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1. Introduction

Let X be a real valued random variable with probability measure P
and distribution function F. It will be convenient to take F as the
intermediate distribution function defined by

F(x) = #P{X < x}+P{X ^ x}].

In mathematical analysis it is a little more convenient to use this function
rather than

F^x) = P{X < x) or Ft{x) = P{X ^ x},

which arise more naturally in probability theory. In all cases we shall
consider

Ft(x) ~ F2(x) rw F(x), x -»• — oo,

1 — F^x) ~ 1—F2(x) ~ 1 — F(x), x -> oo.

With this definition, if the distribution function of X is F(x), then the
distribution function of —X is 1—F(—x). The distribution of X is sym-
metrical about 0 if F(x) = 1—F(—x).

The characteristic function of X, or of F, is <f>, defined for all real t by

= f°
J —

xdF(x).

This paper deals with the relation between the value of F{x) for large x
and the value of </>(t) for small t. We are interested in the behaviour of <f>(t)
in the neighbourhood of t = 0 because upon this depend all limit theorems
on sums of random variables. Most of the theorems proved here were stated
without proofs in [1].

For x ^ 0, put

1 This research was supported in part by the Office of Naval Research Contract No.
Nonr 4010(09).
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424 E. J. G. Pitman [2]

H{x) = l—F(x)+F(—z), the tail sum,

K(x) = l—F(x)—F(—x), the tail difference.

If the distribution is symmetrical about 0, then K(x) is identically zero.
If X is a non-negative random variable, F(x) = 0 when x < 0, and
K(x) = H(x) for x > 0.

We may write

t® = /-co eUXdF(*)+ /0°° «

Integrating by parts, and putting

= U(t)+iV(t),
where

U(t) = P cos txdF(x), V(t) = J°° sin txdF(x),

we finally obtain

= | H(x) sin i
t

V(t)vit) r°°
— = K(x)

^ Jo
cos

We have the inversion formulae,

r°° \—TJ(t\
sin xtdt,

2 r°
H(x) = -

n Jo

Klx) = - f
31 Jo

cos

U(t) depends only on H, and V(t) depends only on K, and H and K
are not closely connected. The only connections between H and K are the
relations, H{x) ^ |if(#)|, and H{x) ±K(x) both non-increasing functions
of x. In investigating the behaviour of <f>(t) in the neighbourhood of t = 0,
it is therefore advisable to consider U(t) and V(t) separately.

Consider H(x) and U(t). The sort of result we are interested in is

(1) l

where c is a constant depending on the distribution. If the distribution
has finite second moment /*2, then

U(t) = l-!/*2*2+o(i2), * -> 0.
Hence
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[3] The characteristic function of a probability distribution 425

In order to get a result of the type of (1) we must have a distribution of
infinite variance.

2. Functions of regular growth

It is shown in [1] that we can expect a result of type (1) only when
the tail sum H(x) has the property that for every X > 0,

H{Xx)
-—, > A" as x -> oo.
H{x)

We shall express this property of H by saying that H(x) is of index k as
x -> oo. Functions with this property were studied by Karamata [2], [3],
who showed that if G(x) is integrable over any finite interval with lower
endpoint b, a necessary and sufficient condition for G(x) to be of index
k, > —1, as x ~> oo is

RG(u)du 1
2 J t v y -> - — as x -> oo.

xG(x) k+l

He also showed, what can easily be deduced from (2), that if G(x) is of
index k, =fc 0, as x -»• oo, then

(3) G(x) ~ Gx{x), x -» oo,

where Gx{x) is a monotonic function of x, clearly non-decreasing if k is
positive, and non-increasing if k is negative.

A function L (x) of index 0 is sometimes called a function of slow growth.
It has the property that L(Ax)IL(x) ->- 1 as x -> oo for every A > 0. The
functions log x, log log x are of index 0, and so is any function with a finite
non-zero limit as x -> oo. Clearly, if G(x) is of index k, then G(x)Jxh is of
index 0, and so

G(z) = xkL{x),
where L(x) is of index 0.

