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Abstract

We use a unified approach to study the boundedness of fractional integral operators on α-modulation
spaces and find sharp conditions for boundedness in the full range.
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1. Introduction
Decomposition methods on potential spaces provide a variety of ways to characterise
the smoothness of functions and distributions. In addition to Triebel-type spaces, such
as classical Sobolev spaces, there are also modulation and Besov spaces. See, for
example, [1, 2, 8, 16] for Fourier multipliers on modulation spaces and [3, 26] for
partial differential equations on modulation and Besov spaces.

As function spaces associated with uniform and dyadic decompositions,
respectively, modulation and (inhomogeneous) Besov spaces can be regarded as
special forms of α-modulation spaces. The α-modulation space Ms,α

p,q, introduced by
Gröbner [11] in 1992, plays the role of an intermediate space between the modulation
space Ms

p,q [9] and the inhomogeneous Besov space Bs
p,q. (Note, however, that it

cannot be obtained by complex interpolation between endpoint spaces [13].) More
accurately, the modulation space is the special α-modulation space with α = 0,
and the inhomogeneous Besov space Bs

p,q can be regarded as the limit of Ms,α
p,q as

α→ 1 (see [11]). For convenience, we use Ms,1
p,q to denote the inhomogeneous Besov

space Bs
p,q.

We present some properties of α-modulation spaces in Section 2. See also [4, 7, 29]
for the study of certain operators on α-modulation spaces and [5, 6, 13–15, 23] for the
structure of α-modulation spaces.
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Let Rn be the Euclidean space of dimension n. The Riesz potential operator of order
β is defined as

Iβ f (x) = F −1(|ξ|−βF f )(x),

where 0 < β < n and F and F −1 are the Fourier transform and inverse Fourier
transform, respectively. Iβ can also be represented as a fractional integral operator
by

Iβ f (x) = cn,β

∫
Rn

f (x − y)
|y|n−β

dy.

From the celebrated Hardy–Littlewood–Sobolev embedding theorem, 1/q = 1/p − β/n
is the sharp conditions for the boundedness of

‖Iβ f ‖Lq . ‖ f ‖Lp , (1.1)

where 1 < p < q < ∞ (see [18]). Recalling that Iβ is a potential lifting operator, the
inequality (1.1) can be interpreted as trading some of the regularity for integrability.

In this paper, we focus on the boundedness property of Iβ for 0 < β < n in the
frame of α-modulation spaces. Sugimoto and Tomita [19, 24] first considered the
boundedness of Iβ on modulation spaces. With Mp,q = M0,0

p,q, they gave the sharp
conditions for boundedness of Iβ : Mp1,q1 → Mp2,q2 .

Theorem A [19]. Let 0 < β < n and 1 < pi, qi <∞ for i = 1, 2. The fractional integral
operator Iβ : Mp1,q1 → Mp2,q2 is bounded if and only if

1
p2
6

1
p1
−
β

n
and

1
q2

<
1
q1

+
β

n
.

Observing that the Sugimoto–Tomita theorem does not include the endpoint case
p2 = ∞, Zhong and Chen [28] modified the proof to obtain a result for p2 = ∞ (see
[28, Theorem 2]). Wu and Chen [27] extended the latter result to α-modulation spaces
and obtained the following theorem.

Theorem B [27]. Let αn/p1 < β < n and 1 < p1 < ∞, 0 < q1, q2 6 ∞. The fractional
linear operator Iβ : M0,α

p1,q1 → M0,α
∞,q2 is bounded when

1
p1

>
β

n
and

1
q2

<
1
q1

+
β − nα/p1

n(1 − α)
.

Conversely, if 1 < p1 <∞, 0 < q1, q2 6∞ and Iβ : M0,α
p1,q1 → M0,α

∞,q2 is bounded, then

1
p1
>
β

n
and

1
q2

<
1
q1

+
β − nα/p1

n(1 − α)
.

However, there is still a gap between the conditions for sufficiency and necessity at
the endpoint 1/p1 = β/n and the assumption nα/p1 < β < n seems unnatural. Taking
into account the potential indexes of the function spaces (denoted by s1 and s2), we
gave a complete answer for the boundedness of Iβ on α-modulation spaces [30] as
follows. (We have corrected a minor error in the statement in [30].)
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Theorem C [30]. Let 0 6 α 6 1, 0 < β < n, 1 6 pi, qi 6 ∞ and si ∈ R for i = 1, 2. The
fractional integral operator Iβ : Ms1,α

p1,q1 → Ms2,α
p2,q2 is bounded if and only if

1
p1
,
β

n
,

1
p2
,

n − β
n

,

n
( 1

p1
−

1
p2

)
> β,

nα
( 1

p1
−

1
p2

)
6 s1 − s2 + β, (1.2)

and
nα

( 1
p1
−

1
p2

)
− n(1 − α)

( 1
q1
−

1
q2

)
6 s1 − s2 + β, (1.3)

with strict inequality in (1.3) when (1.2) is strict.

