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Abstract

In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let
β > 1 be a real number and define the β-transformation on [0, 1] by Tβ : x→ βx mod 1. Let Ψi (i = 1, 2)
be two positive functions on N such that Ψi → 0 when n→∞. We determine the Lebesgue measure and
Hausdorff dimension for the lim sup set

W(Tβ,Ψ1,Ψ2) = {(x, y) ∈ [0, 1]2 : |T n
β x − x0| < Ψ1(n), |T n

βy − y0| < Ψ2(n) for infinitely many n ∈ N}

for any fixed x0, y0 ∈ [0, 1].
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Hausdorff dimension.

1. Introduction

This paper deals with the metrical properties of the shrinking target problem in higher
dimensional β-dynamical systems. To set the scene, we first briefly review the one-
dimensional theory.

Let β > 1 be a real number and define the transformation Tβ : [0, 1)→ [0, 1) by
Tβ(x) = βx mod 1 for any x ∈ [0, 1). This transformation generates the beta-dynamical
system ([0, 1], Tβ). It is well known that there exists a unique Tβ-invariant ergodic
probability measure µ which is equivalent to the Lebesgue measure L on [0, 1] (see
Proposition 2.4 below). The measure µ is often referred to as the Parry measure, after
Parry [8].

In 1967, Philipp [9] proved that for any β > 1, the dynamical Borel–Cantelli lemma
holds because the transformation Tβ is strongly mixing with respect to the Parry
measure µ. Let Ψ : N→ R+ be a positive function such that Ψ(n)→ 0 as n→ ∞.
Consider a dynamically defined lim sup set

W(Tβ,Ψ) = {x ∈ [0, 1] : |T n
β x − x0| < Ψ(n) for infinitely many n ∈ N}.
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Then

L(W(Tβ,Ψ)) =


0 if

∞∑
n=1

Ψ(n) <∞,

1 if
∞∑

n=1

Ψ(n) =∞

for any fixed x0 ∈ [0, 1].
Hausdorff dimension, denoted by dimH, is an important tool in distinguishing

between sets of zero Lebesgue measure. If the approximating function Ψ decreases
sufficiently quickly, then the Lebesgue measure is null and gives us no further
information about the size of this set. Shen and Wang in [11] determined the Hausdorff
dimension of the set W(Tβ,Ψ):

dimH W(Tβ,Ψ) =
1

1 + α
where α = lim inf

n→∞
−

logβ Ψ(n)

n
.

The set W(Tβ,Ψ) can be generalised further by letting the fixed parameter x0 vary
in the interval [0, 1], that is,

Ŵ(Tβ,Ψ) := {(x, y) ∈ [0, 1]2 : |T n
β x − y| < Ψ(n) for infinitely many n}.

This set can be viewed as the doubly metric β-dynamical analogue of the classical
Diophantine set given by Dodson [4]. By using Fubini’s theorem and the slicing
property of Hausdorff dimension, Ge and Lü [7] showed that

L(Ŵ(Tβ,Ψ)) =


0 if

∞∑
n=1

Ψ(n) <∞,

1 if
∞∑

n=1

Ψ(n) =∞

and that

dimH Ŵ(Tβ,Ψ) = 1 +
1

1 + α
where α = lim inf

n→∞
−

logβ Ψ(n)

n
.

A complete metrical theory for this set was obtained very recently in [3], where a
Jarnı́k-type dichotomy law for the Hausdorff measure was proven.

It is natural to enquire about the generalisation of the shrinking target problem
in beta-dynamical systems to simultaneous settings typical in classical Diophantine
approximation. That is, does there exist a metrical theory for the set

W(Tβ,Ψ1,Ψ2) = {(x, y) ∈ [0, 1]2 : |T n
β x − x0| < Ψ1(n),

|T n
βy − y0| < Ψ2(n) for infinitely many n ∈ N},

where x0, y0 ∈ [0, 1] are two given fixed points? To our surprise, nothing is known
as far as the metrical theory is concerned. In this paper, we determine the Lebesgue
measure and Hausdorff dimension of this set.
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Theorem 1.1. Let Ψi (i = 1, 2) be two positive functions defined on N. Then, for any
β > 1,

L2(W(Tβ,Ψ1,Ψ2)) =


0 if

∞∑
n=1

Ψ1(n)Ψ2(n) <∞,

1 if
∞∑

n=1

Ψ1(n)Ψ2(n) =∞.

Theorem 1.2. Assume that Ψ1(n) = β−nτ1 and Ψ2(n) = β−nτ2 with 0 < τ1 ≤ τ2. Then

dimH W(Tβ,Ψ1,Ψ2) = min
{ 2

1 + τ1
,

2 + τ2 − τ1

1 + τ1

}
.

2. Preliminaries

We begin with a brief account of some basic properties of β-expansions of real
numbers and fix some notation. For the definition of Hausdorff dimension, we refer
the reader to the excellent book [5].

For a real number x > 0, we write bxc for the integer part of x. Using the β-
transformation Tβ, each x ∈ [0, 1] can be uniquely expressed as a finite or an infinite
series, known as the β-expansion of x (see [8]). That is, for each x ∈ [0, 1] and n ∈ N,

x =
ε1(x, β)
β

+
ε2(x, β)
β2 + · · · +

εn(x, β)
βn +

T n
β (x)

βn , (2.1)

where εi(x, β) = b βT i−1
β xc for each i ≥ 1. Call the series (2.1) the β-expansion of x and

the elements of the sequence {εn(x, β)}n≥1 the digits of x. We also write (2.1) as

x = (ε1(x, β), . . . , εn(x, β), . . .).

