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Abstract
Personalised nutrition is at its simplest form the delivery of dietary advice at an individual level. Incorporating response to different diets has
resulted in the concept of precision nutrition. Harnessing the metabolic phenotype to identify subgroups of individuals that respond differen-
tially to dietary interventions is becoming a reality. More specifically, the classification of individuals in subgroups according to their metabolic
profile is defined as metabotyping and this approach has been employed to successfully identify differential response to dietary interventions.
Furthermore, the approach has been expanded to develop a framework for the delivery of targeted nutrition. The present review examines the
application of the metabotype approach in nutrition research with a focus on developing personalised nutrition. Application of metabotyping in
longitudinal studies demonstrates that metabotypes can be associated with cardiometabolic risk factors and diet-related diseases while appli-
cation in interventions can identify metabotypes with differential responses. In general, there is strong evidence that metabolic phenotyping is a
promising strategy to identify groups at risk and to potentially improve health promotion at a population level. Future work should verify if
targeted nutrition can change behaviours and have an impact on health outcomes.
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Introduction

Poor diet quality is a major contributor to chronic diseases such
as type 2 diabetes, CVD and various cancers(1,2). Despite the
well-known association between dietary patterns and diseases,
interventions to change dietary habits have had a limited impact
onwellbeing and public health outcomes(3,4). In recent years, the
diverse inter-individual responses to interventions have become
apparent and support the need for the development of strategies
that are based upon the delivery of advice to the individual(5–9).
Concomitant with this, different strategies have emerged for
delivering advice taking personal characteristics into account.
Furthermore, studies have demonstrated that personalisation
of dietary advice is more effective in promoting improvements
in the dietary habits of individuals compared with the general
healthy eating advice(10–12).

Metabolomics is the study of small molecules in biological
samples and is a powerful tool in the characterisation of
individuals(13,14). The set of metabolites in the human body,
termed the metabolome, is the product of metabolic reactions
influenced by endogenous, lifestyle and environmental fac-
tors(15,16). Applications of metabolomics in nutrition research
have expanded in recent years and it has the potential to contrib-
ute to the delivery of personalised nutrition(17). Metabotypes are
defined as groups of similar individuals based on combinations
of specific metabolites. Thus, individuals within a metabotype

have similar metabolic profiles and those in different metabo-
types have different profiles(17,18) (Fig. 1). Metabotypes are often
defined using cluster analysis, such as k-means analysis and
hierarchical cluster analysis(18). Applications of metabotypes
has identified differential response to interventions and have
the potential of identifying optimal treatment strategies for
individuals. For example, using serum metabolites Palau-
Rodriguez et al.(19) identified two subgroups with different
degrees of improvement in insulin resistance, total cholesterol
(TC), HDL-cholesterol (HDL-C) and uric acid following bariat-
ric surgery. Importantly, the metabolic changes in each cluster
were independent of the baseline anthropometric/clinical
parameters of the patients and the magnitude of weight loss.
Another example identified metabotypes with different lipid
responses to fenofibrate(20). Similarly, in the field of nutrition
science there are several examples of applications of metabo-
types in healthy and subjects with chronic diseases for
determining metabolically homogeneous subgroups with dif-
ferential responses to dietary interventions(18). However, the
applications are not limited to intervention studies, with the
metabotyping approach being developed for the delivery of
targeted nutrition(21,22). Given the rapid growth of this area,
the objective is to review the research conducted on metabo-
types related to nutrition research and to identify gaps where
further work is needed.