We say that a function G(x) is of index k as a; j 0 if for every A > 0,

^ * a s x I O .

LEMMA 1. Let G(w) be positive for w > b, bounded in any finite positive
interval, and of index k when w -> oo. Let c be greater than 0. If k > 0, then
B exists such that

G{Xw)

G(w)
is bounded for w ^ B, 0 < A ^ c.
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/ / k < 0, then B exists such that

G(Xw)

G{w)
is bounded for w ^ B, X }t c.

PROOF. If k > 0, then as stated in (3), G(w) ~ G^w), w -> oo, where
Gx{w) is a non-decreasing function of w. We may choose Gx{w) so that it is
bounded in any finite positive interval, and so that Gx(w) > 1.

If B is sufficiently great, when w 2g B,

|Gj(ze>) <G{w) <2G1(w).

When Xw ̂  B, w ^ B, X ̂  c,

Gtfw) 2Gl{Xw) iGJcw)
G{w) \Gx(w) - Gx{w)

The last fraction is bounded for w in any finite positive interval, and
—>• 4c* when w —*• oo, and so is bounded.

Let M = sup {G(w); 0 ^w ^B}. When Xw < B, w ^ B, X ̂  c,

G(w) ^ fa
If k < 0, G(w) ~ Gj^) , w -*• oo, where G!^) is non-increasing and

bounded in any finite positive interval. If X 2; c, when w is great, the
relations (4) hold, and as before the last fraction is bounded.

LEMMA 2. Let G(w) be positive and bounded for w > b, and let h and c be
greater than 0. If G{w) is of index —m as w -> oo, where m^O, then A, B
exist such that

iorw>B,X>c.<
G(w) Xm-h

PROOF. wm+hG(w) is of index h, and so by Lemma 1, A, B exist such
that

{Xw)m+hG(Xw)

wm+hG{w)
and therefore

G(Xw) A

<A for w ^ B, 0 < X ̂  c,

G{w) Xm+h

The other result is obtained similarly.

ior
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[5] The characteristic function of a probability distribution 427

LEMMA 3. If G(w) is monotonic for w> a, and p£urG(u)du is of index k,
w -> oo, where k > 0, then u>rG(w) is of index k—1.

PROOF. If b > 0, c > 0, b ^ c,

\°w uTG(u)du
Jbw V '

is of index k, w -»- oo. Take fi > 1, X > 0. Without loss of generality we
may assume that G(w) is positive when w > a. We shall give the proof for
G(w) non-increasing and r ^ 0. The proofs for the other cases are similar.

When Xw > a, w > fia,

L T ^ M ^ < Xt*{Xfiw)rG(Xu>)

u'G(u)du M^yG(w) Gfr)

When w ->• oo, the first expression in (5) -> (Xfi)k. Hence

Making ^ j 1, we obtain

lim inf
W-KXJ

By replacing fi in the above argument by 1/ju, we obtain similarly

lim sup 7773^ = A*-1""1.

Hence

Thus G is of index k—r—1 at oo, and so wTG(w) is of index A—1.

3. Relations between H and 1/

It is easy to show that if the distribution has infinite second moment,
and if H(x) is of index k as x -> oo, then —2 rg] & <S 0.

Write

S(m) = J7*— , m > 0,
F(m) sin Jw?r

= 1, w = 0,

C{m) = 27t r — , w>0.
i^(w) COS ^»CT
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428 E. J. G. Pitman [6]

S(m) is finite for m not an even positive integer, and, for 0 < m < 2, 2

f~sina;
V ' Jo *m

If 2« < m < 2«-f-2, where w is a positive integer,

C(w) is finite for OT not an odd positive integer, and for 0 < m < 1,

f M c o s i ,
C(m) = I ax.

