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Abstract. In this paper we solve the problem of desingularization of an absolutely isolated singularity
of a differential equation, including the dicritical case. As an application, we prove the finiteness of
the number of dicritical points in the blowing up tree of an absolutely isolated singularity.
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0. Introduction

Let X be a non singular variety of dimension n over a field k. A differential
equation on X is an invertible subsheaf D of the sheaf of derivations:

D ,! TX = Derk(OX ;OX)

such that the quotient TX=D is torsion free. A singular point of D is a point of
the critical locus of the injection 0 ! D ! TX , that is: a point p such that the
morphism Dp 
 k(p) ! TXp 
 k(p) is not injective. If x1; : : : ; xn is a system of
parameters at p and f1(@=@x1) + � � �+ fn(@=@xn) is a local generator of D, then
p is a singular point of D if and only if f1(p) = � � � = fn(p) = 0. The multiplicity
of D at a point p 2 X , is

mp(D) = min
a2Fp

fvp(a)g;

where Fp is the Fitting ideal Fn�1((TX=D)p) and vp is the mp-adic valuation
corresponding to p. In terms of the local expression of D, one has

mp(D) = min fvp(f1); : : : ; vp(fn)g:

A necessary and sufficient condition for a point p to be a singular point of D is that
mp(D) > 0.
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If p is a singular point of a differential equation D, and m is the ideal of p then
the differential equation induces an endomorphism of the cotangent space

DT :m=m2 ! m=m2

f ! Df

being D a local generator of D at p. We say that DT is the linear part of D at p. A
singularity of a differential equation is said to be irreducible if the linear part, DT ,
has at least one nonzero eigenvalue.

Let�:X 0 ! X the blowing up ofX with center at p, and letE be the exceptional
fiber. If D is a differental equation on X , there exists one and only one differential
equation,D0, on X 0 such that its singular locus has codimension greater than 1 and
D0
jX0�E = DjX�p. D0 is called the proper transform of D by �. If E is solution of

D0 (that is, D0p � p, where p is the ideal of E), we say that p (or �:X 0 ! X) is
non-dicritical, and one has

D0 = �
�D
OX0(1�m) (p = OX0(1));

where m is the multiplicity of D at p. On the contrary, if E is not a solution of D0,
then we say that p is dicritical, and one has

D
0 = �

�
D
OX0(�m):

An isolated singularity p is said to be absolutely isolated if all the singularities
of the blowing up tree of p are isolated. More precisely, if for any sequence of
quadratic transformations

Xn
�n�! � � � �! X1

�1�! X

such that: the center, pi, of Xi+1 ! Xi is a closed point in the fiber of p and is a
singular point of Di, where Di is the proper transform of D by Xi ! X , then all
the singularities of Dn over the exceptional fiber are isolated.

The definition of an absolutely isolated singularity given in [1] is adapted
to the non-dicritical case. Our definition does not make restrictions about the
dicriticalness, that is, it includes the dicritical case.

In this paper we prove the following.

THEOREM. If p is an absolutely isolated singularity, then after a finite number
of quadratic transformations all the singularities become irreducible.

To prove this theorem one introduces a number associated with the singularity
and to the exceptional divisor obtained after a sequence of blowing up’s. This is
the critical length relative to a divisor at a point p. If the divisor is empty, this
number is the classical Milnor number of the differential equation; if the divisor
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has only one component, it is the ‘adapted Milnor number’ defined in [1]. These
numbers are calculated in term of Chern classes (Theorem 3), and this fact permits
us to compute the variation of the critical length under blowing up (Theorem 4).
One proves that this number never increases, and it decreases strictly whenever
one blows up a point of multiplicity greater than 1. The desingularization theorem
follows easily. As an application of the desingularization theorem, one can prove
the following

THEOREM. The number of dicritical points in the blowing up tree of an absolutely
isolated singularity is finite.

In the non-dicritical case, the above desingularization theorem is due to
C. Camacho, F. Cano and P. Sad [1]. When the dimension of X is two, the desin-
gularization is due to Seidenberg [6]. In dimension three, the desingularization of
a non-dicritical differential equation is due to Cano [2, 3].