Abbreviations: HDL-C, HDL-cholesterol; HOMA-IR, homeostatic model assessment for insulin resistance; HSFAM, high-SFAmeal; IGF, insulin-like growth factor;
MetS, metabolic syndrome; MMM, mixedMediterranean-type meal; MMTT, mixedmeal tolerance test; OGTT, oral glucose tolerance test; OLTT, oral lipid tolerance
test; RCT, randomised controlled trial; TC, total cholesterol.
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Metabolic phenotyping of longitudinal data to examine
associations with cardiometabolic risk factors and diet-
related diseases

Longitudinal studies are important tools in the epidemiological
setting to investigate the aetiology of a disorder and indicate risk
factors or population groups that may be targeted as part of pre-
vention strategies. In fact, within the metabolic phenotype
approach, longitudinal studies offer the possibility to study sub-
groups of individuals (metabotypes) over a period of time and
the potential to identify those at higher risk of disease develop-
ment. A summary of studies examining longitudinal associations
of metabotypes with cardiometabolic risk factors and diet-
related diseases is presented in Table 1.

In order to identify risk profiles for the emergence of the met-
abolic syndrome (MetS), Ventura et al.(23) assessed a non-clinical
sample of healthy non-Hispanic white girls (n 154) in a retro-
spective analysis with follow-up performed every 2 years from
age 5 to 13 years old. Six risk factors for the MetS (waist circum-
ference, systolic blood pressure, diastolic blood pressure,
HDL-C, TAG and blood glucose) were used in cluster analysis
to determine metabotypes at age 13 years. At age 5 years, the
higher MetS risk group had the highest BMI relative to the other
groups. Across childhood, both the higher MetS risk and the
hypertension risk groups had significantly greater increases in
weight and fat mass, while the higher MetS risk group had the
highest daily sweetened beverage intake. Findings from this
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Fig. 1. Overview of the concept of metabotyping for the delivery of personalised nutrition. Intrinsic and extrinsic factors influence the metabolic phenotype of individuals.
Groups of individuals with similar metabolic phenotypes are termed metabotypes.

34 E. Hillesheim and L. Brennan

https://doi.org/10.1017/S0954422419000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422419000179


Table 1. Summary of studies examining longitudinal associations of metabotypes with cardiometabolic risk factors and diet-related diseases

Author Objective Study design Study sample Follow-up period
Variables and method for
clustering Main findings

Ventura
et al.(23)

Describe risk profiles
for the metabolic
syndrome during
adolescence

Retrospective
longitudinal study

154 Non-clinical 13-
year-old white girls
in the USA

Every 2 years for
8 years

Six risk factors for the
metabolic syndrome
(waist circumference,
SBP, DBP, and fasting
HDL-C, TAG and glucose)
clustered by mixture
model

Four metabotypes. At age 13 years, the higher metabolic
syndrome risk group and the hypertension risk group had
more family history of type 2 diabetes and obesity. Across
childhood, the higher metabolic syndrome risk group and the
hypertension risk group had greater increases in BMI and fat
mass, as well as the former had the higher intake of
sweetened beverages; a dyslipidaemia risk group had the
lowest physical activity

Kirchberg
et al.(24)

Identify predictive
metabotypes for
childhood obesity

Prospective longitudinal
study

154 Healthy,
singleton, term and
breastfed infants
aged 6 months in
the CHOP trial in
Europe

6 years 21 Fasting plasma amino
acids, sum of hexoses
and 146 polar lipids (free
carnitine, 40
acylcarnitines, 11 lyso PC,
91 PC, and 14
sphingomyelins) clustered
by the Bayesian
agglomerative method

Twenty metabotypes. Only the four biggest clusters (n ≥ 14)
were analysed and at 6 months of age cluster 3 had the
lowest weight, height, free IGF-1 and IGF-BP3, and the
highest IGF-BP2. The BMI z-score at 6 years of age tended to
differ (unadjusted P= 0·07) among clusters, with cluster 3
presenting the highest median and large proportion of
overweight/obese children

Riedl
et al.(25)

Define metabotypes
of diet-related
diseases

Prospective longitudinal
study

1729 Adults aged
32–77 years in the
population-based
KORA F4 study in
Germany

7 years BMI and 33 fasting
biochemical parameters
clustered by k-means
cluster analysis