In [30], we also consider Iβ f (x) = F −1(|ξ|−βF f )(x) for β 6 0. We note that all the
previous results concern only the case of pi, qi ∈ [1,∞] for i = 1, 2 and function spaces
with the same scale (α1 = α2 = α). The aim of this paper is to give sharp conditions
for the boundedness of

Iβ : Ms1,α1
p1,q1
→ Ms2,α2

p2,q2

in the full range αi ∈ [0, 1], pi, qi ∈ (0,∞], si ∈ R, i = 1, 2. Our main theorem follows.
It is a substantial extension of the known results, even in the case α1 = α2.

Theorem 1.1. Let 0 6 αi 6 1, 0 < β < n, 0 < pi, qi 6∞ and si ∈ R for i = 1, 2. Then the
fractional integral operator Iβ : Ms1,α1

p1,q1 → Ms2,α2
p2,q2 is bounded, if and only if

1
p1
,
β

n
,

1
p2

<
n − β

n
, (1.4)

n
( 1

p1
−

1
p2

)
> β, (1.5)

s2 − β + R(p,q, α1, α2) 6 s1, (1.6)

and

s2 − β + R(p,q, α1, α2) +
n(1 −max(α1, α2))

q2
6 s1 +

n(1 −max(α1, α2))
q1

, (1.7)

with strict inequality in (1.7) when there is strict inequality in (1.6).

Here, we write p = (p1, p2), q = (q1, q2) and

R(p,q;α1, α2)

=


nα1

( 1
p1
−

1
p2

)
+ n(α2 − α1) ·max

{
0,

1
p2
−

1
q1
, 1 −

1
p2
−

1
q1

}
if α1 6 α2,

nα2

( 1
p1
−

1
p2

)
+ n(α2 − α1) ·min

{
0,

1
p1
−

1
q2
, 1 −

1
p1
−

1
q2

}
if α1 > α2,
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By potential lifting (see Lemma 2.4),

Ms,α
p,q = J−sM0,α

p,q ,

where Js = (1 + |D|2)−s/2 is the Bessel potential operator. Thus, α-modulation spaces
can be regarded as inhomogeneous potential spaces. As a (homogeneous) potential
lifting operator, the behaviour of Iβ for high frequency is the same as that of Jβ,
so we can reduce the boundedness of Iβ in the high frequency to the embedding
between corresponding function spaces (see Proposition 3.1). On the other hand,
Proposition 3.3 characterises the behaviour of Iβ for low frequency in the full
range p1, p2 ∈ (0,∞]. Theorem 1.1 follows from the equivalent characterisation in
Proposition 3.2.

We will only give the proof of Theorem 1.1 for 0 6 αi < 1 (i = 1, 2), since the other
cases can be handled similarly. The paper is organised as follows. In Section 2, we
introduce various notations and definitions that will be used throughout this paper. We
also present several known lemmas that will be used in our proof. Propositions 3.1– 3.3
and the proof of Theorem 1.1 follow in Section 3.

2. Preliminaries

We write p̃ := min{p, 1} for 0 < p 6∞ and [t] denotes the integer part of t ∈ R. Let
C be a positive constant that may depend on n, pi, qi, si, αi, β (i = 1, 2). The notation
X . Y means X 6 CY , the notation X ∼ Y means X . Y . X, and the notation X ' Y
means X = CY . For x = (x1, x2, . . . , xn) ∈ Rn, we denote

|x| :=
( n∑

i=1

|xi|
2
)1/2

and 〈x〉 := (1 + |x|2)1/2.

Let S := S (Rn) be the Schwartz space and S ′ := S ′(Rn) be the space of
tempered distributions. The Fourier transform F f and the inverse Fourier transform
F −1 f of f ∈S (Rn) are defined by

F f (ξ) = f̂ (ξ) =

∫
Rn

f (x)e−2πix·ξ dx, F −1 f (x) = f̂ (−x) =

∫
Rn

f (ξ)e2πix·ξ dξ.

