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1. Introduction

Let X be a real valued random variable with probability measure P
and distribution function F. It will be convenient to take F as the
intermediate distribution function defined by

F(z) = }[P{X < 2}+P{X < }].

In mathematical analysis it is a little more convenient to use this function
rather than
Fi(x) = P{X <z} or Fy(x) = P{X < «},

which arise more naturally in probability theory. In all cases we shall
consider
Fy(@) ~ Fy(x) ~ Fle), T — — 0,

1—F,(z) ~ 1—F,(x) ~ 1—F(x), Z -> o0.

With this definition, if the distribution function of X is F(z), then the

distribution function of —X is 1—F(—=z). The distribution of X is sym-

metrical about 0 if F(z) = 1—F(—=). '
The characteristic function of X, or of F, is ¢, defined for all real ¢ by

$(t) = [ e=dF(a).

This paper deals with the relation between the value of F(x) for large =
and the value of ¢(¢) for small £. We are interested in the behaviour of ¢(¢)
in the neighbourhood of ¢ = 0 because upon this depend all limit theorems
on sums of random variables. Most of the theorems proved here were stated
without proofs in [1].

Forz = 0, put

1 This research was supported in part by the Office of Naval Research Contract No.
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H{zx) = 1—F(x)+ F(—=), the tail sum,
K(x) =1—-F(z)—F(—=), the tail difference.
If the distribution is symmetrical about 0, then K(z) is identically zero.
If X is a non-negative random variable, F(z) = 0 when x < 0, and
K(x) = H(z) for z > 0.
We may write

) =’ ei=dF (z)+ [ eted[F(z)—1).

Integrating by parts, and putting
$(t) = U@)+V (),
where
U) = [ costzdF(z), V() =" sintzdF(a),
we finally obtain
1-U@)
=

f H({x) sin txdx,
0

gt) = J:OK(x) cos trdz.

We have the inversion formulae,

2 (*°1=-U{(t
H(zx) = ——f © sin ztdt,

K(x) = —2—f m cos xtdt.

Ty ¢

U(t) depends only on H, and V(t) depends only on K, and H and K

are not closely connected. The only connections between H and K are the

relations, H(z) = |K(z)|, and H(x) + K(z) both non-increasing functions

of z. In investigating the behaviour of ¢(¢) in the neighbourhood of ¢/ = 0,
it is therefore advisable to consider U(¢) and V (¢) separately.

Consider H(z) and U(¢). The sort of result we are interested in is

(1) 1—-U(t) ~ cH(1]t), £} 0,

where ¢ is a constant depending on the distribution. If the distribution
has finite second moment p,, then
U) = 1—hut+o(®), 10,
Hence
1—U () ~ du,t?, t— 0.
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(3] The characteristic function of a probability distribution 425

In order to get a result of the type of (1) we must have a distribution of
infinite variance.

2. Functions of regular growth

It is shown in [1] that we can expect a result of type (1) only when

the tail sum H (z) has the property that for every 4 > 0,

H(x

—(—~) — AF as & —> o0.

H ()
We shall express this property of H by saying that H(z) is of index % as
x — oo. Functions with this property were studied by Karamata [2], [3],
who showed that if G(x) is integrable over any finite interval with lower
endpoint b, a necessary and sufficient condition for G(x) to be of index
k,> —1,asx — o0 is

Ji G(u)du 1
) 2G@) k1

as ¥ — o0.

He also showed, what can easily be deduced from (2), that if G(z) is of
index k&, # 0, as x — o0, then

(3) G(x) ~ Gy(x), z —> 00,

where G,(r) is a monotonic function of #, clearly non-decreasing if & is
positive, and non-increasing if £ is negative.

A function L (z) of index 0 is sometimes called a function of slow growth.
It has the property that L(iz)/L{z) — 1 as 2 — oo for every 4 > 0. The
functions log #, log log z are of index 0, and so is any function with a finite
non-zero limit as x — co. Clearly, if G(x) is of index %, then G(z)/z* is of
index 0, and so

G(x) = a*L(z),

where L (z) is of index 0.

We say that a function G{z) is of index % as z | 0 if for every 4 > 0,

G (iz)

@) — Ak as x| 0.

LemMa 1. Let G(w) be positive for w > b, bounded in any finite positive
interval, and of index k when w — co. Let ¢ be greater than 0. If k > 0, then
B exists such that

B is bounded for w = B, 0 < A < c.
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If k << 0, then B exists such that

—_ is bounded for w = B, 1 = c.

