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Abstract. In thispaper we solve the problem of desingul arization of an absolutely isolated singularity
of adifferential equation, including the dicritical case. As an application, we prove the finiteness of
the number of dicritical pointsin the blowing up tree of an absolutely isolated singularity.
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0. Introduction

Let X be a non singular variety of dimension n over a field k. A differential
equation on X isan invertible subsheaf © of the sheaf of derivations:

D — TX = Derk(OX,OX)

such that the quotient T'x /® is torsion free. A singular point of © is a point of
the critical locus of the injection 0 — ® — T, that is: a point p such that the
morphism®, ® k(p) — Tx, ® k(p) isnot injective. If x1,...,z, isasystem of
parametersat p and f1(90/0z1) + - - - + fn(0/0zy,) isaloca generator of D, then
pisasingular point of ® if and only if f1(p) = --- = fn(p) = 0. The multiplicity
of D atapointp € X, is

where F,, is the Fitting ideal F,, 1((Tx/®),) and v, is the m,-adic valuation
corresponding to p. In terms of the local expression of D, one has

mp(D) = min{v,(f1), ..., vp(fn)}-

A necessary and sufficient condition for apoint p to beasingular point of © isthat
my(D) > 0.
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If pisasingular point of adifferential equation ®, and m istheideal of p then
the differential equation induces an endomorphism of the cotangent space

Dr:im/m? — m/m?
[ —=Df

being D alocal generator of © at p. We say that D isthelinear part of © at p. A
singularity of adifferential equation issaid to beirreducibleif the linear part, Dy,
has at least one nonzero eigenvalue.

Letm: X' — X theblowing up of X with center at p, and let E' bethe exceptional
fiber. If © isadifferental equation on X, there exists one and only one differential
equation, ®’, on X’ such that its singular locus has codimension greater than 1 and
QTX_E = D|x_p. D' iscalled the proper transformof ® by . If E is solution of
D' (that is, ®'p C p, wherep istheidea of F), wesay that p (or 7: X' — X) is
non-dicritical, and one has

D =1"D®0x(1-m) (p=0x/(1)),

where m isthe multiplicity of ® at p. On the contrary, if £ isnot a solution of ®’,
then we say that p is dicritical, and one has

D =710 ® Ox:/(—m).

Anisolated singularity p is said to be absolutely isolated if all the singularities
of the blowing up tree of p are isolated. More precisely, if for any sequence of
guadratic transformations

Xp 2o — X 25 X

such that: the center, p;, of X;,1 — X; isaclosed point in the fiber of p andisa
singular point of ®;, where ®; is the proper transform of ® by X; — X, then all
the singularities of ©,, over the exceptional fiber are isolated.

The definition of an absolutely isolated singularity given in [1] is adapted
to the non-dicritical case. Our definition does not make restrictions about the
dicriticalness, that is, it includes the dicritical case.

In this paper we prove the following.

THEOREM. If p is an absolutely isolated singularity, then after a finite number
of quadratic transformations all the singularities become irreducible.

To prove this theorem one introduces a number associated with the singularity
and to the exceptional divisor obtained after a sequence of blowing up’s. This is
the critical length relative to a divisor at a point p. If the divisor is empty, this
number is the classical Milnor number of the differential equation; if the divisor
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has only one component, it is the ‘adapted Milnor number’ defined in [1]. These
numbers are calculated in term of Chern classes (Theorem 3), and this fact permits
us to compute the variation of the critical length under blowing up (Theorem 4).
One proves that this number never increases, and it decreases strictly whenever
one blows up apoint of multiplicity greater than 1. The desingularization theorem
follows easily. As an application of the desingularization theorem, one can prove
the following

THEOREM. The number of dicritical pointsin the blowing up tree of an absolutely
isolated singularity is finite.

In the non-dicritical case, the above desingularization theorem is due to
C. Camacho, F. Cano and P. Sad [1]. When the dimension of X is two, the desin-
gularization is due to Seidenberg [6]. In dimension three, the desingularization of
anon-dicritical differential equation isdueto Cano|[2, 3].

This paper has been carried out under the direction of J. B. Sancho Guimera.
The main ideas and methodology are due to him.

1. A fundamental theorem on Chern classes

The results of this section can be found in [5]. Let X be a non singular cuasi-
projective variety over afield k. The intersection theory used here will be that of
the graded group GK(X) of the Grothendieck group of coherents modules on X
with respect to the filtration defined by the codimension of the support; the product,
direct and inverse image, Chern classes, etc, are supposed to be the ones defined
with respect to this graded ring.