We next recall some definitions of the function spaces treated in this paper. First
we give the partition of unity on frequency space associated with α ∈ [0, 1). We take
two appropriate constants c > 0 and C > 0 and choose a Schwartz function sequence
{ηαk }k∈Zn satisfying

|ηαk (ξ)| & 1 if |ξ − 〈k〉α/(1−α)k| < c〈k〉α/(1−α);
supp ηαk ⊂ {ξ ∈ R

n : |ξ − 〈k〉α/(1−α)k| < C〈k〉α/(1−α)};∑
k∈Zn

ηαk (ξ) ≡ 1 for all ξ ∈ Rn;

|∂γηαk (ξ)| 6 C|α|〈k〉−α|γ|/(1−α) for all ξ ∈ Rn, γ ∈ (Z+ ∪ {0})n.

https://doi.org/10.1017/S0004972718000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000096


[5] Fractional integral operators on α-modulation spaces 503

The sequence {ηαk (ξ)}k∈Zn constitutes a smooth decomposition of Rn. The frequency
decomposition operators associated with the above function sequence are defined by

�αk := F −1ηαk F

for k ∈ Zn. Let 0 < p, q 6∞, s ∈ R, α ∈ [0, 1). Then the α-modulation space associated
with the above decomposition is defined by

Ms,α
p,q(Rn) =

{
f ∈S ′(Rn) : ‖ f ‖Ms,α

p,q(Rn) =

( ∑
k∈Zn

〈k〉sq/(1−α)‖�αk f ‖qLp

)1/q
<∞

}
with the usual modifications when q = ∞. For simplicity, we write Ms

p,q = Ms,0
p,q and

Mp,q = M0,0
p,q.

Remark 2.1. The above definition is independent of the exact choice of ηαk (see [15]).
Also, for sufficiently small δ > 0, one can construct a function sequence {ηαk }k∈Zn such
that ηαk (ξ) = 1 and ηαk (ξ)ηαl (ξ) = 0 if k , l and ξ lies in the ball B(〈k〉α/(1−α)k, 〈k〉α/(1−α)δ)
(see [12]). We also remark that when α = 0, the modulation space was initially defined
by a norm (see [10]). For modulation spaces with more general weights, see [20, 22].

To define the Besov spaces, we introduce the dyadic decomposition of Rn. Let ϕ be
a smooth bump function supported in the ball {ξ : |ξ| < 3

2 } and equal to 1 on the ball
{ξ : |ξ| 6 4

3 }. Define
φ(ξ) = ϕ(ξ) − ϕ(2ξ),

and a function sequence 
φ j(ξ) = φ(2− jξ) for j ∈ Z+,

φ0(ξ) = 1 −
∑
j∈Z+

φ j(ξ) = ϕ(ξ).

For integers j ∈ (Z+ ∪ {0}), we define the Littlewood–Paley operators

∆ j = F −1φ jF .

Let 0 < p, q 6∞ and s ∈ R. For a tempered distribution f , we define the norm

‖ f ‖Bs
p,q =

( ∞∑
j=0

2 jsq‖∆ j f ‖qLp

)1/q
,

with the usual modifications when q = ∞. The (inhomogeneous) Besov space Bs
p,q is

the space of all tempered distributions f for which the quantity ‖ f ‖Bs
p,q is finite.

We now list some key lemmas which will be used in the proofs. As mentioned
before, Ms,1

p,q denotes the inhomogeneous Besov space Bs
p,q.

Lemma 2.2 (Young’s inequality, see [25]).

(1) Suppose 0 < p 6 1, R > 0 and supp f̂ , supp ĝ ⊆ B(x,R) ⊆ Rn. Then

‖ f ∗ g‖Lp 6 CRn(1/p−1)‖ f ‖Lp‖g‖Lp ,

where C is independent of x ∈ Rn.
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(2) Suppose 1 6 p, q, r 6∞ satisfy 1 + 1/q = 1/p + 1/r. Then

‖ f ∗ g‖Lq . ‖ f ‖Lp‖g‖Lr .

The following lemma is useful in dealing with functions having compact support
on the time or frequency plane. See [17] and [21] for similar results associated with
weighted modulation spaces.

Lemma 2.3 (Local property). Let 0 < p, q 6∞ and s ∈ R. For a fixed positive R,

‖ f ‖Ms,α
p,q
∼ ‖ f ‖Lp

for all distributions f satisfying supp f̂ ⊂ B(0,R).

Proof. We only give the proof for p, q < ∞, since the other cases can be handled
similarly. By the assumption, f can be represented by

f =
∑
|k|6N

�αk f .