Proor. If & > 0, then as stated in (3), G(w) ~ G;(w), w — oo, where
G,(w) is a non-decreasing function of w. We may choose G, (w) so that it is
bounded in any finite positive interval, and so that G,(w) > 1.

If B is sufficiently great, when w = B,

1G,(w) < G(w) < 2G,(w).
When lw = B,w = B, A < ¢,
2 4G
) Gw) _ 151(/17”) < 1(cw)
G(w) 3G (w) G, (w)

The last fraction is bounded for w in any finite positive interval, and
— 4¢* when w — o0, and so is bounded.
Let M =sup {G(w); 0 <w < B}. Whenlw < B,w = B, 1 <,

G(Aw) M °M
< = .
G(w) = 3Gi(w) — Gy(B)

If 2 <0, G(w) ~ G,(w), w— co, where G,(w) is non-increasing and
bounded in any finite positive interval. If 4 = ¢, when w is great, the
relations (4) hold, and as before the last fraction is bounded.

LEmMMA 2. Let G(w) be positive and bounded for w > b, and let h and c be
greater than 0. If G(w) is of index —m as w—> o0, where m =0, then A, B
exist such that

G (Aw) A
_G(—w)<l"‘+" for w=B,0< A<,
G (Aw) A
—G_—(w_)<ﬁ:" for w=B,A=c.
ProoOF. w™t*G(w) is of index %, and so by Lemma 1, 4, B exist such
that
(Aw)™* G (Aw)
WT"G(W)—<A for w =B, 0<AZc,
and therefore
G(Aw) A
W<lm+h forwgB,0<}.§c.

The other result is obtained similarly.
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LemmMa 3. If G(w) is monotonic for w > a, and [2u” G(u)du is of index k,
w —> 0, where k > 0, then w'G{w) is of index k—1.

ProOOF. Ifb>0,¢c > 0,6 #¢,
f:w u" G (u)du
is of index %, w — co. Take y > 1, 1 > 0. Without loss of generality we
may assume that G(w) is positive when w > a. We shall give the proof for
G(w) non-increasing and = 0. The proofs for the other cases are similar.
When 2w > a, w > ua,
A pw r
fA u G (u)du _ Aoy Ghw) I G (w)

w

[" we@au — @Ik Cw@)  Gw)

()

When w — o, the first expression in (5) — (4u)*. Hence

N N
llgi;nf G(w) = Arl et = Ayt

Making u | 1, we obtain
lim inf G () = AT,
wso  G(W0)

By replacing p in the above argument by 1/u, we obtain similarly

G(A
lim sup (o) < A

v G(®)

Hence
G(Aw)

lim ——~

ooren G(@)

Thus G is of index k—7—1 at oo, and so w"G(w) is of index £—1.

— Ak—r—l

3. Relations between H and U

It is easy to show that if the distribution has infinite second moment,
and if H(z) is of index & as x — o0, then —2 < £ < 0.

Write
]
S =—, 0,
") = Tom) sin Jmn "=
=1, m =0,
in
Cm) = ———, m > 0,

I'(m) cos ymn
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S(m) is finite for m not an even positive integer, and, for 0 <m < 2,2
®sinx

S(m) = f T .

0

xm

If 2n < m << 2n-2, where # is a positive integer,

2r—1

S(m) = J‘:o {sin xr— ;ﬂ (—1) —(—J—_T)—’} x—"dx.

C(m) is finite for m not an odd positive integer, and for 0 < m < 1,

®cos T

C(m)zfo gy

If 2n—1 < m < 2n+-1, where » is a positive integer,

C(m) :fo {cos a;~"il(— (::‘} ™ dz.