Three metabotypes. At the baseline, cluster 3 showed the most
unfavourable marker profile with the highest prevalence of
cardiometabolic diseases. After the follow-up, disease
incidence was higher in cluster 3 compared with clusters 2
and 1, respectively, for hypertension (41·2, 25·3, 18·2%), type
2 diabetes (28·3, 5·1, 2·0%), hyperuricaemia/gout (10·8, 2·3,
0·7%), dyslipidaemia (19·2, 18·3, 5·6%), all metabolic
diseases (54·5, 36·8, 19·7%) and all CVD (6·3, 5·5, 2·3%)
together

SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, HDL-cholesterol; CHOP, ChildhoodObesity Project; PC, phosphatidylcholines; IGF-1, insulin-like growth factor 1; IGF-BP3, insulin-like growth factor-binding protein 3; IGF-
BP2, insulin-like growth factor-binding protein 2.
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study support the role of metabotypes for identifying individuals

at higher risk who could be targeted by clinicians as part of pre-

ventive healthcare.
Application of metabotypes to baseline data in longitudinal

studies can be very useful in defining at-risk groups which could
be targeted for the prevention of undesirable health outcomes.
The European Childhood Obesity Project (CHOP), using a
Bayesian agglomerative clustering method on twenty-one
plasma amino acids and 146 polar lipids, classified healthy
infants (n 154) of 6 months of age into twenty metabotypes in
order to predict later obesity risk(24). Only the four biggest clus-
ters (n≥ 14) were analysed and at the baseline cluster 3 had the
lowest weight, height, free insulin-like growth factor (IGF)-1 and
IGF-binding protein 3, and the highest IGF-binding protein 2.
The BMI z-score at 6 years of age tended to differ (unadjusted
P= 0·07) among clusters, with cluster 3 presenting the highest
median and largest proportion of overweight/obese children.
These results support the concept that even very young individ-
uals can be clustered according to their inter-individual
differences so that the clusters provide insight into later develop-
ment and health and opportunities for developingmore targeted
and personalised intervention strategies.

Another notable example employing metabotypes in a
prospective cohort is the KORA F4 study in which 1729 adults
aged 32 to 77 years were clustered based on BMI and thirty-three
biochemicalmarkers(25). For each of the threemetabotypes iden-
tified, the current disease prevalence and the incidence in the
follow-up cohort 7 years later was determined. The ‘high-risk’
cluster showed the most unfavourable biomarker profile with
the highest BMI and prevalence of cardiometabolic diseases at
the baseline as well as the highest incidence of hypertension,
type 2 diabetes, hyperuricaemia/gout, dyslipidaemia, all meta-
bolic diseases and all CVD together. This study provides strong
evidence that metabotyping is a robust approach for identifying
groups of individuals that could be targeted for prevention
strategies.

Overall, the derivation of metabotypes in longitudinal studies
to predict cardiometabolic risk factors and diet-related diseases is
nascent. However, replication of the metabotypes in other pop-
ulations is a necessary next step. Notwithstanding this, the pre-
sented studies make a strong case for the metabotype approach
and highlight its potential in identifying groups that could benefit
from targeted dietary advice.

Metabolic phenotyping to investigate differential
responses to dietary challenges and interventions

Differential responses to dietary interventions are becoming
increasingly recognised. Concomitantly, metabolic phenotyping
has emerged as a useful tool to examine responses to interven-
tions. In the context of nutrition, health can be defined as the
ability of an organism to adapt to challenges(26). Challenge tests
investigate the disturbance and restoration of homeostasis of
an individual using a dietary challenge as a physiological
stressor(27). In combination with metabolomics, dietary chal-
lenges have been used to identify groups of subjects with distinct
metabolic phenotypes/metabotypes and unique responses.

Table 2 illustrates studies which focus specifically on differential
responses of metabotypes to dietary challenges and intervention
studies.