This paper has been carried out under the direction of J. B. Sancho Guimerá.
The main ideas and methodology are due to him.

1. A fundamental theorem on Chern classes

The results of this section can be found in [5]. Let X be a non singular cuasi-
projective variety over a field k. The intersection theory used here will be that of
the graded group GK(X) of the Grothendieck group of coherents modules on X

with respect to the filtration defined by the codimension of the support; the product,
direct and inverse image, Chern classes, etc, are supposed to be the ones defined
with respect to this graded ring.
Let E and F be two locally free OX -modules and let

r = rank of F

n = rank of E:

DEFINITION. Let f :F ! E be a morphism of OX -modules. The natural mor-
phism id�f :F ! F � E induces a closed immersion P(F ) ! P(F � E). The
closed subscheme defined by this immersion shall be called the projective graph
of f .

The cohomology class of the projective graph of f in GK(P(F � E)) shall be
denoted by �f .

PROPOSITION. Let � be the obstruction class ofOP(F�E)(�1). For any morphism
f , the cohomology class of the projective graph of f is

�f =
nX
i=0

ci(E) � �
n�i

:
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THEOREM 1. The Chern class cn�r+1(E � F ) is equal to the projection on X

of the self-intersection class of the projective graph of the null morphism. That is,
if �0 is the cohomology class of the null morphism, and �:P(F � E) ! X is the
natural projection, then

cn�r+1(E � F ) = ��(�0 � �0):

COROLLARY. The Chern class cn�r+1(E) is equal to the projection on X of the
self-intersection class of the projective graph of the null morphism in P(Or �E).
This gives a geometric construction of Chern classes.

COROLLARY. Let f :F ! E be a morphism ofOX modules. One can see that

cn�r+1(E � F ) = ��(�f � �0):

In the rest of this section f will be supposed to be an injective morphism of
sheaves.

DEFINITION. Let f :F ! E be an injective morphism of locally free modules.
The critical locus off is the locus of the points p such that the morphismF
k(p)!
E 
 k(p) is not injective. This locus is a closed subset, defined by the Fitting ideal
Fn�r(E=F ). We shall consider it to be a closed subscheme: SpecOX=Fn�r(E=F ).
The critical cycle of f , Cr(f), is the cycle (in GK(X)) associated with the critical
locus. By definition:

Cr(f) =
X
p

np � p;

where p runs over the generic points of the critical locus of f and np is the length
at p of the module (OX=(Fn�r(E=F )))p.

THEOREM 2. Let f :F ! E be an injective morphism of locally free modules,
and let r = rank of F , n = rank of E. If the critical locus of f has codimension
greater than or equal to n � r + 1, then the Chern class cn�r+1(E � F ) is the
critical cycle of f . That is,

cn�r+1(E � F ) = Cr(f)

2. Critical length relative to a divisor: Variation under blowing up

Let i:Y ,! X be a closed subscheme of X defined by a sheaf of ideals I. Let
us denote by T Y

X the submodule of TX formed by the derivations of X which are
tangent to Y , that is,

T
Y
X = fD 2 TX such that DRad(I) � Rad(I)g ;
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where Rad(I) is the radical of I. Let us suppose that Y is reduced. Let NY=X =

(I=I2)� be the module of sections of the the normal bundle of Y in X . We have
the exact sequence:

0 ! T Y
X ! TX ! i�NY=X ;

D 7! D: I=I2 ! OY ;

f 7! Df;

where the morphism TX ! i�NY=X is obtained by adjuntion from the natural
morphism i�TX ! NY=X . If Y is a smooth subscheme, the sequence 0 ! T Y

X !
TX ! i�NY=X ! 0 is exact.

EXAMPLE. LetY be a smooth hypersurface. Let fx1; : : : ; xng be local parameters
at a point x, such that Y is defined by x1 = 0. Then f(@=@x1); : : : ; (@=@xn)g is a
basis of TX;x and fx1(@=@x1); (@=@x2); : : : ; (@=@xn) is a basis of T Y

X;x.