THEOREM 1. If H(z) is of index —m when x — o0, and 0 < m < 2, then

1-U(t) ~ S(m)H(1]t), t|o0.
PROOF.
1-U{(t
( f H (z) sin txdx (t>0),
1-U( ( ) © Hxft) .
6 —_— = sin zdx (¢ > 0).
© aap 7GR
If 0 <z < p, it follows from Lemma 2, that if 2 > 0, when ¢ is sufficiently
small,
Hxft) . Alsin z|
< A ]
" =

where A4 is a finite constant. We can choose % so that m-+# << 2. The last
function is then integrable over the finite interval (0, ). When ¢} 0,
H(z/t)/H(1[t) - x—™ for = > 0. Therefore
? H(xft)
o H(1}t)
By the Second Mean Value Theorem
® H(xft e
d) sin x de = H(p/t)f sin xdx,
» H(1[2) H(1})

?sin z

dzx.

sin xdx —->f

* See [4] page 260, Ex. 12 for this and for the first result below for C(m). The results for
higher values of m are derived from those for lower values by integration by parts.
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which has a modulus < 2H(p[t)[H(1/t). This — 2/p™ when ¢} 0, and so
can be made arbitrarily small by making p sufficiently great and ¢ suffi-
ciently small. It follows that when ¢ | 0, the integral in (6) tends to

o -
sin z
f dx.

o ™

This proves Theorem 1.
THEOREM 2. If H(x) is of index 0 as x — o0, and
(7 H(z+h) < H(x)+H(z+2h))]
when x and h are sufficiently great, then
1-U ()~ H(1]t), ¢} 0.

This is the extension of Theorem 1 to the case m = 0. It appears from
the counter-example in Section 6 at the end of this paper that some addi-
tional condition such as (7) is required for m = 0. The condition will be
satisfied if H (z) is convex when # is sufficiently great.

PRrOOF. Suppose that (7) is true when #, # = B. Let C be a real number
such that H(C) < 1H(B). (7) is true when z = B, » = C. When z < B,
h=C,

2H(x+h) < 2H(C) < H(B) < H(x)+H(x+2h).

Thus (7) is true for allz = 0 and all 2 = C.

1-U{(?) ®Hxft)sing , 2 b
H(1Jt) :L H(1Jt) d"’”‘%fn,

- [ i (L ca 5] e

U=u—uny+ug— -

If

where
Up—Up i1 g Up1— Unyio = 0, (M/ =12-- )

and #, — 0 as » — oo, then

UZ=uy—ugtuy— - =u,—U.
Therefore
U= iu,.
Again
U= uy— (ug—ug+uy— -+ )

< wy—3u,.
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Thus tu, U < uy—Su,.
We have shown that when 4 is sufficiently great
2H(z+h) < H(z)-+H(z+2h),
ie. H(z)—H(x+h) = H(x+h)—H(x+2h).

Therefore, when ¢ is sufficiently small,

I :x-{—nn} _ {x+(n+ l)n} > H lx—{-(n—}—l)n} H lx—l—(n—|—2)n} .

¢ t ¢ 14
Hence when ¢ is sufficiently small,

e < 3 (08 [ < HEn -3 T,

n=0
and therefore
1-U(t)
1. < <JI.—
(8) 211 = H(l/t) ———Il 2I2’
where
_ (T HE=R) _ f" H{(z+=)/t}
1= EQ sin xdx, I, = . H sin xdw.

Both integrands — sinz when ¢ | 0. The second integrand is dominated
by sin z. From Lemma 2 we see that the first integrand is dominated by
A sin z/x}. Hence I, I, both tend to

'[0" sin xdx, = 2.
Theorem 2 then follows from (8).
THEOREM 3.3 If H(x) s of index —2 as x — oo, then
1—U(t) ~ 22 owa(x)dx, £y 0.

Proor.

1-U(¢ * H(x[t

—() = j M sin xzdzx.
H(1/) o H(L[t)

Here H is of index —2, and so for z > 0,

Heli) 1 as £ 0
H(Q1Jt) =~ a2 )

Also, if ¢ > 0, and ¢ positive and sufficiently small, we see from Lemma 2
with 4 = }, that

3 A stronger result than this can be obtained by putting # = 0 in Theorem 6 (iii).
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Hxlt) A
< - = ¢
Hap =2 when z = ¢
Therefore
< H(xft) . { sinz
J; 21000 sin zdx —>J‘c — dx as £ 4 0.