Let £ and F be two locally free O x-modules and let

r = rank of F

n = rank of E.
DEFINITION. Let f: FF — E be amorphism of Ox-modules. The natural mor-
phismidef: F — F @& E induces a closed immersion P(F') — P(F @ E). The

closed subscheme defined by this immersion shall be called the projective graph
of f.

The cohomology class of the projective graph of f in GK(P(F @ E)) shal be
denoted by T'.

PROPOSITION. Let £ betheobstruction classof Op g ) (—1). For any morphism
f, the cohomology class of the projectivegraph of f is

I'y= ZCZ(E) . fn_i.

1=0
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THEOREM 1. The Chernclassc,_,+1(E — F) isequal to the projection on X
of the self-intersection class of the projective graph of the null morphism. That is,
if I'p is the cohomology class of the null morphism, and 7: P(F @ E) — X isthe
natural projection, then

Cn—r+1(E — F) = 7T*(F0 . Fo).

COROLLARY. TheChernclassc,—_,+1(FE) isequal to the projection on X of the
self-intersection class of the projective graph of the null morphismin P(O” & E).
This gives a geometric construction of Chern classes.

COROLLARY. Let f: F — E beamorphismof Ox modules. One can see that
Cn—r+1(E — F) = 7T*(Ff . Fo).

In the rest of this section f will be supposed to be an injective morphism of
sheaves.

DEFINITION. Let f: F — E be an injective morphism of locally free modules.
Thecritical locusof f isthelocusof the pointsp such that themorphism F®k(p) —
E ® k(p) isnot injective. Thislocusis a closed subset, defined by the Fitting ideal
F,_,(E/F).Weshall consider it to beaclosed subscheme: SpecOx / F,,—(E/F).
Thecritical cycleof f, Cr(f), isthecycle (in GK(X)) associated with the critical
locus. By definition:

Cr(f) :an'pa

where p runs over the generic points of the critical locus of f and n,, isthelength
at p of themodule (Ox /(Fy—(E/F)))p.

THEOREM 2. Let f: F — FE be an injective morphism of locally free modules,
and let r = rank of F', n = rank of E. If the critical locus of f has codimension
greater than or equal to n — r + 1, then the Chern class ¢,,_,11(E — F') isthe
critical cycleof f. Thatis,

Cnfr+1(E - F) = Cr(f)

2. Critical length relativeto adivisor: Variation under blowing up

Let ;Y — X be a closed subscheme of X defined by a sheaf of ideals J. Let
us denote by T the submodule of Ty formed by the derivations of X which are
tangentto Y, that is,

TY = {D € Tx suchthat D Rad(J) C Rad(3)},
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where Rad(3) is the radical of 7. Let us suppose that Y is reduced. Let Ny, x =

(3/3%)* be the module of sections of the the normal bundle of Y in X. We have
the exact sequence:

0—Tx — Tx — i.Ny)x,
D — D:3/3% — Oy,
f—=Df,
where the morphism T'x — i, Ny, x is obtained by adjuntion from the natural

morphismi*Tx — Ny, x. If Y is asmooth subscheme, the sequence 0 — T} —

EXAMPLE. LetY beasmoothhypersurface. Let{x1, ..., z, } belocal parameters
at apoint z, such that Y is defined by 21 = 0. Then {(9/0z1),...,(9/0zy)} isa
basisof T'x , and {z1(0/0z1), (0/0x2), ..., (0/0zy) isabasis of T}Em.

The following proposition isimmediate:

PROPOSITION.

@ TY = Ty=.
(b) fY = A\ E1 + - - - + A\ By, isan effective divisor whose irreducible compo-
nents are smooth and have normal crossings, then one has the exact sequence

0—TY -Tx — Np, @---® Ng,, — 0,

where N B is the module of sections of the normal bundle of £; in X. Moreover
TY isalocally free module of rank n = dimension of X. Locally, if {z1,...,z,}
isa systemof parametersat «, suchthat Y isdefined by 23 - - - ) = 0, then TX .
isa free module with basis

fos 2 )
xlaxl,...,xra$r,8$T+1,...,axn .

LetY = AEq + -+ + A\ By, be an effective smooth divisor (that is, E; is
smooth) with normal crossings. Let © be a differential equation on X and let

Y(®@)CY

be the effective divisor formed by the components of Y that are a solution of ®
(that is, © is tangent to them).