Krishnan et al.(28) investigated the differential responses of
metabotypes to dietary challenges. The authors used low- and
high-glycaemic indexmeals in a cross-over randomised trial with
healthy overweight women (n 24; aged 20–50 years) to identify
response patterns that could provide insight into early subclini-
cal glycaemic disruption. By using blood glucose, insulin and
leptin responses to the challenges, individuals were clustered
into three metabotypes. While the most populated metabotype
presented little deviation from the expected response to the
dietary challenges, the two minor metabotypes were suggestive,
one of sub-clinical insulin resistance and the other of hyperlep-
tinaemia. In the Metabolic Challenge (MECHE) Study, healthy
subjects (n 214; aged 18–60 years) were randomised to one of
three groups to receive oral glucose tolerance tests (OGTT)
and/or oral lipid tolerance tests (OLTT) and four metabotypes
were identified based on their blood glucose response curves
to the OGTT (n 116)(29). The cluster with the most adverse meta-
bolic profile at baseline presented a reduced β-cell function and
differential responses to insulin and C-peptide during the OGTT
and OLTT, as well as to glucose and TAG during the OLTT,
which characterises this metabotype as at risk. The postprandial
metabolic responses to different kinds of bread – refined rye
bread, wholemeal rye bread and a control refined wheat bread
– were investigated in a cross-over randomised controlled trial
(RCT) with healthy postmenopausal women (n 19; aged 61
(SD 4·8) years)(30). The clustering of the fasting metabolic profile
identified two distinct metabotypes. Women with higher fasting
concentrations of leucine and isoleucine and lower fasting con-
centrations of sphingomyelins and phosphatidylcholines had
higher insulin responses despite similar glucose concentrations
after all kinds of bread, suggesting higher insulin resistance. In a
recent study with data from the NutriTech project, the response
to the intervention was only evident following the classification
of the individuals into metabotypes(26). Healthy subjects (n 72;
aged 59 to 64 years) were enrolled to a mixedmeal tolerance test
(MMTT) before and after 12 weeks targeting moderate weight
loss (basal BMI 29·7 (SD 2·7) kg/m2). The intervention group
(n 40) consumed a diet that reduced energy intake by 20 %,
whereas subjects in the control group (n 32) consumed an aver-
age European diet matched to their energy expenditure to main-
tain body weight. Two metabotypes were reported based on the
plasma concentration of metabolites (markers of lipolysis, fatty
acid β-oxidation and ketogenesis) during the mixed meal chal-
lenge test. Before the intervention, individuals from metabotype
B (n 36) showed slower glucose clearance, increased visceral fat
volume, higher hepatic lipid concentrations, and a less healthy
dietary pattern according to the urinary metabolomic profile
when compared with individuals from metabotype A.
Following the weight loss (about 5·6 kg), only the individuals
from metabotype B showed positive changes in the glycaemic
response to the MMTT. Since the metabolite differences found
between metabotypes A and B are all closely associated with
insulin signalling, metabotype B was considered to be predia-
betic with a modestly impaired insulin action. Collectively, all
these studies clearly demonstrate that the use of a metabotype
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Table 2. Summary of studies investigating differential responses of metabotypes to meal challenges and dietary interventions

Author Objective Study design Study sample Dietary challenge(s) Intervention
Variables and method for
clustering Main findings

Fiamoncini
et al.(26)

Investigate the
metabolic
response of
metabotypes to an
MMTT before and
after weight loss

Metabolic challenge
before and after a
12-week RCT

70 Healthy subjects
(based on fasting
glucose, insulin
and blood
pressure) aged
59–64 years in the
NutriTech Study in
Europe

Mixed-meal tolerance
test (400 ml of
high-energy drink
with 33%
carbohydrates,
59% lipids and
8% protein)

Control group: European diet
for weight stability.
Intervention group:
supervised diet for weight
loss

Response concentrations of
plasma markers of
lipolysis, fatty acid
β-oxidation and
ketogenesis clustered
by HCA