The last integral — oo when ¢ | 0, and therefore

sin xdx — o as t| 0.
o H(1f) v
Hence
¢ H(z|t)
sin xdx ~ sin xdz, t0,
o H(1) o H(JY '
and so

f:oH(x/t) sinxdeﬁH(x/t) sin zdz, t|0.
Since ¢ may be arbitrarily small, this must be
~f (z/t)xdx ~f (x/t)xdz, t| 0.
Thus
1-U(t) = jo°°H(x/t) sin zdz ~f01 (@/t)wdz ~ tzf V' H(w)wdz, ¢} 0.
THEOREM 4. Let U, (t) be the veal part at t of the characteristic function

corresponding to the tail function H,. If H satisfies the conditions of Theorem
1, 2 or 3 then

Hy@)=O0{H@)}, ¢ > 0 = 1-U,(t) = 01—U(t)}, ¢ 0,

Hy(@) = ofH)}, ¢ > = 1—=U,(t) = o{l—U(®)}, £} 0.
Proor. Consider the relation H,(x) = O{H(z)}, and suppose
H,(x) = kH(z).
1-U,( f H,(z/t) sin xdx <f 1(x/t) sin xdz,

because H,(x) is a non-increasing function of . Hence

" H(z[t)

1-U, () = kfo"H(x/t) sin zde — kH(l/t)fo T S e
~ EH(1/5) f: Sl;f diw ~ c(1—U (1), £40,

if m < 2, where ¢ is a constant. When m = 2
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)= kf H(z[t) sin xdx = ktf H (z) sin txdx
= ktzf”/tH( x)xdr ~ ktzf V' Hi@)edze ~ k{1=U()}, ¢40.

This proves the first part of the theorem, and the second part is proved
similarly.

THEOREM 5. If 1—U(¢t) is of index m as t | 0 and 0 < m << 2, then

—U(1/x)
H(x) ~ —SzW 3 X — O,
and if m = 2, then
(9) [ uH ()du ~ 22(1—U (1)} x - 0.

ProOOF. For £ = 0 define

H,(@) = f:uH(u)du, H,(x) = f H,(u)du
2 fw 1—-U ()
t

H@) ==

2 (*re1—
= —f f ue) u sin utdidu.
mJoJo ¢

The integrand is bounded, and

T1_U(t
f ()usinutdt
0 {

sin xtdt,

is bounded in 0 < # < 2, T = 0. See (a) below. We may therefore reverse
the order of integration, and so

z 1 U
f J usin utdudt

j {1 sin xt—uxt cos xt

U@} ——f—— dt

We now have an absolutely convergent integral.

t—ut cos ut
Hy(z) = {1_ S dtdu.
i1 s

By Fubini’s theorem we may reverse the order of integration, and so

dat.

2 [ 2(1—cos xt) —at sin x¢
| o-vey ;
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Hence

dt.

H,(x) _ _2_f°° 1-U(t/x) 2(1—cost)—tsint
2{(1-U(ljz)} =), 1-U(ljx) $#
1—-U(1/x) is of index —m as ¢ — co. Hence by Lemma 2, with

w=z, G)=1-U(ljz), A=1[t, c =1
when « is sufficiently great,
1-U (t/x)

— < Apmih hen £ = 1, and
U2 < when £ = 1, an

<< Atm-h when ¢t < 1,

where 2> 0. If 0 < m < 2, we can choose % so that 2 <1, m+h < 2.

The integrand will then be dominated by

2(1—cos t)—2 sin ¢
14

A (tm+h+tm—h)

’

which is integrable over (0, o). When & — oo

—U(t/x)
—_—— > ™,
1-U(1/z)
Therefore
H,y( 1—cost)—¢sint
= dt, — .
x¥{1—U 1/:1; j p-m 80m)
Thus
(10) Hy(x) ~ g(m)x*{1—U(1/x)}, x — 0.
It can be shown that
1

(an 80" = By @—m)S(m)
but we do not need this evaluation to prove the theorem.

The relation (10) shows that H,(x) is of index 3—m as x — co. Hence
by Lemma 3, H, () is of index 2—m, and zH (z) is of index 1—m. Therefore
H(z) is of index —m, and the stated result will follow from Theorem 1 if
0 < m < 2. We cannot argue in this way when m = 0 because of the
additional convexity condition in Theorem 2. We may get over the difficulty
by using the result obtained by Karamata in [2], that if G(z) is integrable
over any finite positive interval, and is of index #, x — oo, where n > —1,
then

(12) f G(u n—l(—l) x —> oo.
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When m = 0, H(x) is of index 0. Therefore H (z) is of index 1, and

H,(x) ~ 22H(x)/2,
Hy(w) ~ oH, &)/ ~ 2*H ()6,

and therefore it follows from (10) that
H(z)~ 6g(0){(1—-U(1x)} = 1-U(1/x).