Jo *ro

If 2«—1 < m < 2»+l , where « is a positive integer,

C(m) = J (cos*-*! ( - ^ T I T T }
 x~mrfa;-

THEOREM 1. 7/ H(x) is of index —m when x -> oo, awrf 0 < m < 2,

PROOF.

i—U(t) r°°
— = 77 (x) sin txdx (t > 0),

* Jo

If 0 < x ^ >̂, it follows from Lemma 2, that if h > 0, when £ is sufficiently
small,

where A is a finite constant. We can choose h so that m-\-h < 2. The last
function is then integrable over the finite interval (0, p). When t \ 0,
H(x/t)IH(llt) -* a;-m for x > 0. Therefore

rpH(xlt) fsinx ,
sin xax -> ax.Jo ^(l /<) Jo x

m

By the Second Mean Value Theorem

r°° H{xjt) . H(p/t) r« .
— sin x dx = —^—- sin xdx,

Jv 7/(1/0 77(1//) J,
2 See [4] page 260, Ex. 12 for this and for the first result below for C(m). The results for

higher values of m are derived from those for lower values by integration by parts.
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[7] The characteristic function of a probability distribution 429

which has a modulus ^ 2H(plt)IH(ljt). This -> 2jpm when t\ 0, and so
can be made arbitrarily small by making p sufficiently great and t suffi-
ciently small. It follows that when t j 0, the integral in (6) tends to

f
Jo

~dx.
Jo x

This proves Theorem 1.

THEOREM 2. If H(x) is of index 0 as x -> oo, and

(7) #(z+A) ^ J[ff(a

when x and h are sufficiently great, then

This is the extension of Theorem 1 to the case m = 0. It appears from
the counter-example in Section 6 at the end of this paper that some addi-
tional condition such as (7) is required for m = 0. The condition will be
satisfied if H(x) is convex when x is sufficiently great.

PROOF. Suppose that (7) is true when x,h^t B. Let C be a real number
such that H(C) ^ \H(B). (7) is true when x ^ B, h^C. When x < B,
h^C,

2H(x+h) ^ 2H(C) ^ H(B) ^ H(x)+H{x+2h).

Thus (7) is true for all x 5: 0 and all h ^ C.

1 — U{t) r°° H(xjt) sin x

J
__ r°° H(xjt) sin x _ ~
= Jo ~»(i/o x = o

[7 = MX—u2-\-u3— • • •
where

Un~Un+1 ^ Un+1 — Un+2 ^ 0 , (» = 1, 2,

and un -> 0 as « -> oo, then

Therefore
£7

Again
U = «x— (M
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Thus \ux f£ U r£j u1—\u^.

We have shown that when h is sufficiently great

2H{z+h) ^H{x)+H(x+2h),

i.e. H(x)-H(x+h) ^ H(x+h)-H{x+2h).

Therefore, when t is sufficiently small,

I t I
Hence when t is sufficiently small,

\H{xft) ^ | (

and therefore
1-170)

where

I * I I < I = I < I i t /

#{(x+7t)/i} .
- sin x^x.

Both integrands -> sin a; when t \ 0. The second integrand is dominated
by sin x. From Lemma 2 we see that the first integrand is dominated by
A sin x/zi. Hence Ix, / 2 both tend to

J sin xdx, = 2.o

Theorem 2 then follows from (8).

THEOREM 3. 3 / / H(x) is of index —2 as x -> oo,

PROOF.

sin

Here /? is of index —2, and so for x > 0,

#(*/*) 1
as t | 0.

Also, if c > 0, and £ positive and sufficiently small, we see from Lemma 2
with h = \, that

3 A stronger result than this can be obtained by putting n — 0 in Theorem 6 (iii).
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[9] The characteristic function of a probability distribution 431

H(xft) ^ A
, when x ^ c.

xt
Therefore

f00 H{x/t) . J ft00 sin a; ,
sin xdx -*• * dx as £ | 0.