The following proposition is immediate:

PROPOSITION.

(a) T Y
X = T

Yred
X .

(b) If Y = �1E1 + � � �+ �mEm is an effective divisor whose irreducible compo-
nents are smooth and have normal crossings, then one has the exact sequence

0 ! T
Y
X ! TX ! NE1 � � � � �NEm ! 0;

where NEj is the module of sections of the normal bundle of Ej in X . Moreover
T Y
X is a locally free module of rank n = dimension of X . Locally, if fx1; : : : ; xng

is a system of parameters at x, such that Y is defined by x�1
1 � � � x�rr = 0, then T Y

X;x

is a free module with basis�
x1

@

@x1
; : : : ; xr

@

@xr
;

@

@xr+1
; : : : ;

@

@xn

�
:

Let Y = �1E1 + � � � + �mEm be an effective smooth divisor (that is, Ej is
smooth) with normal crossings. Let D be a differential equation on X and let

Y (D) � Y

be the effective divisor formed by the components of Y that are a solution of D
(that is, D is tangent to them).

DEFINITION. The critical locus of D relative to Y , Sin(D; Y ), is the critical

locus of the injection 0 ! D ! T
Y (D)
X . This is the closed subscheme defined by

the Fitting ideal Fn�1(T
Y (D)
X =D); this ideal will be denoted by C(D; Y ).

comp3882.tex; 1/08/1997; 10:47; v.7; p.5

https://doi.org/10.1023/A:1000177422159 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000177422159


240 F. AND P. SANCHO DE SALAS

The critical locus of D relative to Y is contained in the critical locus of D, that
is,

Sin(D; Y ) � Sin(D)

This follows immediately from the fact that the injection 0 ! D ! TX factors
through T Y (D)

X .

DEFINITION. Let p be a generic point of the critical locus of D relative to Y .
The critical length of D at the point p relative to Y , np(D; Y ), is the length at p of
(OX=C(D; Y ))p

np(D; Y ) = length Op

�
OX

C(D; Y )

�
p

:

The critical cycle of D relative to Y , Cr(D; Y ), is the cycle associated with the
critical locus of D relative to Y . By definition,

Cr(D; Y ) =
X
p

np(D; Y ) � p;

where p runs over the generic points of the critical locus of D relative to Y .

THEOREM 3. Let Y be an effective smooth divisor with normal crossings, D a
differential equation on X with isolated singularities, and let us denote by T Y (D)

X

the module of derivations tangent to Y (D). Then the Chern class cn(T
Y (D)
X � D)

is the critical cycle relative to Y , that is

cn(T
Y (D)
X �D) = Cr(D; Y ):

Proof. It is immediate from theorem 2 applied to the injection 0 ! D! T
Y (D)
X .

THEOREM 4. Let Y be an effective smooth divisor (it may be empty) with normal
crossings, and D a differential equation on X which is tangent to Y . Let p be an
isolated singularity of D of multiplicity m, �:X 0 ! X the blowing up with center
at p and E the exceptional fiber. Let r be the number of components of Y which
contain p. If the proper transform D0 of D has only isolated singularities, then

(1) If p is non-dicritical, (that is, the exceptional fiber is a solution of the
differential equation D0), then

np(D; Y )�
X
q2E

nq(D
0
; �
�
Y ) � dq = (m� 1)rmn�r

;

where nq(D
0; ��Y ) are the corresponding critical lengths of D0 at q relative to

��Y and dq is the degree of the field extension k(p)! k(q).
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(2) If p is dicritical (that is, the exceptional fiber is not a solution of the
differential equation D0), then

np(D; Y )�
X
q2E

nq(D
0
; �
�
Y ) � dq

=

8><>: (m+ 1)n �
(m+ 1)n � 1

m
; if r = 0;

(mr �mr�1)(m+ 1)n�r; if r > 0:

In particular, np(D; Y )�
P

q2E nq(D
0; ��Y ) � dq is always greater or equal to

0, and it is 0 if and only if p is a singularity of multiplicity 1 and r > 0.
Proof. We only have to consider the components of the divisor that contain p, so

we can suppose that Y = �1E1 + � � �+ �rEr. By the proposition we may suppose
that Y is reduced, Y = E1 + � � � + Er, and ��Y = E01 + � � � + E0r + E, where
E0i= proper transform of Ei. Let us denote np = np(D; Y ), nq = nq(D

0; ��Y ) and
Y 0 = ��Y (D0).

