (3.4)∑

a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2) = 0, (3.5)

8
∑

a
g(FPei , FPei ) −

1
2

∑
a

tr A2
f a = 0. (3.6)

By (3.4) and Lemma 3.7, M is a CR submanifold. Thus, from (3.6), we have A f a = 0
for all va . On the other hand, (3.5) implies that q = 1 or q = 0.

Suppose that q = 1. Using Lemma 2.3, we obtain∑
i,a

g([A f a, Aa]ei , Pei ) = −2h(p − 1) = 0.

When p = 1, from the theorem in [4], M is a geodesic minimal hypersphere. When
h = 0, we have n = q = 1 and K = 0. This is a contradiction.

We next suppose that q = 0. Then M is a complex submanifold and n = h. On
the other hand, again using Lemma 2.3, we have hp = 0, and hence h = 0. This is
a contradiction. 2

When M is a CR minimal submanifold, by Theorem 2.2, we have FP = 0. Hence
the condition

∑
a tr A2

f a ≥ 16|FP|
2 in Theorem 3.9 is automatically satisfied. So we

have the following theorem.

THEOREM 3.10. Let M be an n-dimensional compact minimal CR submanifold
in a complex projective space CPm with flat normal connection. If the sectional
curvature K of M satisfies K ≥ 1/n, then M is the geodesic minimal hypersphere
π(S1(

√
1/2m) × S2m−1(

√
(2m − 1)/2m)) in CPm .

4. Minimal submanifolds with semi-flat normal connection

In this section we give pinching theorems for minimal submanifolds in CPm with
semi-flat normal connection. First of all, using (3), (4) and Lemmas 2.4 and 3.2 we
have the following lemma.
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LEMMA 4.1. Let M be an n-dimensional compact minimal submanifold in CPm

with semi-flat normal connection. Then∫
M

(
|∇ A|

2
− 2

∑
i,a

g(Pei , Pei )g(tva, tva) − 2
∑

i

g(FPei , FPei )

+
3
2

(∑
a

tr A2
f a +

∑
a

|[P, Aa]|
2
−

∑
a

4tr Aa A f a P

)
+ 4

∑
i

g(FPei , FPei )

)
=

∫
M

(
−

∑
i, j,a

g((R(ei , e j )A)aei , Aae j ) + 3
∑

a
tr A2

a

−
3
2

∑
a

tr A2
f a − 2(n − 1)

∑
a

g(tva, tva)

−

∑
a,b

(g(tva, tva)g(tvb, tvb) − g(tva, tvb)
2)

)
.

From this, we have the following theorem.

THEOREM 4.2. Let M be an n-dimensional compact minimal submanifold in a
complex projective space CPm with semi-flat normal connection. If the sectional
curvature K of M satisfies K ≥ 3/n, then M is the complex projective space CPn/2

in CPm .

PROOF. From Lemmas 3.6 and 3.8, we see that the left-hand side of the equation
in Lemma 4.1 is non-negative. Next we prove that the right-hand side of this equation
is non-positive.

Since Ki j ≥ 3/n, by a similar method in the proof of Theorem 3.9, we obtain

−

∑
i, j,a

g((R(ei , e j )A)aei , Aae j ) + 3
∑

a
tr A2

a ≤ 0.

Consequently,

3
2

∑
a

tr A2
f a + 2(n − 1)

∑
a

g(tva, tva) = 0.

Thus, we obtain A f a = 0 for all va and t = 0. Therefore M is a complex submanifold
in CPm and Aa = 0 for all va . Thus M is a real n-dimensional totally geodesic complex
submanifold in CPm , that is, CPn/2. 2

Next we give a pinching theorem for a compact minimal CR submanifold in CPm

with semi-flat normal connection.
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THEOREM 4.3. Let M be a compact n-dimensional minimal CR submanifold in
a complex projective space CPm with semi-flat normal connection. If the sectional
curvature K of M satisfies K ≥ (1/n), then M is a totally geodesic complex
projective space CPn/2 or a geodesic minimal hypersphere π(S1(

√
1/(n + 1)) ×

Sn(
√

n/(n + 1))) of some CP(n+1)/2 in CPm .