Using the Minkowski inequality, we deduce that

‖ f ‖Lp =

∥∥∥∥∥ ∑
|k|6N

�αk f
∥∥∥∥∥

Lp
.

( ∑
|k|6N

‖�αk f ‖p̃Lp

)1/ p̃
∼

( ∑
|k|6N

〈k〉sq‖�αk f ‖qLp

)1/q
∼ ‖ f ‖Ms,α

p,q
.

On the other hand, by Lemma 2.2,

‖�αk f ‖Lp . 〈k〉αn(1/p̃−1)/(1−α)‖F −1ηαk ‖L p̃ · ‖ f ‖Lp . ‖ f ‖Lp .

Thus,

‖ f ‖Ms,α
p,q

=

( ∑
|k|6N

〈k〉sq‖�αk f ‖qLp

)1/q
.

( ∑
|k|6N

〈k〉sq‖ f ‖qLp

)1/q
. ‖ f ‖Lp . �

Lemma 2.4 (Potential lifting, see [15]). Let 0 < p, q 6 ∞. For any s ∈ R, the mapping
Jβ : Ms,α

p,q → Ms+β,α
p,q is isomorphic.

Lemma 2.5 ([25], Section 1.4.1, Remark 4). Let 0 < p1 6 p2 6 ∞ and R > 0. If
supp f̂ ⊆ B(x,R), then

‖ f ‖Lp2 6 CRn(1/p1−1/p2)‖ f ‖Lp1 ,

where C is independent of f and x ∈ Rn.

Lemma 2.6 (Bernstein’s multiplier theorem [30]). Let 0 < p 6 2. If ∂γ f ∈ L2 for all
multi-indices γ with |γ| 6 [n(1/p − 1/2)] + 1, then

‖F −1 f ‖Lp .
∑

|γ|6[n(1/p−1/2)]+1

‖∂γ f ‖L2 .
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Proof. Write N = [n(1/p − 1/2)] + 1 and 1/r = 1/p − 1/2, so r ≥ 0 and −Nr + n < 0.
By Hölder’s inequality and Plancherel’s equality,

‖F −1 f ‖Lp = ‖〈x〉−N〈x〉NF −1 f (x)‖Lp 6 ‖〈x〉−N‖Lr‖〈x〉NF −1 f (x)‖L2

. ‖〈x〉NF −1 f (x)‖L2 .
∥∥∥∥ ∑
|γ|6N

|xγF −1 f (x)
∥∥∥∥

L2

.
∑
|γ|6N

‖xγF −1 f (x)‖L2 ∼
∑
|γ|6N

‖∂γ f ‖L2 . �

Lemma 2.7 (Sharpness of embedding [14]). Let 0 < pi, qi 6 ∞, si ∈ R and αi ∈ [0, 1]
for i = 1, 2. Then

Ms1,α1
p1,q1
⊆ Ms2,α2

p2,q2

if and only if
1
p2
6

1
p1
,

1
q2
6

1
q1
, s2 + R(p,q, α1, α2) 6 s1,

or 
1
p2
6

1
p1
,

1
q2

>
1
q1
,

s2 + R(p,q, α1, α2) +
n(1 −max{α1, α2})

q2
< s1 +

n(1 −max{α1, α2})
q1

.

3. Boundedness of the fractional integral operators

In this section, we give the proof of Theorem 1.1. To do this, we first show that the
boundedness of fractional integral operators at high frequency can be reduced to the
corresponding embedding between two α-modulation spaces (see Proposition 3.1).
Then we establish a mild characterisation for the boundedness of fractional integral
operators (see Proposition 3.2). Finally, we establish the sharp conditions for the
boundedness of fractional integral operators at low frequency (see Proposition 3.3).

Proposition 3.1. Let 0 < β < n, si ∈ R for i = 1, 2, and let % ∈ S be a nonzero
smooth function such that %(ξ) = 1 in B(0, r), where r > 0. Set P0 f = F −1(% f̂ ) and
P∞ f = F −1((1 − %) f̂ ). Then the mapping Iβ ◦ P∞ : Ms1,α1

p1,q1 → Ms2,α2
p2,q2 is bounded if and

only if Jβ : Ms1,α1
p1,q1 → Ms2,α2

p2,q2 is bounded.

Proof. We only state the proof for q1, q2 < ∞, since the other cases can be handled
similarly.