DEFINITION. The critical locus of ® relative to Y, Sin(®,Y), is the critical
locus of the injection 0 — © — T ™) Thisis the closed subscheme defined by
the Fitting ideal F,,_1(Ty ) /®); thisideal will be denoted by ¢(, ).
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The critical locus of © relativeto Y is contained in the critical locus of ©, that
is,

Sin(®,Y) C Sin(D)

This follows immediately from the fact that the injection 0 — ® — Ty factors
through T ).

DEFINITION. Let p be a generic point of the critical locus of © relative to Y.
Thecritical length of © at the point p relativeto Y, n,(D,Y), isthelength at p of
(Ox/€(D.Y))y

o
np(Q,Y) = Iength Op (Q:(T%) .
’ p

The critical cycle of D relativeto Y, Cr(®,Y), is the cycle associated with the
critical locus of D relative to Y. By definition,

Cr(®,Y) = an(Q,Y) - P,

where p runs over the generic points of the critical locus of © relativeto Y.

THEOREM 3. Let Y be an effective smooth divisor with normal crossings, ® a

differential equation on X with isolated singularities, and let us denote by T}? ®)
the module of derivations tangent to Y'(©). Then the Chern class c,, (T, ) — ®)

isthe critical cyclerelativeto Y, that is

e (TE®) —2) = Cr(@,Y).

Proof. Itisimmediatefrom theorem 2 appliedtotheinjection0 — © — T}g(@).

THEOREM 4. LetY be an effective smooth divisor (it may be empty) with normal
crossings, and © a differential equation on X which istangentto Y. Let p be an
isolated singularity of ® of multiplicity m, m: X’ — X the blowing up with center
at p and E the exceptional fiber. Let r be the number of components of Y which
contain p. If the proper transform®’ of © has only isolated singularities, then

(1) If p is non-dicritical, (that is, the exceptional fiber is a solution of the
differential equation '), then

ny(D,Y) — Z ng(®@', 7*Y) -dy = (m —1)"m"",
€E

where n, (D', 7*Y") are the corresponding critical lengths of @' at ¢ relative to
©*Y and d, is the degree of the field extension k(p) — k(q).

https://doi.org/10.1023/A:1000177422159 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000177422159

ISOLATED SINGULARITIESOF A DIFFERENTIAL EQUATION 241

(2) If p is dicritical (that is, the exceptional fiber is not a solution of the
differential equation '), then

np(D,Y) = Y ng(®,7*Y) - d,
qgeEE

(mH)n_M, if =0,
m

(m" —m"™ Y (m+ 17", if r>0.

Inparticular, n,(D,Y) = 3 e png(®', 7°Y) - d, isalways greater or equal to
0,anditisOif and only if p isa singularity of multiplicity 1 and r > 0.

Proof. We only haveto consider the componentsof the divisor that contain p, so
we can supposethat Y = A\ Fy + - - - + A\, E,.. By the proposition we may suppose
that Y isreduced, Y = E1 + --- + E,,and 7*Y = E} + --- + E. + E, where
E;= proper transform of E;. Let usdenoten,, = n,(9,Y), ny = ny(d', 7*Y’) and
Y' =Y (D).

Asthequestionislocal, one can supposethat X isaprojectivevariety. Moreover,
it is not difficult to see that one can suppose that the only singularity of the
differential equationisp (replacing T'x by alocally free module M of rank n such
that: © — M, M)y ~ Tx iy for some open neighbourhood U of p, and ® islocally
adirect summand of M outside of p). By Theorem 3, ¢,,(TY¥ — ®) = n, - p and
en(TX) — D) = Y e g - q. Moreover

<np - Z Ng - d11> p= W*(W*Cn(T;? —9) - cn(T))(/” )
qgeEE

because 7, (q) = dgy - p and m.7* = id(m,7* (a) = a - 1 (1) = a, Sincem, (1) =1
becauser isbirational). So onehasto computen*c,, (T —D) — ¢, (T, —D'). But
7 isanisomorphism outside of p, S0 7*¢,, (T —D) — ¢, (Tx, —D') isconcentrated
in E. As E is aprojective space, it must be

e (TY —®) — cu(Thr —D') = AE", A€ Z.

Remark. With the object of computing A, one can substitute X by any open
neighbourhood of p, so one may supposethat the O x -modulesthat appear arefree.