PROOF. Since M is a CR submanifold in CPm , we can take an orthonormal basis
{va} of Tx (M)⊥ such that {v1, . . . , vq} form an orthonormal basis of FTx (M) and
{vq+1, . . . , vp} form an orthonormal basis of f Tx (M)⊥.

If q = 0, M is a complex submanifold in CPm . Then the normal connection of M
is semi-flat if and only if M is a totally geodesic complex projective space CPn/2 by a
theorem of Ishihara [3].

We next suppose that q ≥ 1. Since the normal connection of M is semi-flat, we
have Af V P X = 0 and Af V tU = βtU for any vector X tangent to M and any vectors
U , V normal to M (see Chen [1, Lemmas 5.3 and 5.6]). Thus, by the minimality of
M , we see that β = 0 and Af V = 0.

Let V be in FT (M). Then

g( f DX V, f U ) = −g((∇ f )V, f U )

= g(F AV X, f U ) + g(B(X, tV ), f U )

= g(A f U X, tV ) = 0.

This means that FT (M) is parallel, that is, DX V is in FT (M). Moreover, we have
R⊥(X, Y )V = 0 for any V ∈ FT (M). So we can choose an orthonormal basis {vλ} in
such a way that DXvλ = 0, λ = 1, . . . , q. We notice that ∇X tvλ = −P AλX . Hence
we have div(tvλ) = −tr P Aλ = 0 since P is skew-symmetric and Aλ is symmetric.

From Lemmas 2.4 and 3.2, we obtain

g(∇2 A, A) =

∑
i, j,λ

g((R(ei , e j )A)λei , Aλe j )

+ 3
(

−

∑
a

tr A2
λ +

1
2

∑
a

|[P, Aλ]|
2
)

+ 3q(q − 1).

On the other hand, Lemma 3.3 implies that∑
λ

div(∇tvλ tvλ) = (n − 1)q −

∑
λ

tr A2
λ +

1
2

∑
λ

|[P, Aλ]|
2.

Using these equations,

−g(∇2 A, A) − 2hq +
1
2

∑
λ

|[P, Aλ]|
2
+ q(q − 1)

=

∑
λ

tr A2
λ −

∑
i, j,λ

g((R(ei , e j )A)λei , Aλe j ) − 2
∑
λ

div(∇tvλ tvλ).
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Thus ∫
M

(
|∇ A|

2
− 2hq +

1
2

∑
λ

|[P, Aλ]|
2
+ q(q − 1)

)
=

∫
M

(∑
λ

tr A2
λ −

∑
i, j,λ

g((R(ei , e j )A)λei , Aλe j )

)
.

By Lemma 3.6, we see that the left-hand side of this equation is non-negative. Next
we prove that the right-hand side of the equation above is non-positive. From the
assumption on the sectional curvature of M , we have, by a similar method in the proof
of Theorem 3.9, ∑

λ

tr A2
λ −

∑
i, j,λ

g((R(ei , e j )A)λei , Aλe j ) ≤ 0.

Consequently, we obtain

|∇ A|
2
= 2hq, P Aλ = Aλ P, q(q − 1) = 0.

Hence we have q = 1 and M is a real hypersurface in some CP(n+1)/2 in CPm (see
[10, p. 227]). Therefore, using Theorem 3.10, we have our result (see also [4]). 2

If n > p + 2, we see that ∇ f = 0 and M is a CR submanifold in CPm with Af V = 0
for any vector V normal to M (see Okumura [7, 8]). Therefore, Theorem 4.3 implies
the following result.

THEOREM 4.4. Let M be a compact n-dimensional minimal submanifold in CPm

with semi-flat normal connection. If the sectional curvature K of M satisfies K ≥ 1/n,
and if n > p + 2, then M is a totally geodesic complex projective space CPn/2

or a geodesic minimal hypersphere π(S1(
√

1/(n + 1)) × Sn(
√

n/(n + 1))) of some
CP(n+1)/2 in CPm .
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