We first give the proof of the ‘IF’ part. Let ζ ∈S be a nonzero smooth function
with compact support such that ζα2

k ηα2
k = ηα2

k for all k ∈ Zn, where

ζα2
k (ξ) := ζ

(
ξ − 〈k〉α2/(1−α2)k
〈k〉α2/(1−α2)

)
.
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By Lemma 2.2,

‖Iβ ◦ P∞ f ‖Ms2 ,α2
p2 ,q2

=

( ∑
k∈Zn

‖�α2
k Iβ ◦ P∞ f ‖q2

Lp2 〈k〉
s2q2/(1−α2)

)1/q2

=

( ∑
k∈Zn

‖(F −1ζα2
k ) ∗ (�α2

k Iβ ◦ P∞ f )‖q2
Lp2 〈k〉

s2q2/(1−α2)
)1/q2

=

( ∑
k∈Zn

∥∥∥∥F −1
(
ζα2

k (ξ)
|ξ|β

(1 + |ξ|2)β/2
(1 − %(ξ))

)
∗ (�α2

k Jβ f )
∥∥∥∥q2

Lp2
〈k〉s2q2/(1−α2)

)1/q2

.
( ∑

k∈Zn

〈k〉(nα2/1−α2)(1/p̃2−1)q2

∥∥∥∥F −1
(
ζα2

k (ξ)
|ξ|β

(1 + |ξ|2)β/2
(1 − %(ξ))

)∥∥∥∥q2

L p̃2

× ‖�α2
k Jβ f ‖q2

Lp2 〈k〉
s2q2/1−α2

)1/q2

and this is . ‖Jβ f ‖Ms2 ,α2
p2 ,q2
. ‖ f ‖Ms1 ,α1

p1 ,q1
if we prove that, for all k ∈ Zn,

〈k〉nα2(1/p̃2−1)/(1−α2)
∥∥∥∥F −1

(
ζα2

k (ξ)
|ξ|β

(1 + |ξ|2)β/2
(1 − %(ξ))

)∥∥∥∥
L p̃2
. 1. (3.1)

To verify (3.1), we write gk(ξ) = ζα2
k (ξ)(|ξ|β/(1 + |ξ|2)β/2)(1 − %(ξ)). Observing that

gk is a Schwartz function for every fixed k, we only need to verify (3.1) for large k such
that ζα2

k (1 − %(ξ)) = ζα2
k and supp ζα2

k ∩ B(0, 100) = ∅. Using the Bernstein multiplier
theorem and the scaling property of Lp, we see that

〈k〉nα2(1/p̃2−1)/(1−α2)‖F −1gk‖L p̃2 = ‖F −1(gk(〈k〉α2/(1−α2)ξ))‖L p̃2

.
∑

|γ|6[n(1/p̃2−1/2)]+1

〈k〉α2(|γ|−n/2)/(1−α2)‖∂γgk‖L2

.
∑

|γ|6[n(1/p̃2−1/2)]+1

〈k〉α2(|γ|−n/2)/(1−α2)
∑

γ1+γ2+γ3=γ

‖∂γ1 |ξ|β · ∂γ2 (1 + |ξ|2)−β/2 · ∂γ3ζα2
k ‖L2 .

From the defining property of ζα2
k and supp ζα2

k ∩ B(0, 100) = ∅, the above quantity is

.
∑

|γ|6[n(1/p̃2−1/2)]+1

〈k〉α2(|γ|−n/2)/(1−α2)

∑
γ1+γ2+γ3=γ

〈k〉−|γ1 |−|γ2 |/(1−α2)〈k〉−α2(|γ3 |)/(1−α2)〈k〉nα2/(2(1−α2)) . 1.

Now, we turn to the proof of the ‘ONLY IF’ part. We deal with the high frequency
part first. Let τ be a smooth function with compact support in B(0, r) with τ(ξ) = 1 in
B(0, r/2). Obviously, (1 − %)(1 − τ) = 1 − %. In addition, as in the proof of the ‘IF’ part,

〈k〉nα2(1/ p̃2−1)/(1−α2)
∥∥∥∥F −1

(
ζα2

k (ξ)
(1 + |ξ|2)β/2

|ξ|β
(1 − τ(ξ))

)∥∥∥∥
L p̃2
. 1
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for all k ∈ Zn. By Lemma 2.2,

‖�α2
k Jβ ◦ P∞ f ‖p2 =

∥∥∥∥F −1
(
ζα2

k (ξ)
(1 + |ξ|2)β/2

|ξ|β
(1 − τ(ξ))

)
∗ �α2

k Iβ ◦ P∞ f
∥∥∥∥

p2

. 〈k〉nα2(1/p̃2−1)/(1−α2)
∥∥∥∥F −1

(
ζα2

k (ξ)
(1 + |ξ|2)β/2

|ξ|β
(1 − τ(ξ))

)∥∥∥∥
L p̃2

∥∥∥∥∥�α2
k Iβ ◦ P∞ f

∥∥∥∥∥
p2

.