As the question is local, one can suppose thatX is a projective variety. Moreover,
it is not difficult to see that one can suppose that the only singularity of the
differential equation is p (replacing TX by a locally free module M of rank n such
that:D ,!M , MjU ' TX jU for some open neighbourhoodU of p, andD is locally
a direct summand of M outside of p). By Theorem 3, cn(T Y

X � D) = np � p and
cn(T

Y 0

X0 �D0) =
P

q2E nq � q. Moreover0@np �X
q2E

nq � dq

1A � p = ��(�
�
cn(T

Y
X �D)� cn(T

Y 0

X0 �D
0))

because ��(q) = dq � p and ���� = id(����(a) = a � ��(1) = a, since ��(1) = 1
because� is birational). So one has to compute ��cn(T Y

X �D)�cn(T
Y 0

X0 �D0). But
� is an isomorphism outside of p, so ��cn(T Y

X �D)�cn(T
Y 0

X0 �D0) is concentrated
in E. As E is a projective space, it must be

�
�
cn(T

Y
X �D)� cn(T

Y 0

X0 �D
0) = �E

n
; � 2 Z:

Remark. With the object of computing �, one can substitute X by any open
neighbourhood of p, so one may suppose that theOX -modules that appear are free.

We have the exact sequences

0 ! T
E0

1+���+E
0

r
+E

X0 ! T
E0

1+���+E
0

r

X0 ! NE ! 0;

0 ! T
E0

1+���+E
0

r

X0 ! TX0 ! NE0

1
� � � � �NE0

r
! 0;

0 ! TX0 ! ��TX ! TE 
LE ! 0:

Now, since E is a projective space, we have the exact sequence

0 ! 
E ! OE(�1)n ! OE ! 0;
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therefore

0 ! OE ! OE(1)n ! TE ! 0

and taking the tensor product with LE (notice that L�E = OX0(1)), one has

0 ! NE ! On
E ! TE 
LE ! 0:

Then c(TE 
LE) = 1=(1�E)n(1 +E); since

c(NE) = c(LE 
OE) = c(LE 
 (1�L�E)) = c(LE � 1) = 1 +E; (1)

c(OE) = c(1�L�E) =
1

1�E
: (2)

Putting it all together, one has (taking into account the Remark)

c(T
E0

1+���+E
0

r

X0 ) =
1

c(TE 
LE)c(NE0

1
) : : : c(NE0

r
)
= (1�E)n�r(1 +E)

because c(NE0

j

) = 1 + E0j = 1� E, as E0j + E = ��(Ej) = 0 (by the Remark),
and

c(T
E0

1+���+E
0

r+E

X0 ) = c(T
E0

1+���+E
0

r

X0 �NE) = (1�E)n�r:

(1) In this case Y 0 = E01 + � � �+E0r +E and D0 = ��D
L(m�1)E , hence

cn(T
E0

1+���+E
0

r
+E

X0 �D0) =

"
(1�E)n�r

1 + (m� 1)E

#
n

and one concludes by an easy computation (note that ��En = (�1)n�1 � p).
(2) In this case Y 0 = E01 + � � �+E0r and D0 = ��D
LmE , therefore

cn(T
E0

1+���+E
0

r

X0 �D
0) =

"
(1�E)n�r(1 +E)

1 +mE

#
n

and again an easy computation allows us to conclude.
When Y is empty and p is non-dicritical, the formula is given in [1, Thm 2].