Two metabotypes. At
baseline, metabotype B
had slower glucose
clearance, increased intra-
abdominal adipose tissue
mass, higher hepatic lipid
concentrations, and a less
healthy dietary pattern
than metabotype A.
Following the weight loss
(about 5·6 kg), only
metabotype B showed
positive changes in the
glycaemic response to the
MMTT, with improvements
in metabolites of amino
acids, acylcarnitines and
biochemical parameters

Krishnan
et al.(28)

Identify metabotypes
of response to
meals with
different GI

Metabolic challenge
in a cross-over
randomised trial

24 Healthy
premenopausal
women aged
20–50 years in the
USA

High-GI and low-GI
meals preceded by
a 3 d run-in diet
matching the GI of
the tested meal

Not tested Response concentrations of
blood glucose, insulin and
leptin clustered by PCA

Three metabotypes. The two
minor groups were one
suggestive of sub-clinical
insulin resistance and the
other of hyperleptinaemia

Morris
et al.(29)

Identify metabotypes
of response to an
OGTT

Metabolic challenge
in a randomised
trial

116 Healthy subjects
aged 18–60 years
in the Metabolic
Challenge
(MECHE) Study
in Ireland

75 g OGTT or an
OLTT (54 g of
lipids and 12 g of
carbohydrates)

Not tested Response curves of blood
glucose to OGTT
clustered by mixed model

Four metabotypes. Cluster 1
was at risk with the
highest BMI, TAG,
hsCRP, C-peptide, insulin
and HOMA-IR and the
lowest VO2max. Cluster 1
had a reduced β-cell
function and differential
responses to insulin and
C-peptide during OGTT
and to insulin, glucose
and TAG during OLTT

Moazzami
et al.(30)

Investigate the
metabolic
response of
metabotypes to
different types of
bread

Metabolic challenge
in a cross-over
RCT

19 Healthy
postmenopausal
women (61 (SD 4·8)
years) in Finland

Refined wheat,
wholemeal rye and
refined rye breads,
providing 50 g of
carbohydrate

Not tested 189 Fasting metabolites
(21 amino acids, 17
biogenic amines, 47
acylcarnitines, 38 PC, 39
acyl-alkyl PC, 14 lyso PC,
15 sphingomyelins, and 1
hexose) clustered by
O-PLS, HCA and PCA

Two metabotypes. Subgroup
B, with the lower fasting
concentrations of
sphingomyelins and
diacyl-PC and the higher
concentrations of BCAA,
had the higher insulin
responses to all kinds of
bread, despite a similar
glucose response to
metabotype A, suggesting
higher insulin resistance
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Table 2 Continued

Author Objective Study design Study sample Dietary challenge(s) Intervention
Variables and method for
clustering Main findings

Lacroix
et al.(31)

Evaluate the
endothelial and
metabolic
response of
metabotypes to
complete meals

Metabolic challenge
in a cross-over
RCT

28 Healthy men aged
18–50 years in
Canada

HSFAM and MMM Not tested Age, BMI, HOMA-IR, and
fasting glucose, insulin,
TC, LDL-C, HDL-C, and
TAG clustered by HCA

Two metabotypes. Group 1
had a higher BMI, HOMA-
IR, and fasting insulin, TC,
non-HDL-C, TAG and
TAG:HDL-C, and a lower
intake of fruits and
vegetables. Following the
MMM, the healthiest
group (group 2) had a
lower increase in TAG,
with no difference in
postprandial endothelial
function. The HSFAM
induced postprandial
endothelial dysfunction
only in group 1

Wang
et al.(32)

Identify metabotypes
of response to
dietary carotenoids

Cross-over 3-week
trial

23 Healthy subjects
aged 36–69 years
in the USA

Not tested Watermelon juice (20·1 mg/d
lycopeneþ 2·5 mg/d
carotene) and a second
watermelon juice
(40·2 mg/d lycopeneþ
5·0 mg/d carotene) or
tomato juice (18·4 mg/d
lycopeneþ 0·6 mg/d
carotene)