That 6g(0) = 1 follows from Theorem 2 or from (11).
When m = 2, we consider H;, defined by

x) = [ 7 Hy(u)du

Hy(z) ~ kxt{1—U(1/x)}, z — o0,

We can show that

where & is a constant. Thus H, is of index 2 at oo. Hence, by Lemma 3,
H, is of index 1, and H, of index 0 at oo. Using Karamata’s result (12),

we obtain
Hy(w) ~ oH, @), z > o
Hy(w) ~ yaH, (@) ~ ba*H,(2), z = o
and so
H,(z) ~ 2kx?{1—U(1/z)}, x - 0.

Theorem 3 shows that 2k = 1, and so (9) is proved.

T I—U T [o<
(a) f t 3 sin utdt — J {f H (y) sin y¢ sin utdy} dt
0 1]

0

0 AT
= f {J H(y) sin yt sin utdt} dy,
o Wo

because |f¢ H(y) sin yt sin utdy| < 4u for Y > 0. See (b). Thus

JJ' l—tU(t) sin utdt = fw{fT_H (y){cos (y—u)t—cos (y—l—u)t}dt} dy

0

_f LH(y {sm (y— u)T_ sin (y—f—u)T} i,
y—u y+u

which has a modulus =< 24. See (c). Thus

T1-U(
J‘ t“usinutdt]é%‘leor 0<u <z, T >0.
0
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(b) j OYH(y) sin yt sin utdy = sin ut H (0) j{f sin ytdt+sin wtH (V) jgy sin ytdt,
where 0 < & < Y. The modulus of this is

< |sin wt|(2/t+2]t) =< 4u.

®sin k{y+c)
—_—
) f yte 7

is bounded for all real 4, b, ¢, &, because it is equal to

k(bt+e) sin v
f dv.

kla+e¢) v

o
sin v
f dv
o 0

exists as a finite (semi-convergent) integral. Thus

fbwd“l“"
a  Yte -

This is bounded because

Y sin k(y-+-c¢)
f Hy) ———dy
0 y+c
£ sin k(y+c) fY sin k(y-+-c)
= H(0 " dy+ H(Y ——dy,
()fo y+c y+H{Y) £ y+c Y

where 0 < £ = Y, and so has a modulus < H(0)A+H(Y)4 < 24.

4. Relations between H and U for distributions of finite variance
If » is a positive integer,
py = [© @dF @) = — [ZamdH (@) = [ 201 H (@)de.

THEOREM 6. Let n be a non-negative integer. Suppose that u,, is finite.

Put
n Mzrtzr
Ut) = —nr — .
0 =3 (<1 (o =Unlt)
Let H be of index —m at co.
(i) If 2n < m < 2n-+2, then
Uy (t) ~ S(m)H(1]¢), ot
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(i) If m = 2n, where n > 0,

R I (2n)
U, (t)—(—1) 2" ——— H(z)dz ~ (—1)*1 H(1[t), t}o.
wO= (1 [ Blea e (<1 B, 4
This implies the weaker statement,
o gen—1
U,,(t) ~ —l”tz”J —— H(x)dz, t}o0.
W)~ (1o | He)

(i) If m = 2n+2

1/t 2n+1 (2 2
T H)ds o~ (—1)r D202

UWFPWWﬁ HQ), t}o,

o (2n+1)! I'(2n+2)?
which implies
1/t x2ﬂ+1 H d
~ (—1)f2r+2 t}0.
Unt) ~ (—1mse [t H@)d, }
Proor
Unal®) = 1-U()— 3 (—1y 1
2n - < (27)
oo 2r—1 #2r—1
=tf H(x) {smtx— —1) Sl dz
(2r—1)!
— | R, @)s
where
. n ) x2r-1
G,(x) =sinz— ; (—1) Gr—11
Note that (—1)"G,(x) is positive when z is positive. ¢ Also
xZn—l
(~10Gofo) ~ oy 2> o
x2"+1
—1)\» ~ e, 0.
( )Q“’(w+n! z—>
H(z[t) H)r)
G
l/t L Hip @ +f Hip) o@%
where ¢ > 0.
When 0 < z < ¢, 2 > 0, and ¢ sufficiently small,
H(z[t) 4G, ()|
< 2
26 )| = 18

4 See [5] pages 80, 81.
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by Lemma 2. If m < 2#+2, we can choose % so that m-+h < 2n4-2.
AG,(x)[x™* is then integrable over [0, c]. When ¢ | 0, H (x[t)[H (1/t) — x~™,
and therefore

t) °G
Hz[t) G, (x)dz — f Gule) dx
H (1/t) 0o I
Similarly we can show that if m > 2,
x/t G, (x)dx f 9@ dx as ¢ 0.
H(1}%) e X