J c •" \^l") Jc X

The last integral -> oo when c j 0, and therefore

/•OO JJ (Y lf\

sin xrfa; -> oo as 2 j , 0.
Jo "(I /OHence

•ff(*/0 : .
Ho,

and so
/* oo f* c

H(xjt) sin xrfx ~ H{xjt) sin xrfx, i j 0.
JO •/ 0

Since c may be arbitrarily small, this must be

' H(x/t)xdx ~ (l H{xjt)xdx, 11 0.

Thus

1 — U{t) = Jo°° i?(x/0 sin xdx ~j*H(xlt)xdx ~ ^2 fV* fl"(x)a;rfx, i | 0.

THEOREM 4. Z,^ f^i^) ^̂  ^e real part at t of the characteristic function
corresponding to the tail function H1. If H satisfies the conditions of Theorem
1, 2 or 3 then

},x^-co => l-U1{t) = 0{l-U{t)},t]tO,

H^x) = o{H(x)}, x -» oo => l - t / ^ O = o{l-C7(<)}, / 1 0.

PROOF. Consider the relation H^x) = 0{H(x)}, and suppose

1—t/x(0 = \°a H^xlt) sin xdx ^ f* H^x/t) sin xdx,
JO JO

because Hx{x) is a non-increasing function of x. Hence

n H(xlt)KJL sin-U^t) ^ k H(xlt) sin xdx = ifeff (1/f)
Jo Jo H{lji)

r7* sin. ic
—^-dx~c(l — U(t),

Jo a;'nJo

if m < 2, where c is a constant. When w = 2
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l—U^t) g k Jo" H{xjt) sin xdx = ktj™ H(x) sin txdx

* H{x)xdx ~ kt* j*1* H(x)xdx ~ A{1—C7(#)}, * j 0.

This proves the first part of the theorem, and the second part is proved
similarly.

THEOREM 5. / / 1 — U(t) is of index m as t \0 and 0 rgl m < 2, then

\-U{\jx)
(x) ~ —cj~\— ' x -> oo,

(9) jxuH(u)du~x2{l — U(\jx)} x ^ o o .

PROOF. For x Sg 0 define

rx rx
Hx(x) = uH(u)du, H2(x) = H^)du.

Jo Jo
2 r°° \—U(t)

H(x) = — sin ;
TC J Q t

e> t*x /«oo i

II

The integrand is bounded, and

f-
Jo

u sin utdtdu.

M sin

is bounded in 0 ^ u ^ x, 7" ̂  0. See (a) below. We may therefore reverse
the order of integration, and so

2 <*°° l*x 1 T7t+\

H, (x) = — u sin utdudt
2 r°° ra

x{x) = —
n Jo Jo

sin xt—xt cos x£
t3

We now have an absolutely convergent integral.

2 rx C°° , sin ut—ut cos ^2 rx C°°

71 Jo Jo
l

By Fubini's theorem we may reverse the order of integration, and so

2(1—cosatf)— xt sinxt2 f°
(x) = -

n Jo
4
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[11] The characteristic function of a probability distribution 433

Hence
[ — U{t/x) 2(1—cost)—tsint

CvZ,
t*

1—C7(l/x) is of index — m as x ->• oo. Hence by Lemma 2, with

w = x, G{x) = l - [ / ( l / x ) , A = 1/t, c = 1

when x is sufficiently great,

l - t / ( * / x
< yym+'1 when £ ̂  1, and

< At™-* when / < 1,

where A > 0. If 0 ^ m < 2, we can choose h so that A < 1, m-\-h < 2.
The integrand will then be dominated by

2(1— cos*)— t sint
A (tm+h+tm-h) — ^ ,

t

which is integrable over (0, oo). When x -> oo

1-U{tjx) jm

Therefore
H2(x) 2 r°° 2(1—cost)—tsintH2(x) ? 2 r°

xi»{l-C/(l/x)}^7rJ0

Thus

(10) ^2(x)~g(w)x3{l —

It can be shown that

but we do not need this evaluation to prove the theorem.
The relation (10) shows that H2(x) is of index 3—m as x -*• oo. Hence

by Lemma 3, ^ ( x ) is of index 2—m, and xH(x) is of index \—m. Therefore
H (x) is of index —w, and the stated result will follow from Theorem 1 if
0 < m < 2. We cannot argue in this way when m = 0 because of the
additional convexity condition in Theorem 2. We may get over the difficulty
by using the result obtained by Karamata in [2], that if G(x) is integrable
over any finite positive interval, and is of index n, x -»• oo, where n > —1,
then

xG(x)
—, x ^ oo.