3. Desingularization

Our aim now is to prove that the absolutely isolated singularities become irreducible
after a finite number of quadratic tranformations. Before proving the theorem let
us see some previous lemmas:
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LEMMA 1. Let H1 and H2 be two hypersurfaces, which are solutions of a dif-
ferential equation D and with normal crossings. If q 2 H1 \H2 is an absolutely
isolated non-dicritical singularity of D with multiplicity 1, then q is irreducible.

Proof. Either H1 or H2 gives a nonzero eigenvalue; in fact: on the contrary,
we would have vq(H1) > 1, vq(H2) > 1, and then q could not be an absolutely
isolated singularity (blowing up at q, the critical locus would be of codimension
less or equal than n� 1, as can be shown by an easy computation).

LEMMA 2. Let

� � � ! Xm ! Xm�1 ! � � � ! X1 ! X0 = X

be a sequence of blowing up’s such that: �i+1:Xi+1 ! Xi is a blowing up centered
at pi= non-dicritical singular point of Di, with multiplicity 1, in the fiber of pi�1,
placed out of the corners, and which is rational over p (that is, the degree of the
extension k(p)! k(pi) is 1).

Then the formal curve in X defined by this sequence of points (that is, the curve
whose successive proper transforms pass through the points pi) is solution of the
differential equation.

Proof. Let Oi be the local ring of pi, with maximal ideal mi, and let Di be a
local generator ofDi at pi (O0 = O andD0 = D). Notice thatDijO = D for every
i, because pi is non-dicritical of multiplicity 1, and then Di = ��iDi�1. Since mi is
a singular point, one has that Dimi � mi, hence D(mi+1

i \O) � m
i+1
i \O. Let bO

denote the formal completion of O. The formal curve defined by the sequence of
points pi is given by the surjective map

bO ! lim
 �

�
O=mi+1

i \ O
�
' k(p)[[t]]:

The kernel is an ideal I such that DI � I , because D(mi+1
i \ O) � m

i+1
i \ O, so

the curve is a solution of D.

THEOREM 5. Let p be an absolutely isolated singularity of a differential equation.
Then, after a finite number of quadratic transformations, all the singularities
become irreducible.

Proof. By induction on the critical length relative to the exceptional divisor.
Notice that, by Theorem 4, this number never increases under blowing up. If it is
0, then some of the components of the exceptional divisor must give a nonzero
eigenvalue. Let q be a singular point, with critical length nq and multiplicity mq.
If mq is greater than 1, then, blowing up at q, the critical length decreases (by
Theorem 4) and one ends by induction. So we may suppose the multiplicity to
be 1 and that it remains equal to 1 after blowing up. Moreover, we may suppose
that the points we are blowing up at are rational over q, since, to the contrary, the
critical length also decreases (Theorem 4). Now, the singularities in the corners
are irreducible (Lemma 1), and so are the dicritical points (of multiplicity 1); we
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may suppose then that we are always blowing up at non-dicritical points, with
multiplicity 1, out of the corners and rational over q. By Lemma 2, one has a formal
curve passing through q, which is transversal to the exceptional fiber, and solution
of the differential equation. It is clear then that q is irreducible.

4. Finiteness of dicritical points

In this section the base field is supposed to be of characteristic 0 and algebraically
closed. Our aim is to see that the dicritical points in the blowing up tree of an
absolutely isolated singularity are finite in number. We shall first discuss the case
when the variety has dimension two, since the argument is easily generalized for
dimension n.

THEOREM 6. The number of dicritical points in the blowing up tree of an absolute-
ly isolated singularity is finite (dim X = 2).

Proof. It follows from the next proposition.

PROPOSITION. Let DT be the linear part at p of a differential equation of
multiplicity 1. Suppose that DT = (

� 0
0 �

) with � 6= 0. Then.

(1) If �=� =2 Q+ , then there is no dicritical points in the blowing up tree of p.
(2) If �=� 2 Q+ , then there is, at most, one dicritical point in the blowing up tree

of p.