We have the exact sequences

E'+.+E'+FE E!+4+-+E'
0— Tyt R " — Ng — 0,
0 Tt N N — 0
— Ty — Txr = Ng; @ --- @& Ng, — 0,

O—-Tyi - 7Ty - T ® L — 0.
Now, since FE is a projective space, we have the exact sequence

0— Qp — Op(-1)" - O — 0,
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therefore
0—-0r—=0p)" 5T —0
and taking the tensor product with £z (noticethat £ = Ox-(1)), one has
0+ N =0 —>Tg® L — 0.
Thenc(Tr ® LE) = 1/(1—- E)"(1+ E), since

¢(Ng) = c(Lg®0g)=c(Lp®@1—-L_g) =c(Lp—-1) =1+E, (1)

1
C1—-FE’

Putting it all together, one has (taking into account the Remark)

c(Op) = c(1-L_p) @

E\+-+E! 1 _
T} ") = =1-E)" "1+ FE
g X ) c(Tg ®£E)C(NE1)C(NE;) ( ) ( )

becausec(NE;) =1+ E; =1~ FE,asE} + E = 7*(E;) = 0 (by the Remark),
and

Ei+...+E;

E1+...+EL+E) _ C(TX, _ NE) _ (1_ E)n,,n‘

C(TX/
(D InthiscaseY' = E1 + -+ E; + Eand®' = 7°D ® L(,,_1), hence

(1— B

Ej+-+E+E
1+(m-1E|

cn (T D) =

and one concludes by an easy computation (note that 7, E” = (—1)"1 - p).
(2) InthiscaseY' = Ej +--- + El and®' = 7*D ® L,,, 5, therefore

[T /

1-E)""(1+ E)
1+mFE

n
and again an easy computation allows usto conclude.

When'Y isempty and p is non-dicritical, the formulaisgivenin [1, Thm 2].
3. Desingularization

Our aim now isto provethat the absol utely isolated singul aritiesbecomeirreducible
after a finite number of quadratic tranformations. Before proving the theorem let
US see some previous lemmas:
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LEMMA 1. Let H; and H» be two hypersurfaces, which are solutions of a dif-
ferential equation ® and with normal crossings. If ¢ € H1 N H is an absolutely
isolated non-dicritical singularity of ® with multiplicity 1, then ¢ isirreducible.

Proof. Either H; or H, gives a nonzero eigenvalue; in fact: on the contrary,
we would have v,(H1) > 1, v,(H2) > 1, and then ¢ could not be an absolutely
isolated singularity (blowing up at g, the critical locus would be of codimension
less or equal than n — 1, as can be shown by an easy computation).

LEMMA 2. Let
= X2 X 1= 2 X1 2> X=X

be a sequenceof blowing up’ssuchthat: 7; 1 1: X;11 — X; isablowing up centered
at p;= non-dicritical singular point of ®;, with multiplicity 1, in the fiber of p; 1,
placed out of the corners, and which is rational over p (that is, the degree of the
extension k(p) — k(p;) is1).

Thentheformal curvein X defined by this sequence of points (that is, the curve
whose successive proper transforms pass through the points p;) is solution of the
differential equation.

Proof. Let O; be the local ring of p;, with maximal ideal m;, and let D; be a
local generator of ©; at p; (0o = O and Do = D). Noticethat D; o = D for every
i, because p; is non-dicritical of multiplicity 1, andthen®; = 7D, _1. Sincem; is
asingular point, one hasthat D;m; C m;, hence D(mi 1N O) c mit1NO. Let O
denote the formal completion of ©. The formal curve defined by the sequence of
points p; is given by the surjective map

0 —~1im (0/mi**n 0) ~ k)]

The kernel isan ideal I suchthat DI C I, because D(m:™ N 0) c mi*1 N 0O, s0
the curveis asolution of ©.

THEOREM 5. Let p bean absolutelyisolated singularity of a differential equation.
Then, after a finite number of quadratic transformations, all the singularities
becomeirreducible.

Proof. By induction on the critical length relative to the exceptional divisor.
Notice that, by Theorem 4, this number never increases under blowing up. If it is
0, then some of the components of the exceptional divisor must give a nonzero
eigenvalue. Let ¢ be asingular point, with critical length n, and multiplicity m,.
If m, is greater than 1, then, blowing up at ¢, the critical length decreases (by
Theorem 4) and one ends by induction. So we may suppose the multiplicity to
be 1 and that it remains equal to 1 after blowing up. Moreover, we may suppose
that the points we are blowing up at are rational over ¢, since, to the contrary, the
critical length also decreases (Theorem 4). Now, the singularities in the corners
are irreducible (Lemma 1), and so are the dicritical points (of multiplicity 1); we
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may suppose then that we are aways blowing up at non-dicritical points, with
multiplicity 1, out of the cornersand rational over ¢q. By Lemmaz2, onehasaformal
curve passing through g, which is transversal to the exceptional fiber, and solution
of the differential equation. It is clear then that ¢ isirreducible.