n+1

(12) [*G{u)du.
•Jo
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When m = 0, H(x) is of index 0. Therefore xH(x) is of index 1, and

H2{x) ~ xH^x)^ ~ xzH(x)j%,

and therefore it follows from (10) that

H(x) ~ 6g(0){l-U{llx)} = 1-17(1/*).

That 6g(0) = 1 follows from Theorem 2 or from (11).
When m = 2, we consider H3, defined by

H3(x)=jX
oH2(u)du.

We can show that

H3{x) ~ kx^l — Uil/x)}, x -=• oo,

where & is a constant. Thus H3 is of index 2 at oo. Hence, by Lemma 3,
H2 is of index 1, and H1 of index 0 at oo. Using Karamata's result (12),
we obtain

Hz(x) ~ xHx{x), x -> oo

Ha(x) ~ ^zi/,̂ ;*;) ~ \x2Hx(x), x -> co

and so
^ ( ) A 2 { C / ( / ) } , x -> co.

Theorem 3 shows that 2& = 1, and so (9) is proved.

CTI f°°rT i U(t) CTI f°° )
(a) — sin utdt = | H(y) sin yt sin utdy\ dt

Jo ' Jo WO '

= | -ff (y) sin I/;! sin utdt) dy,
Jo wo )

because \\lH{y) sin ̂  sin utdy\ ^ 4M for Y > 0. See (b). Thus

— sin utdt = I %H(y){cos (y—u)t—cos (y+u)t}dt\dy
Jo t J Q (.«/Q I

= r
Jo

which has a modulus ^ 2^4. See (c). Thus

"T 1 — 17(0J
*J 0

sin 2Ax for 0 ^ u ^ x, T > 0.
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[13] The characteristic function of a probability distribution 435

(b) H(y) sinytsinutdy =sinutH(O) \ sinytdt-\-AnutH(Y) \ sinytdt,

where 0 ^ £ ^ V. The modulus of this is

^ |sin«*| (2/2+2//) ^ 4«.

J. sin

is bounded for all real a, b, c, k, because it is equal to

J k(a+.
1*,.

:(O+C) °

This is bounded because
r°° sin v
J ~ ^
J-oo u

exists as a finite (semi-convergent) integral. Thus

C" sin k(y+c)
i du -s, A.

Ja y+c

CY TT, \ s i n k(y+c) ,
ti (y) dy

Jo y+c

f£ sin k(y-\-c) CY sin k(y+c)
= H(0) dy-\-H(Y) I dy

Jo y+c Ji y+c

where 0 ^ £ ^ Y, and so has a modulus g H(0)A-\-H(Y)A ^ 2A.
4. Relations between / / and U for distributions of finite variance

If n is a positive integer,

= - Jo°°a;2"^^(a;) = j™ 2nx2n-1H(x)dx.

THEOREM 6. Let n be a non-negative integer. Suppose that ju2n is finite.
Put

Let H be of index —m at oo.