Temporal response
concentrations of plasma
carotenoids (β-carotene,
lycopene, phytoene and
phytofluene) clustered by
k-means cluster analysis

Five metabotypes per
carotenoid per
intervention type. Strong
or weak responders to
each carotenoid were
identified. Responses
were associated with
genetic variants of
carotenoid-metabolising
enzyme

Vázquez-
Fresno
et al.(33)

Investigate urinary
changes in
metabotypes
following red wine
polyphenol intake

Cross-over 4-week
RCT

57 High-risk subjects
aged ≥55 years in
Spain

Not tested Red wine polyphenol intake
(733 equivalents of gallic
acid/d) in the form of
dealcoholised wine

67 Fasting blood and urinary
markers and 2
anthropometric
parameters (BMI and
waist:hip ratio) clustered
by k-means cluster
analysis

Four metabotypes. Following
the intervention,
4-hydroxyphenylacetate
concentrations
significantly increased in
the healthier cluster
compared with the higher-
risk cluster, while glucose
was higher in the higher-
risk cluster compared with
the healthier cluster;
tartrate was higher for
both clusters
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approach in conjunction with meal challenges has the ability
to characterise individuals into meaningful subgroups which
could receive targeted nutrition advice to lower the individual
disease risk(30).

In contrast to other studies that used the responses to chal-
lenges to form clusters, Lacroix et al.(31) used only fasting meta-
bolic data in a cross-over RCT designed to evaluate themetabolic
and vascular effects of a high-SFA meal (HSFAM) and a mixed
Mediterranean-type meal (MMM). Age, BMI, glycaemic and lipid
parameters were used to cluster healthy men (n 28; 18–50 years)
into two metabotypes at baseline. Compared with the healthiest
group, the less healthy group showed significantly higher BMI,
insulin and homeostatic model assessment for insulin resistance
(HOMA-IR), in addition to a less favourable lipid profile and
a lower intake of fruit and vegetables (dietary pattern score= 5·1
2 (SD 1·7) v. 3·9 (SD 1·4). Following the meal challenges, the less
healthy group experienced a greater significant increase in TAG
withMMMand endothelial dysfunctionwithHSFAM, in compari-
son with the healthier group. The MMMdid not significantly alter
postprandial endothelial function in both groups. The authors
concluded that the less healthy group would benefit even
more from consuming meals representative of a Mediterranean-
type diet given its non-deleterious endothelial properties, indi-
cating the potential of cluster techniques to individualise dietary
advice.

Application of the metabotype approach has also encom-
passed dietary interventions that did not involve meal chal-
lenges. Wang et al.(32) in a controlled cross-over study with
healthy subjects (n 23; aged 36–69 years) identified groups of
individuals with differing plasma carotenoid responses to
carotenoid-rich beverages. Following 3 weeks of daily intake
of watermelon juice (20 mg lycopene, 2·5 mg β-carotene, n 23;
40 mg lycopene, 5 mg β-carotene, n 12) or tomato juice
(18 mg lycopene, 0·6 mg β-carotene, n 10), cluster analysis
applied to weekly carotenoid responses identified groups of
individuals with differential responses. This, in turn, was used
to classify individuals as strong responders or weak responders
to the carotenoid intake. These findings demonstrate that sub-
groups of individuals can have differential responses to interven-
tionswhich could be harnessed in the future to givemore precise
dietary advice. With respect to employing a metabotype
approach for dietary interventions in clinical populations or dis-
ease risk factors, two studies are noteworthy. In a sample of high-
risk cardiovascular subjects (n 57; aged ≥55 years) a 4-week
cross-over RCT identified differential responsiveness to red wine
polyphenols(33). At baseline, fasting blood and urinary metabo-
lites and anthropometric parameters were used to cluster indi-
viduals in four metabotypes, including a higher-risk cluster
and a healthier cluster. Following 28 d of dealcoholised red wine
intake (polyphenol content= 733 equivalents of gallic acid/d),
concentrations of urinary 4-hydroxyphenylacetate significantly
increased in the healthier cluster compared with the higher-risk
cluster, indicating a differential response in this cluster. In a
double-blind 4-week RCT with healthy subjects (n 135; aged
18–63 years), the effect of vitamin D supplementation (15 mg
vitamin D3 per d) to improve markers of the MetS was only
visible after the classification of the sample into metabotypes(34).
The vitamin D supplementation significantly increased theT
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serum 25-hydroxyvitamin D in comparison with the placebo
group, but there was no effect of supplementation on the mea-
sured markers of the MetS. Based on thirteen fasting blood bio-
markers, one cluster characterised by low concentrations of
vitaminD and higher concentrations of adipokines showed a sig-
nificant decrease in insulin, HOMA-IR scores and C-reactive pro-
tein and an inverse relationship between the change in serum
vitamin D and glucose. Collectively, these examples clearly
present how comprehensive phenotyping may identify sub-
groups of individuals that can benefit from specific dietary
interventions.