4. Finiteness of dicritical points

In this section the base field is supposed to be of characteristic 0 and algebraically
closed. Our aim is to see that the dicritical points in the blowing up tree of an
absolutely isolated singularity are finite in number. We shall first discuss the case
when the variety has dimension two, since the argument is easily generalized for
dimension n.

THEOREM 6. Thenumber of dicritical pointsinthe blowing up tree of an absolute-
ly isolated singularity isfinite (dim X = 2).
Proof. It follows from the next proposition.

PROPOSITION. Let Dy be the linear part at p of a differential equation of
multiplicity 1. Supposethat Dr = (5 ) with u # 0. Then,

(1) If X/ ¢ QF, then thereis no dicritical pointsin the blowing up tree of p.
(2) If A/ € QF, thenthereis, at most, one dicritical point in the blowing up tree
of p.

Proof. (1) It follows from the fact that the condition is stable under blowing
up: an easy computation shows that blowing up at p two singularities appear
and their linear part have the following Jordan form (*¢# ") and (3 ,°,), and
(A — 1)/ M (1 — X) € QF if M ¢ QF.

Since the matrix of adicritical pointis (f 3), u/p=1¢€ Q", oneconcludes.

(2) Let A/ = n/m, n,m € N, relatively prime. Suppose that n < m (if
n > m the same argument is valid, interchanging A by u). If n = m, the point
is dicritical and blowing up there are no more singular points. If n < m, then
(A —p)/u = (n/m) —1 ¢ QF, so one of the points that appear can not have
dicritical pointsinitsblowing uptree, by (1). Dicritical pointscan only appear at the
other point. If s — A = A (u = 2)), thenthematrix of this pointiseither (; g) (and
thenitisdicritical) or ( ), withy # 0, and blowing up thereis only one singular
point with matrix (§ ), that has no dicritical points aboveit, by (1). If A — p # A,
then the matrix of the pointis (3 ,°,) and A/(u — A) = n/(m —n) € Q". But
max{n, m} > max{n,m — n}, so the processisfinite.

Now the theorem follows. In fact, we can suppose, by Theorem 5, that thereisa
nonzero eigenvalue, so Dy = (3 J) or Dy = (3 3). Inthefirst case we conclude by
the proposition above. In the second: blowing up, only one singular point appears
and its matrix is (8 g), so we conclude again by the proposition.

Now, the proof in dimension n. is clarified.

https://doi.org/10.1023/A:1000177422159 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000177422159

ISOLATED SINGULARITIESOF A DIFFERENTIAL EQUATION 245

THEOREM 7. Thenumber of dicritical pointsinthe blowing up tree of an absolute-
ly isolated singularity is finite.
Proof. It follows from Theorem 5 and the next proposition.

PROPOSITION. Let Dy bethelinear part at p of a differential equation with a
nonzero eigenvalue. Then

(1) If Dy hastwo eigenvalues i # 0 and A, such that A/ ¢ QT then there are
no dicritical points in the blowing up tree of p. If Dy does not diagonalize,
then thereis not any dicritical point in the blowing up tree.

2 If

A1 0
Dy = and
0 An

Ai

J

eQt for any i, 7,

>

then thereis, at most, one dicritical point in the blowing up tree of p.

Proof. (1) The existence of two eigenvalues s # 0 and A, suchthat A /i ¢ Q,
is stable by blowing up, as an easy computation shows, so one concludes. If Dy
does not diagonalize, then its Jordan matrix can be put in the form

>
> = O

0

If A = 0, since there exists ;. # 0, we conclude by (1). If A # 0, one blows up.
Either a matrix of the same type comes out (which is non-dicritical), or the zero
eigenval ue appears, so one concludes as above.

(2) Let x4, . .., 2, be parameters such that D is diagonal. One blows up. On
the affine set z; # 0 one has: either a singular point whose Jordan matrix has the
form

= O

i
0

>

1

that has no dicritical points above it, or a singular point with diagonal matrix
and agenvalu&s AL — Ajy s Nl — AL A, >‘i+l — Ay, A — A But ()\j —
Ai)/Xi € QF if and only if \;/A; < 1. So, dicritical points (if they exist) can
only appear in the affine set z; # 0 such that \;/\; < 1 for any j # . But if
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>\j/>\z’ = mj/n, g.C.d.{n,mj} = 1, then ()\j — >\z/>\z = (mj — n)/n and max
{n,m;} > max{n,m; — n}, sothe processisfinite.
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