Proof. (1) It follows from the fact that the condition is stable under blowing
up: an easy computation shows that blowing up at p two singularities appear
and their linear part have the following Jordan form (

���

0
0
�
) and (

�

0
0

���
); and

(�� �)=�; �=(� � �) =2 Q+ if �=� =2 Q+ .
Since the matrix of a dicritical point is (� 0

0 �
); �=� = 1 2 Q+ , one concludes.

(2) Let �=� = n=m; n;m 2 N, relatively prime. Suppose that n 6 m (if
n > m the same argument is valid, interchanging � by �). If n = m, the point
is dicritical and blowing up there are no more singular points. If n < m, then
(� � �)=� = (n=m) � 1 =2 Q+ , so one of the points that appear can not have
dicritical points in its blowing up tree, by (1). Dicritical points can only appear at the
other point. If ��� = � (� = 2�), then the matrix of this point is either (� 0

0 �
) (and

then it is dicritical) or (� 


0 �
), with 
 6= 0, and blowing up there is only one singular

point with matrix (
0 0
0 �

), that has no dicritical points above it, by (1). If �� � 6= �,
then the matrix of the point is (

�

0
0

���
) and �=(� � �) = n=(m � n) 2 Q+ . But

maxfn;mg > maxfn;m� ng, so the process is finite.
Now the theorem follows. In fact, we can suppose, by Theorem 5, that there is a

nonzero eigenvalue, so DT = (
� 0
0 �

) or DT = (
� 1
0 �

). In the first case we conclude by
the proposition above. In the second: blowing up, only one singular point appears
and its matrix is ( 0 0

0 �
), so we conclude again by the proposition.

Now, the proof in dimension n is clarified.

comp3882.tex; 1/08/1997; 10:47; v.7; p.10

https://doi.org/10.1023/A:1000177422159 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000177422159


ISOLATED SINGULARITIES OF A DIFFERENTIAL EQUATION 245

THEOREM 7. The number of dicritical points in the blowing up tree of an absolute-
ly isolated singularity is finite.

Proof. It follows from Theorem 5 and the next proposition.

PROPOSITION. Let DT be the linear part at p of a differential equation with a
nonzero eigenvalue. Then

(1) If DT has two eigenvalues � 6= 0 and �, such that �=� =2 Q+ , then there are
no dicritical points in the blowing up tree of p. If DT does not diagonalize,
then there is not any dicritical point in the blowing up tree.

(2) If

DT =

0BBB@
�1 0

. . .

0 �n

1CCCA and
�i

�j
2 Q

+ for any i; j;

then there is, at most, one dicritical point in the blowing up tree of p.

Proof. (1) The existence of two eigenvalues � 6= 0 and �, such that �=� =2 Q+ ,
is stable by blowing up, as an easy computation shows, so one concludes. If DT

does not diagonalize, then its Jordan matrix can be put in the form0BBB@
. . . 0

� 1

0 �

1CCCA :

If � = 0, since there exists � 6= 0, we conclude by (1). If � 6= 0, one blows up.
Either a matrix of the same type comes out (which is non-dicritical), or the zero
eigenvalue appears, so one concludes as above.

(2) Let x1; : : : ; xn be parameters such that DT is diagonal. One blows up. On
the affine set xi 6= 0 one has: either a singular point whose Jordan matrix has the
form0BBB@

. . . 0

�i 1

0 �i

1CCCA
that has no dicritical points above it, or a singular point with diagonal matrix
and eigenvalues �1 � �i; : : : ; �i�1 � �i; �i; �i+1 � �i; : : : ; �n � �i. But (�j �
�i)=�i 2 Q+ if and only if �i=�j < 1. So, dicritical points (if they exist) can
only appear in the affine set xi 6= 0 such that �i=�j < 1 for any j 6= i. But if
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�j=�i = mj=n, g.c.d.fn;mjg = 1, then (�j � �i=�i = (mj � n)=n and max
fn;mjg > maxfn;mj � ng, so the process is finite.
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