(i) If 2n < m < 2n+2, then

U2n(t)~S(m)H(lJt),
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(ii) If m = 2M, where n > 0,

-£?- H(x)dx~ (-l)-i ^

This implies the weaker statement,
/.oo xin~X

U2n(t)~(-l)nt*n\ K.H(x)dx,
Jin (tn—i)i

(iii) Ifm = 2n+2
flit X2,n+i r'(2n-\-2\

U (if)_(_l)«^»+2 H(x)dx~ (-1)" v
2nW V ' Jo ( 2 « + l ) ! V ' V ;

which implies

J.
lit r2n+l

H{x)dx,

PROOF.

where
»2r-l

Note that (— l)nGn(x) is positive when x is positive. 4 Also

a;2""1

(-\)»Gn{x)

a . 2n+l

where c > 0.
When 0 < a; 5j c, A > 0, and t sufficiently small,

H(x/t) A\Gn(x)

1 See [5] pages 80, 81.

[14]

0.

jo.

x -> oo
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by Lemma 2. If m < 2w-)-2, we can choose h so that m-\-h < 2n-\-2.
AGn[x)jxm+h is then integrable over [0, c]. When * j 0, H{x\t)IH(\lt) -> x~m,
and therefore

. H(l/I) Jo

Similarly we can show that if m > 2«,

Hence, when In < w < 2n+2,

f
,40 ^(1/0 Jo

This proves (i).

If m = 2w-f-2, when 11 0, the limit of this is

The sum of the two integrals in (13) is the limit as h \ 0 of

Jo *»»+W
2n+1

1 (2n+1) !««

The limit of this, as h j 0, is easily shown to be

and so (iii) is proved.
We prove (ii) simply by replacing n in (iii) by n—1.
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5. Relations between K and V

If K is of index — m at oo, where m ^ 0, K{Xx)jK{x) ->• X~m as x -> oo,
for X > 0. Hence i£(x) must be either always positive or always negative
when x is great. We shall give the proofs always for the case K(x) > 0
when x is great.

THEOREM 7. Put

K(x)=K1(x)-Ki(x),
where

Kx{x) = 1-F(x), Kt(x) = i?(-»).

Suppose that K is of index —m at oo, and that, when x is great, either K(x)
is monotonic, or K2(x) < XKx(x), where 0 < A < 1.

(i) If 0 <m < 1, then

V(t)~C{m)K(llt), t\0.

(ii) / / m = 0, then

Jo
t{0.

Jo u

(ii) If m = 1, iAe«

7(<)-< f 1/'JK(*)*r~ —yK(llt), 11 0,

where y is Euler's constant.
The proof of (i) when K(x) is ultimately monotonic is similar to the

proof of Theorem 1. When we assume that K2(x) < XK^x) when x is great,
a slight modification is necessary. In the course of the proof we need to show
that the integral

•K(x/t)f K{\jt)
cos xdx

can be made arbitrarily small by making p sufficiently great and t suffi-
ciently small.

It follows from Ks(x) < XKx{x) that

Using the Second Mean Value Theorem, we obtain

J ,
x{pi) t(pi) f

cos a;rfcc = • cos a;^x cos
if(i/<) J K(i/o J
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The modulus of the right hand side is not greater than

which is less than

when pjt is great. Since K{plt)jK(llt) -> \\p as t ->• 0, the required result
follows.

We now consider the proof of (ii).

V(u)( ' ' "'-" cos uxdx.
u

= K(x)
->0

If /„ > 0, the integral is uniformly convergent with respect t o « > / 0 .
Therefore, if t > t0,

r* v{«), r in xsin tx i r v, \sin 'o* A
——- du = K(x) dx— K(x) — dx

Jt, w Jo a; Jo x
= f'KM) — *»- f'K(xlto)

S^
Jo x Jo x dx.

The second integral on the right is uniformly convergent with respect to
t0 > 0, and therefore -> 0 when t0 \ 0. Hence

C*V(u) f°° sinx
_L_^ du = K{xt) dx,

Jo u Jo x
and

*' V(u)r
<,., • ^ ^ r _ = r | M ^ ( f e .