The metabotype approach represents a tool through which
we can start to understand individual responses to interventions.
The ultimate goal will be to harness this information to deliver
personalised nutrition.

Harnessing the metabotype approach to deliver targeted
nutrition

To the best of our knowledge, there are only two published
examples of a framework for the delivery of personalised nutri-
tion using a metabotype approach (Table 3).

In 2015, O’Donovan et al.(22) proposed a framework based on
metabotyping using four commonlymeasured fastingmarkers of
metabolic health (TAG, TC, HDL-C and glucose). Application of

the approach in 875 adults resulted in three metabotypes.
Individuals in cluster 1 (n 274) had high TC concentrations, indi-
viduals in cluster 2 (n 423) had adequate concentrations of all
four biomarkers, and individuals in cluster 3 (n 178) had themost
unfavourablemetabolic profile with high concentrations of TAG,
TC and glucose and the lowest concentration of HDL-C.
Targeted dietary advice was developed for each metabotype
incorporating characteristics of the metabotype and personal
traits. In order to test the reliability of the approach to deliver per-
sonalised dietary advice, the targeted approach was compared
with an individual-based approach manually compiled and
delivered by a dietitian for a random sample of participants
(n 99). An excellent agreement of 89 % (range 20–100 %) was
found between the methods, considering the dietary advice
given with the targeted approach in relation to those given with
the individual-based approach. The most important strength of
this study is the fact that for clustering individuals only four bio-
markers of metabolic health routinely measured were used.
Furthermore, the approach generated a limited number of deci-
sion trees with simple and clear messages which allow the auto-
mationof the deliveryof personalised dietary advice to individuals
who are not high priority dietetic patients or where the access to a
dietitian is limited. All these features make the proposed frame-
work easily transferable to a clinical or primary care setting.

Development of this approach for a more diverse population
was achieved in a proof-of-concept format with data from seven

Table 3. Summary of studies developing targeted dietary advice solutions for metabotypes through the decision tree approach

Author Study sample

Variables and
method for
clustering

Clusters’ biomarker
characterisation Design of decision trees

Validation of
decision trees Main findings

O’Donovan
et al.(22)

875 Subjects
aged
18–90
years in
the Irish
National
Nutrition
Survey in
Ireland

Fasting TAG,
TC, HDL-C
and glucose
clustered by
k-means
cluster
analysis

Cluster 1 (n 274) had high
TC, cluster 2
(n 423) had adequate
concentrations of all
biomarkers, and cluster
3 (n 178) had high
TAG, TC and glucose

One decision tree by
cluster. Dietary advice
was based on the
biochemical cluster’s
characteristics and
branches for BMI, waist
circumference and
blood pressure