Hence, when 2n < m < 2n4-2,

lim Uanll) =fc Gu(a) dx+ [«co E"—(x—) f ¢ (:1;) dx = 5( ).

t,0 H(l/t) x™ ve x x™

This proves (i).

e 1t gon+l Hid
—{—1)ngent i
Unlt) = (=1t [ 7 o
H(1[z)
B H(z[t) Lt 2t H (x/t
f H(1jt) Gul@)dz—(—1) J (@nt-1)! H(1)t) @
1H(£L'/t H(x/t
o H(1Jt) Crnale +f H(1jt) Gal
If m = 2n+4-2, when ¢ } 0, the limit of this is
1 Gn 1
(13) fo x;"*‘z de +f 2n+2

The sum of the two integrals in (13) is the limit as 4 | 0 of

1G (.’l?
n+1
fo x2n+2+h + J 2n+2+h dx

'n+1 ” i x2"+1
_f 2n+2+h +(=1) J; (214 1)1 g2nto+h dx
— SEnteth)r
A(2n-+1)!

The limit of this, as % | 0, is easily shown to be
(—1)*I"(2n+-2)
I'(2n4-2)?

and so (iii) is proved.
We prove (ii) simply by replacing » in (iii) by »—1.
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5. Relations between K and V

If K is of index —m at co, where m = 0, K (Ax)/K (x) -~ A™ as ¢ — o0,
for 2 > 0. Hence K(x) must be either always positive or always negative
when z is great. We shall give the proofs always for the case K(z) > 0
when x is great.

THEOREM 7. Put
K(z) = K,(x)—K,(x),
where
K,(x) =1-F(z), K,x)= F(—x).

Suppose that K is of index —m at oo, and that, when x is great, either K (x)
is monotonic, or K,(x) << AK,(x), where 0 << 41 < 1.

(i) Ifo<m < 1, then

V() ~ C(m)K(1]t), t}o.

(i) If m = 0, then
f: # du~ LaK (1}t), t}o0.

@) If m =1, then
Vie)—t [} K (@)dzs ~ —yK (1}t), t}0,

where y is Euler’s constant.
The proof of (i) when K(z) is ultimately monotonic is similar to the
proof of Theorem 1. When we assume that K,(z) << AK,(x) when x is great,
a slight modification is necessary. In the course of the proof we need to show

that the integral
* K(zft)

cos xdx
» K(1/t)

can be made arbitrarily small by making p sufficiently great and ¢ suffi-

ciently small.
It follows from K,(z) << AK,(x) that

(1+)K @)

K@) +K(e) <

Using the Second Mean Value Theorem, we obtain

TR o iy = KA [, Bt [

, K@ T R TR

cos xdx.
b4

https://doi.org/10.1017/51446788700006121 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700006121

[17] The characteristic function of a probability distribution 439

The modulus of the right hand side is not greater than

2K, (p/t)+2K,(pl?)
K(1ft)

’

which is less than
2(14+-4)K (p/)2)
(1—2)K(L/t)
when p/t is great. Since K(p[t)/K(1/t) — 1/p as t — 0, the required result

follows.
We now consider the proof of (ii).

=f K(x) cos uxdx.
0

If ¢, > 0, the integral is uniformly convergent with respect to # > ¢,.
Therefore, if ¢t > £,

i
J‘ V( J‘ K smtx dx—f K@) :.mtox .
x

y M x

sin 22

_f K/ ——dx—f K(z/t)

The second integral on the right is uniformly convergent with respect to
t, > 0, and therefore — 0 when £, | 0. Hence

j‘(:@du: 0

sin z

»

and
f‘ V(u)
— du
o _ [P K(zft) sinz
" Rm "y Kap =

If m = 0, when ¢ | 0, K(z/t)/K(1[t) - 1. Using the property that when
x is great, either K (x) is monotonic or K,(x) << AK,(x), we can as in the
proof of (i), and Theorem 1, show that when ¢} 0, the right hand side of
(14) tends to

f sinz z = 1.
This proves (ii).
= f K(z[t) cos xdzx.
0
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tf”‘ Vit)— [ Kaft)d
K(1[z) B K(1/t)
LK (z/t) *® K (z/t)
K1) (cos x—l)dx—l—fl m cos zdzx,
which tends to
(15) j;l cos;c—l ot J‘l co; T dz,