If m = 0, when i j 0, K(x/t)IK(llt) -> 1. Using the property that when
x is great, either if(x) is monotonic or .K^) < XK^x), we can as in the
proof of (i), and Theorem 1, show that when t \ 0, the right hand side of
(14) tends to

p s i n x

Jo
This proves (ii).

dx =

V(t)= f K {xjt) cos xdx.
Jo
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V(t)-tj1JtK(x)dx _ V(t)- f*K(xlt)dx

Wit) ~ ^j

dx,

which tends to
f1 cos x— 1 r°°cosa;

(15 dx+
Jo x h x

when 11 0, if m = 1, so that K{xlt)jK{ljt) ~> \\x.
The sum of the two integrals in (15) is the limit, when 6 -> 0, of

cosz

dx

1 -$71

~ ~B ~ F(l + d) sin

This limit of this, when 0 -> 0, is easily shown to be

^"(1), = — y.
This proves (iii).

We shall write

(16) ju*^.! = JJ0 (2M—l)x2n-*K(x)dx,

when this integral exists. In all the cases we shall discuss, K(x) is asymp-
totically monotonic, and therefore, if the integral is finite, x2n~2K(x) must
->• 0 as x -> oo. When this is so, integration by parts shows that

(17)
j = _ (°°aP—idKix) = - lim f *x^^dK^x

J 0 T-+oo J 0
r-T

= lim x2n~1dF(x).
T-*coJ—T

It is possible for the integral in (16) to be finite and the limit in (17) not to
exist; but not in the cases we are investigating.

It follows from Lemma 2 that if K is of index — m at oo, /**„_! is finite
if m > In—1, and infinite if m < 2»—1.

THEOREM 8. Suppose that n*n_x exists and is finite, where n is a positive
integer. Put
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Let K be of index — m at oo

(i) If 2n< m < 2n+l, then

r>.-i(') ~ C{m)K(llt), 11 0.

(ii) If m = 2n—l, then

(iii) If m — 2w+l,
•1/1

The proofs are similar to those of Theorem 6. Here

VZn_1(t)=f~K(xlt)Jn(x)dx,
where

n-l v%r

0 (2r)\

6. Counter-example

In this section we give an example where H is of index 0 at oo but the
conclusion of Theorem 2 is not true, i.e. 1—U(t) is not asymptotically equal
to H{\jt) as 11 0.

Let {Tn} be an increasing sequence of integers > 1 such that T'n/Tn_1

is integral. For
2Tr ^ x rg 2Tr+1

define

/ ( )I W iog(2Wrr) iog((2w+2)rr)

if x=(2m+l)Tr, m=l,2,---,Tr+1ITr-l,

= 0 otherwise.
For

0 S x ^ 2TX

define
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1
f(x) = 1 -

log (27\)

if x = Tlt

= 0 otherwise.

Now define H{x) = | / ( x ) + J /(*/)•
y>x

Clearly H is a tail-sum function. We easily obtain

H(2mTr) = , m = 1, 2,

* W log(2w7V)

If 2m7V ^ x ^ 2 (m+l ) r r ,

where w is a positive integer, then

\x ^ 2mTr S^x t== 2(m+l)7V ^ 2a;,and so
1

^ H(2mTr) ^

Thus for all x > 27\,

- ^ ^(a;) ^
log (2x)

It follows that H(x) ~ I/log a;, a; -> oo. Thus /? is of index 0 at oo

l-U(n/Tr) = - f (1-cos {7ixlTr))dH{x)
Jo

^ - (1-cos (nxjTr))dH{x) = - 2i#(a;).
J 2Tr v 2T

The last equality is true because at a point of increase of H in the interval
[27V, 27V+1], cos (jra;/7V) = — 1. Hence

(18) l-U{n}Tr) ^ 2[H(2Tr)-H(2Tr+1)].

Now H(Tr) -~ I/log r r , and so if we choose the sequence {Tn} so that
log Tr+1/log Tr -̂ - oo as r -> oo, the right side of (18) will be asymptotically
equal to

2H{Trjn), r -> oo.

Hence l—U(7ilTr) will not be asymptotically equal to H(Trln) as r ->• oo,
and so 1—(/(i) will not be asymptotically equal to H(l/t) as 21 0.

I have to thank Professor B. C. Rennie for devising this counter
example.
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