∥∥∥∥∥�α2
k Iβ ◦ P∞ f

∥∥∥∥∥
p2

.

Thus,

‖Jβ ◦ P∞ f ‖Ms2 ,α2
p2 ,q2

=

( ∑
k∈Zn

〈k〉s2q2/(1−α2)‖�α2
k Jβ ◦ P∞ f ‖q2

p2

)1/q2

.
( ∑

k∈Zn

〈k〉s2q2/(1−α2)‖�α2
k Iβ f ‖q2

p2

)1/q2

= ‖Iβ ◦ P∞ f ‖Ms2 ,α2
p2 ,q2
. ‖ f ‖Ms1 ,α1

p1 ,q1
.

(3.2)

Before dealing with the low frequency part, we verify that 1/p2 6 1/p1. Indeed,
we can take a large positive number ξ0 and a nonzero smooth function v with Fourier
support in B(0, 1), such that

Jβvξ0,λ = Jβ ◦ P∞vξ0,λ

for all λ 6 1, where v̂ξ0,λ(ξ) := v̂((ξ − ξ0)/λ). From (3.2) and Lemmas 2.3 and 2.4,

‖vξ0,λ‖Lp2 ∼ ‖vξ0,λ‖Ms2−β,α2
p2 ,q2

∼ ‖Jβvξ0,λ‖Ms2 ,α2
p2 ,q2
∼ ‖Jβ ◦ P∞vξ0,λ‖Ms2 ,α2

p2 ,q2

. ‖vξ0,λ‖Ms1 ,α1
p1 ,q1
∼ ‖vξ0,λ‖Lp1 ,

which implies
λ1−1/p2 ∼ ‖vξ0,λ‖Lp2 . ‖vξ0,λ‖Lp1 ∼ λ1−1/p1 .

Letting λ→ 0, we deduce that 1/p2 6 1/p1.
Now, we turn to the estimates for the low frequency part. By Lemma 2.3,

Lemma 2.4 and the embedding of Lp with Fourier support (see Lemma 2.5),

‖Jβ ◦ P0 f ‖Ms2 ,α2
p2 ,q2
∼ ‖P0 f ‖Ms2−β,α2

p2 ,q2
∼ ‖P0 f ‖Lp2

. ‖P0 f ‖Lp1 ∼ ‖P0 f ‖Ms1 ,α1
p1 ,q1
. ‖ f ‖Ms1 ,α1

p1 ,q1
.

(3.3)

Combining (3.2) and (3.3),

‖Jβ f ‖Ms2 ,α2
p2 ,q2
. ‖Jβ ◦ P0 f ‖Ms2 ,α2

p2 ,q2
+ ‖Jβ ◦ P∞ f ‖Ms2 ,α2

p2 ,q2
. ‖ f ‖Ms1 ,α1

p1 ,q1
,

which is the desired conclusion. �

As an application of Proposition 3.1, we can give an equivalent characterisation to
that of Theorem 1.1.
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Proposition 3.2. Let 0 6 α 6 1, 0 < β < n, 0 < pi, qi 6 ∞ and si ∈ R, i = 1, 2. Let
% ∈ S be a nonzero smooth function such that %(ξ) = 1 in B(0, r) for some r > 0.
Set P0 f = F −1(% f̂ ) and P∞ f = F −1((1 − %) f̂ ). Then Iβ : Ms1,α1

p1,q1 → Ms2,α2
p2,q2 is bounded,

if and only if

(1) ‖Iβ ◦ P0 f ‖Lp2 . ‖P0 f ‖Lp1 for all f ∈S ′;
(2) the embedding relation Ms1,α1

p1,q1 ⊂ Ms2−β,α2
p2,q2 holds.

Proof. We divide the proof into two parts.

