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NOTE ON A SUBALGEBRA OF C(X)

BY
L. D. NEL AND D. RIORDAN

C(X) (resp. C*(X)) will denote as usual the ring of all (resp. all bounded) con-
tinuous functions into the real line R. Define C*(X) to consist of all f € C(X) whose
image M(f) in the residue class ring C(X)/M is real for every maximal ideal M in
C(X). Then C* shares with C* the property of being an intrinsically determined
subalgebra of C. The compactification corresponding to C* (as uniformity deter-
mining subalgebra of C*) is thus also an intrinsically determined one. We show
that this compactification is well known and “natural” in the cases of several
elementary spaces X. Some topological characterizations of C¥*(X) are first ob-
tained. For notation and background information we refer to [1]. All spaces are
assumed completely regular.

The straightforward proof of the following proposition is omitted.

PROPOSITION 1. For a function f € C(X) the following are equivalent.

(1) fe C*X).

(2) Every z-ultrafilter on X has a member on which f is constant.

(3) For every z-ultrafilter W on X the family ¥ of all closed sets in R whose pre-
images under f belong to U, is again a z-ultrafilter.

It is not difficult to verify that C¥(X) is a subalgebra of C*(X) which is also a
sublattice. It need not be uniformly closed but is closed in the m-topology. We now
proceed to obtain another characterization of C¥(X) which is useful in special
cases.

LEMMA. Let D={d,:n e N} be a C-embedded copy of N in X. There exists a
neighbourhood W, of d,, for each n such that for every zero-set Z, < W, and for
every M < N,U ucnz Z,, is a zero-set. (Hence in a Gs-space every C-embedded copy
of N is a zero-set).

Proof. There exists u € C(X) such that u(d,)=n. Put W,={x:|u(x)—n|<}}
and let Z, be any zero-set contained in W,. Put Y,={x:u(x)—n|>%}. Note
that Z,, is disjoint from Y, and W,, = Y, for all n € N and m>n.

We can choose a nonnegative , € C(X) which has the value 0 precisely on Z,,
and the value 1 precisely on Y,. Since each point x has a neighbourhood (e.g.
{y:lu(y)—u(x)|<1}) on which all but finitely many 4, have the same value, it
follows that the function inf,,, 4, belongs to C(X) and we have Z(inf,,. 3 /,,)=
Umenr Z., as required.

PRrOPOSITION 2. fe C¥(X) if and only if f is bounded and f D] is closed for every
C-embedded copy of N.
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Proof. Suppose D is a C-embedded copy of N such that cl f[D]—f[D] contains
a point r. Choose y,€ D(meN) such that lim,f(y,)=r and put V,=
{x:1f(x)—f (y)|<L1/n}. Choose W, to be a nbhd of y, as described in the above
lemma. Then Z,=V, N W, is a zero-set nbhd of y, such that 4,=U,>nZ, is a
zero-set for each m. The family {4,,:m € N} has the finite intersection property, so
there exists a z-ultrafilter Z[M] to which each A4,, belongs. For any ¢>0 we can
take m so large that 0<|f(x)—r|<|f(x)—f ()l +|f (¥m)—rI<e holds for all
x € A,,. It follows that M(f—r)=M(f)—M(r) is infinitely small [I, Ch. 5] so
M(f) cannot be real.

To prove the converse, take fe€ C*(X) and suppose that M?(f) fails to be real
for some maximal ideal M? corresponding to p € fX. Since M? is hyper-real, there
exists g € C(X) with |M?(g)| infinitely large. At the same time |M?(f)— f*(p)| is
infinitely small but positive. Hence for each n € N there is a neighbourhood U,
of p such that

0 < 1/~ ()] < ;11 <n < g0l

for all xe U, N X. It follows that there exists a sequence (x,) in X such that
g(x,,) is strictly increasing to oo, f(x,)—f B p) while f(x,)#f 4 (p) for all n. We con-
clude that D={x,:n € N} is a C-embedded copy of N [I, 1.20] and that f[D] is
not closed. This completes the proof.

We now turn to some special cases. The C-embedded copies of NV in any space X
are formed by sequences (x,) satisfying the condition A(x,)— oo for some 4 € C(X).
This condition reduces in the case X=R to the requirement that (x,) tends to £ co;
in R? it is equivalent to saying that the distance from x, to 0 tends to co; in Q it
becomes (x,) tends to oo or to an irrational limit; in N it is automatically
satisfied. Using Proposition 2 we conclude easily that C*(R) consists of all f which
have a constant value on {x:x<a} and on {x:x>b} for some a, b € R. It is not
difficult to verify that the compactification determined by C¥*(R) is the extended
real line. C¥(R?) consists of all f which are constant on the complement of some
compact set; the one point compactification is determined in this case. Both C¥(Q)
and C¥(N) consist of functions which attain only finitely many values. Any two
disjoint closed sets in Q (resp. N) have disjoint open-closed neighbourhoods and
so they can be separated by a function in C*. The corresponding compactification
can be verified to be fQ (resp. SN).

We note in conclusion that the compactification [0, 1] of the space of rational
numbers in this interval appears to be a difficult one to describe intrinsically.
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