when £ | 0, if m = 1, so that K (z/t)/K(1[t) — 1/x.
The sum of the two integrals in (15) is the limit, when 8 — 0, of

lcosz—1 ® cosx
J:) i dx-}—J ey dx
cos x——l * dx
_f — +f1 5 = CO+0)+1/6

— 37
- 9 "~ I'(146) sin 320

This limit of this, when 0 — 0, is easily shown to be

IQa), = —y.
This proves (iii).
We shall write
(16) U g = J 0°° (2n—1)a®"—2K (x)dz,

when this integral exists. In all the cases we shall discuss, K({z) is asymp-
totically monotonic, and therefore, if the integral is finite, #2*—2K (z) must
— 0 as ¥ — oco. When this is so, integration by parts shows that

® T
/";kn—l = —‘f (Ezﬂ_ldK(x) = — lim x2n——1dK(x)
0 T—>00d0
(17) .
—=lim | «*'dF(z).
P> d-T

It is possible for the integral in (16) to be finite and the limit in (17) not to
exist; but not in the cases we are investigating.

It follows from Lemma 2 that if K is of index —m at oo, ug,_, is finite
if m > 2n—1, and infinite if m << 2n—1.

THEOREM 8. Suppose that py,_, exists and is finite, where n is a positive

integer. Put
n r-1

*
V) =3 (1)1 V0.

(2~
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Let K be of index —m at <o
(1) If 2n < m < 211, then
Vonoa(t) ~ C(m)K(1]t), t}0.
() If m = 2n—1, then

o0 n—2
Vaal) = (1) | K
a4 (@n—1)
~ (=1 I,———(Zn_l)zK(llt), t}o.

(i) If m = 2n+1,
1/t p2n

—{(—1\r2n+l
Vanealt) = (=1t |72

. ' (2n4-1)
I'(2n+-1)2

K(x)dx

~ (—1) K(1/t) t}o0.

The proofs are similar to those of Theorem 6. Here

Vanalt) = [ K (@lt) ] (@),

where
n—1 x2r

Jnlx) = cos x— %: (=1 ent’

6. Counter-example

In this section we give an example where H is of index 0 at oo but the
conclusion of Theorem 2 is not true, i.e. 1—U(¢) is not asymptotically equal
to H(1jt) as ¢ 0.

Let {T',} be an increasing sequence of integers > 1 such that 7,/T,_,

is integral. For
of, <z < 2T, ,

define
1 1
_ fe) = log (2mT,) o log ((2m+2)T,)
if ' z= 2m4+1)T,, m=1,2---T,,/T,—1,
= 0 otherwise.
For
0a=<2T,
define
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fle) =1— log (2T5)’
if x=T,,
= 0 otherwise.
Now define Hx) = @)+ 3 f(y)-

Clearly H is a tail-sum function. We easily obtain

1
2 T = =112:..'1Tr T
H(2mT,) log (2mT,) m wlT
If 2mT, =z < 2(m—+-1)T,,

where m is a positive integer, then

e < 2mT, <z < 2m+1)T, < 2z,
and so

1
iog (32) = H(2mT,) = H(x) 2 H2(m+1)T,) = iog (2]

Thus for all x > 2T,

1
log(3x) =H) = log (2x)

It follows that H(x) ~ 1/log , x — co. Thus H is of index 0 at o

\—U|T,) = — f:o (1—cos (mz/T,))dH (z)

2741 2Ty
= — (1—cos (nz/T,))dH (x) = —f 2d4H (x).
2T, 2T,
The last equality is true because at a point of increase of H in the interval
[2T,, 2T, 4], cos (mz/T,) = —1. Hence
(18) 1-U/T,) = 2[H(2T,)—H (T, ,)).

Now H(T,) ~ 1/log T,, and so if we choose the sequence {7} so that
log T, 4/log T, — o0 as r — oo, the right side of (18) will be asymptotically
equal to

2H(2T,) ~ 2H(T,[n), r — 0.

Hence 1—-U (=/T,) will not be asymptotically equal to H(T,/n) as r — 0,
and so 1—-U(¢) will not be asymptotically equal to H(1/¢) as ¢ 0.

I have to thank Professor B. C. Rennie for devising this counter
example.
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