‘IF’ part. By Lemma 2.4, the embedding relation Ms1,α1
p1,q1 ⊂ Ms2−β,α2

p2,q2 implies the
boundedness of Jβ : Ms1,α1

p1,q1 → Ms2,α2
p2,q2 , and we use Proposition 3.1 to deduce the

boundedness of Iβ ◦ P∞ : Ms1,α1
p1,q1 → Ms2,α2

p2,q2 . Now ‖Iβ ◦ P0 f ‖Lp2 . ‖P0 f ‖Lp1 and, by
Lemma 2.3, ‖Iβ ◦ P0 f ‖Lp2 ∼ ‖Iβ ◦ P0 f ‖Ms2 ,α2

p2 ,q2
and ‖P0 f ‖Lp1 ∼ ‖P0 f ‖Ms1 ,α1

p1 ,q1
, which implies

‖Iβ ◦ P0 f ‖Ms2 ,α2
p2 ,q2
. ‖P0 f ‖Ms1 ,α1

p1 ,q1
. Thus,

‖Iβ f ‖Ms2 ,α2
p2 ,q2
. ‖Iβ ◦ P0 f ‖Ms2 ,α2

p2 ,q2
+ ‖Iβ ◦ P∞ f ‖Ms2 ,α2

p2 ,q2

. ‖P0 f ‖Ms1 ,α1
p1 ,q1

+ ‖ f ‖Ms1 ,α1
p1 ,q1
. ‖ f ‖Ms1 ,α1

p1 ,q1
.

‘ONLY IF’ part. By the boundedness of Iβ, we have ‖Iβ ◦ P0 f ‖Ms2 ,α2
p2 ,q2
. ‖P0 f ‖Ms1 ,α1

p1 ,q1
.

Recalling ‖Iβ ◦ P0 f ‖Lp2 ∼ ‖Iβ ◦ P0 f ‖Ms2 ,α2
p2 ,q2

and ‖P0 f ‖Lp1 ∼ ‖P0 f ‖Ms1 ,α1
p1 ,q1

, we deduce that
‖Iβ ◦ P0 f ‖Lp2 . ‖P0 f ‖Lp1 . By the boundedness of Iβ, we also conclude that

‖Iβ ◦ P∞ f ‖Ms2 ,α2
p2 ,q2
. ‖P∞ f ‖Ms1 ,α1

p1 ,q1
. ‖ f ‖Ms1 ,α1

p1 ,q1
.

Using Proposition 3.1, we deduce that the map Jβ : Ms1,α1
p1,q1 → Ms2,α2

p2,q2 is bounded, which
implies the embedding relation Ms1,α1

p1,q1 ⊂ Ms2−β,α2
p2,q2 . �

The following proposition gives the sharp conditions for boundedness of Iβ at low
frequency.

Proposition 3.3. Let 0 < β < n and 0 < pi 6 ∞ for i = 1, 2. Suppose ρ is a smooth
function supported in B(0,R) satisfying ρ(ξ) = 1 for ξ ∈ B(0, r), where 0 < r < R <∞.
Set P f := ρ(D) f . Then

‖Iβ ◦ P f ‖Lp2 6 C‖P f ‖Lp1 ,

for all f ∈S ′, if and only if

1
p2

+
β

n
6 min

{ 1
p1
, 1

}
, p1 ,

n
β
, p2 ,

n
n − β

, (3.4)

where C depends only on n, p1, p2 and R and is independent of f .

Proof. The conditions (3.4) are equivalent to

1
p2

+
β

n
6

1
p1
, p1 ,

n
β

and p2 >
n

n − β
.
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We prove the sufficiency by considering the following three cases.
Case 1: 1/p2 + β/n 6 1/p1 and 0 < 1/p2 < (n − β)/n.

In this case, there exists τ1 such that 1/τ1 = 1/p2 + β/n 6 1/p1 and 1 < τ1, p2 <∞.
Using the Hardy–Littlewood–Sobolev embedding theorem and Lemma 2.5,

‖Iβ ◦ P f ‖Lp2 = ‖Iβ(P f )‖Lp2 . ‖P f ‖Lτ1 . ‖P f ‖Lp1 .

Case 2: β/n < 1/p1 < 1 and p2 =∞.
In this case, there exists τ2 such that (1/p2 =) 0 < 1/τ2 = 1/p1 − β/n and 1 <

p1, τ2 <∞. By Lemma 2.5 and the Hardy–Littlewood–Sobolev embedding theorem,

‖Iβ ◦ P f ‖Lp2 . ‖Iβ ◦ P f ‖Lτ2 = ‖Iβ(P f )‖Lτ2 . ‖P f ‖Lp1 .

Case 3: 1/p1 > 1 and p2 =∞.
In this case, there exist τ1, τ2, such that 1/p2 + β/n < 1/τ2 + β/n = 1/τ1 < 1/p1 and

1 < τ1, τ2 <∞. For instance, we may choose 1/τ1 = (n + β)/2n and 1/τ2 = (n − β)/2n.
By Lemma 2.5 and the Hardy–Littlewood–Sobolev embedding theorem,

‖Iβ ◦ P f ‖Lp2 . ‖Iβ ◦ P f ‖Lτ2 = ‖Iβ(P f )‖Lτ2 . ‖P f ‖Lτ1 . ‖P f ‖Lp1 .