Comparison with
individual-based
approach
manually
compiled and
delivered by a
dietitian (n 99)

Three decision trees with
12 possible messages
each, which are the
combination of 20
possible types of advice.
An average agreement of
89% (range 20–100%)
was found between the
targeted advice and the
individual-based
approach with 69%
of the participants
presenting an agreement
of 100%

O’Donovan
et al.(35)

1354
Subjects
≥18 years
in the
Food4Me
Study in
seven
European
countries

27 Fasting
metabolic
markers
(TC, fatty
acids and
carotenoids)
clustered by
k-means
cluster
analysis

Cluster 1 (n 326) had the
highest TC and trans-
fatty acids and the
lowest omega-3 index;
cluster 2 (n 433) had
the highest omega-3
index and total
carotenoids and the
lowest total saturated
fat; and cluster 3
(n 595) had the lowest
TC and highest stearic
acid

Two decision trees by
cluster. The first was
based on biomarkers
(TC, total saturated fat,
omega-3 index and
carotenoids) with
branches for TC, BMI
and waist
circumference. The
second was based on
the individual intakes of
five nutrients (salt, Fe,
Ca, folate and fibre)

Comparison with
personalised
dietary advice
based on
phenotypic
features and
delivered by
nutritionists
(n 180)

A wide set of messages
raised from the
combination of two
decision trees and
ranged from 2 to 6 per
participant. An average
agreement of 82% was
found between the
targeted advice and the
individual-based
approach, with an
average agreement of
83, 74 and 88% for
clusters 1, 2 and 3,
respectively

TC, total cholesterol; HDL-C, HDL-cholesterol.
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European countries(35). Twenty-seven fasting metabolic markers
measured in finger-prick blood samples, including cholesterol,
individual fatty acids and carotenoids, were clustered into three
metabotypes. Individuals in cluster 1 (n 326) had the highest TC
and circulating trans-fatty acids and the lowest omega-3 index,
so this cluster was therefore considered the metabolically
unhealthy cluster. Cluster 2 (n 433) was labelled the healthy
group as individuals in this metabotype had the highest average
omega-3 index and total carotenoid concentrations and the lowest
total SFA. Individuals in cluster 3 (n 595) had the lowest average
TC and highest levels of stearic fatty acid. Decision trees with tar-
geted dietary advice were developed on the metabolic markers
(TC, total SFA, omega-3 index and carotenoids), demographics
and five key nutrients (salt, Fe, Ca, folate and fibre). The targeted
approach was compared with the messages delivered by nutri-
tionists as part of the Food4Me study (n 180) to participants receiv-
ing personalised dietary advice. An average match of 82% at the
level of delivery of the same dietary message was found and the
agreement was also good by cluster, with an average match of
83% for cluster 1, 74% for cluster 2 and 88% for cluster 3.
These results, obtained in a European population from seven
countries with diverse cultures and dietary intakes, confirm the
metabotype approach as a robust approach to the delivery of tar-
geted dietary advice and its applicability in different populations.

Conclusions and future directions

Whilemetabotyping emerged initially to distinguish individuals
with and without diet-related diseases, it has rapidly developed
to identify those at metabolic risk and interrogate responses to
dietary interventions. With a heightened interest in inter-
individual variation in response to interventions, the approach
presents an unbiased method of identifying differential
responses. The ultimate goals will be to harness the approach
for the delivery of personalised nutrition. However, further
work is needed in understanding the biological mechanisms
underlying the differential responses. We need detailed studies
examining the underlying biology responsible for the different
metabotypes and deciphering the role of genetics and the
microbiome will be important future steps. Building this evi-
dence base will be important for the further development of
the metabotype concepts.

The framework comprising the metabotypes and decision
trees represents a model for the delivery of personalised nutri-
tion. However, there is a paucity of data demonstrating the
impact of this approach on metabolic health parameters.
Future studies are warranted to demonstrate that the approach
is effective in changing behaviours and health outcomes.
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