Next we turn to the proof of necessity. We first verify that 1/p2 + β/n 6 1/p1. Let
f ∈ S (Rn) be a nonzero function whose Fourier transform has support in B(0, 1).
Write fλ(x) := λn f (λx) for λ > 0 so that fλ ∈ Lp1 . By checking the Fourier transform,

‖Iβ fλ‖Lp2 = ‖Iβ ◦ P fλ‖Lp2 6 C‖P fλ‖Lp1 = C‖ fλ‖Lp1

for sufficiently small λ. Then a direct calculation yields

λ−βλn(1−1/p2)‖Iβ f ‖Lp2 6 Cλn(1−1/p1)‖ f ‖Lp1 .

For a fixed f , 0, letting λ→ 0 on both sides of the above inequality, yields

1
p2

+
β

n
6

1
p1
.

Next, we verify the conditions p1 , n/β and p2 > n/(n − β). Suppose first, for a
contradiction, that p1 = n/β. Since 1/p2 + β/n 6 1/p1, we get p2 =∞. Let f = hε ∗ v,
where 0 < β/n < ε 6 1 and hε is defined by

hε =

|x|−β(log |x|)−ε, |x| > e,
0 otherwise,

and v ∈S (Rn) is a positive function whose Fourier transform has compact support
near the origin such that ρv̂ = v̂ and v(0) = 1. We remark that such a function v exists.
For instance, we can choose v = ωω̄ = |ω|2 for ω ∈S (Rn) satisfying ω(0) = 1 and its
Fourier transform having compact support. Thus, f is also a positive function and its
Fourier transform has compact support near the origin. Since hε ∈ Ln/β and v ∈S (Rn)
with compact Fourier support, we obtain f ∈ Ln/β by Young’s inequality. By the choice
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of the function v, there exists δ with 0 < δ < 1
2 e such that v(x) > 1

2 for all |x| 6 δ. Take
R > e. Then |y|/|x| ∼ 1 for all |x| > R, |x − y| 6 δ. Consequently

‖Iβ ◦ P f ‖L∞ = ‖Iβ f ‖L∞ > Iβ f (0) ∼
∫
Rn
|x|β−n f (x) dx

>

∫
B(0,R)c

|x|β−n f (x) dx =

∫
B(0,R)c

|x|β−n(hε ∗ v)(x) dx

>
1
2

∫
B(0,R)c

|x|β−n
∫

B(x,δ)
hε(y) dydx &

1
2
δn

∫
B(0,R)c

|x|β−nhε(x) dx =∞.

But, since ρ ∈ S , Young’s inequality (Lemma 2.2) gives ‖P f ‖Ln/β . ‖ f ‖Ln/β < ∞,
contradicting the hypothesis that ‖Iβ ◦ P f ‖L∞ 6 C‖P f ‖Ln/β . Therefore, p1 , n/β.

Next, suppose for a contradiction that p2 6 n/(n − β). Since 1/p2 + β/n 6 1/p1, we
get p1 6 1. As above, let v ∈S (Rn) be a positive function whose Fourier transform
has compact support near the origin such that ρv̂ = v̂ and v(0) = 1. There is a δ > 0
such that v(x) > 1

2 for all |x| 6 δ. Take R > 2δ. Then

‖Iβv‖Lp2 =
∥∥∥∥ ∫
Rn
|y|β−nv(x − y) dy

∥∥∥∥
Lp2
>

∥∥∥∥ ∫
B(x,δ)

|y|β−nv(x − y) dy
∥∥∥∥

Lp2 (B(0,R)c)

&
∥∥∥∥ ∫

B(x,δ)
|y|β−n dy

∥∥∥∥
Lp2 (B(0,R)c)

& ‖δn|x|β−n‖Lp2 (B(0,R)c) =∞.

But ‖Iβ ◦ Pv‖Lp2 6 C‖Pv‖Lp1 = C‖v‖Lp1 <∞ by hypothesis, which is a contradiction. So
p2 > n/(n − β). �

Proof of Theorem 1.1. Using Proposition 3.2, we obtain conditions (1.4) and (1.5)
by Proposition 3.3, and we obtain conditions (1.6) and (1.7) by Proposition 3.1 and
Lemma 2.7. �
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