Definition 2.1. A finite or an infinite sequence (ε1, . . . , εn, . . .) is called β-admissible if
there exists an x ∈ [0, 1] such that the β-expansion of x begins with ε1, . . . , εn, . . . .

Denote by Σn
β the set of all β-admissible sequences of length n and by Σβ the set of

all infinite admissible sequences, that is,

Σβ = {ε ∈ AN : ε is the β-expansion of some x ∈ [0, 1]},

where
A = {1, 2, . . . , bβc}.

Definition 2.2. For any (ε1, . . . , εn) ∈ Σn
β, call the set

In(ε1, . . . , εn) := {x ∈ [0, 1] : ε j(x, β) = ε j, 1 ≤ j ≤ n}

an nth-order cylinder (with respect to the base β).
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Note that the unit interval can naturally be partitioned into a disjoint union of
cylinders: for any n ≥ 1,

[0, 1] =
⋃

(ε1,...,εn)∈Σn
β

In(ε1, . . . , εn). (2.2)

Furthermore, the nth-order cylinder In(ε1, . . . , εn) is an interval with the left end point
ε1

β
+ · · · +

εn

βn

and its length satisfies
|In(ε1, . . . , εn)| ≤ β−n.

If a cylinder In(ε1, . . . , εn) of order n is of length β−n, it is called a full cylinder.
In the following proposition, we collect some basic properties of β-expansions.

Proposition 2.3 (Parry [8], Fan and Wang [6], Bugeaud and Wang [1]).

(1) For any β > 1, we have βn ≤ #Σn
β ≤ β

n+1/( β − 1), where # denotes the cardinality
of a finite set.

(2) An nth-order cylinder In(ε1, . . . , εn) is full if and only if, for any admissible
sequence (ε′1, ε

′
2, . . . , ε

′
m) ∈ Σm

β , the concatenation (ε1, . . . , εn, ε
′
1, . . . , ε

′
m) ∈ Σn+m

β .
(3) For n > 1, among n + 1 consecutive cylinders of order n, there exists at least one

full cylinder.

The next proposition relates the Lebesgue measure with the Parry measure.

Proposition 2.4 (Rényi [10], Parry [8]). The Parry measure µ is equivalent to the
Lebesgue measure L in the sense that if we write dµ/dL = h, then

1 − β−1 ≤ h(x) =

(∫ 1

0

∑
n:T n1<x

1
βn dx

)−1 ∑
n:T n1<x

1
βn ≤ (1 − β−1)−1.

The following strong mixing property due to Philipp is essential in studying the
metrical properties of W(Tβ,Ψ1,Ψ2).

Lemma 2.5 (Philipp [9]). There exists ρ with 0 < ρ < 1 such that for any measurable
set E and a subinterval F of [0, 1],

µ(T−n
β E ∩ F) = µ(E)µ(F) + O( ρn)µ(F).

The next lemma is commonly known as the divergent Borel–Cantelli lemma and
often plays an integral part in proving that the measure is positive for a lim sup set in
the divergence case.

Lemma 2.6 (Chung [2]). Let (X,B, ν) be a probability space and {En}
∞
n=1 be a sequence

of measurable sets. Assume that
∑∞

n=1 ν(E) =∞. Then

ν
(

lim sup
n→∞

En

)
≥ lim sup

n→∞

(
∑

1≤i≤n ν(En))2∑
1≤i, j≤n ν(Ei ∩ E j)

.
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The proof of Theorem 1.2 crucially relies on the following result, called the mass
transference principle for lim sup sets generated by rectangles.

Lemma 2.7 (Wang et al. [12]). Let {xn}n≥1 be a sequence of points in the unit cube
[0, 1]d with d ≥ 1 and {rn}n≥1 be a sequence of positive numbers tending to zero. Use
a to denote a d-dimensional vector (a1, . . . , ad). Define

W1 := {x ∈ [0, 1]d : x ∈ B(xn, rn) for infinitely many n ∈ N}

and, for any a = (a1, . . . , ad) with 1 ≤ a1 ≤ · · · ≤ ad, define

Wa := {x ∈ [0, 1]d : x ∈ Ba(xn, rn) for infinitely many n ∈ N},

where we use Ba(x, r) to denote a rectangle with centre x and side lengths (ra1 , . . . , rad ).
If Ld(W1) = 1, then

dimH Wa ≥ min
{d + ja j −

∑ j
i=1 a j

a j
: 1 ≤ j ≤ d

}
.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 naturally splits into two parts: the convergence case and
the divergence case. We deal with them separately below but before that we begin by
writing the set W(Tβ,Ψ1,Ψ2) in a way that reflects its lim sup nature.

For any fixed real numbers x0, y0, denote

Wn(Tβ,Ψ1,Ψ2) = {(x, y) ∈ [0, 1]2 : |T n
β x − x0| < Ψ1(n), |T n

βy − y0| < Ψ2(n)}.

Then

W(Tβ,Ψ1,Ψ2) = lim sup
n→∞

Wn(Tβ,Ψ1,Ψ2) =

∞⋂
N=1

∞⋃
n=N

Wn(Tβ,Ψ1,Ψ2). (3.1)

In view of Proposition 2.4, we know that the Lebesgue measure L and the
Parry measure µ are equivalent. Therefore, we interchange between these terms
appropriately. For convenience, we fix C = 1 − β−1.

3.1. The convergent case. For any N, it follows from (3.1) that

W(Tβ,Ψ1,Ψ2) ⊆
∞⋃

n=N

Wn(Tβ,Ψ1,Ψ2).

By using the convergence part of the Borel–Cantelli lemma, it can readily be seen that
the set W(Tβ,Ψ1,Ψ2) is of Lebesgue measure zero if∑

n≥1

µ × µ(Wn(Tβ,Ψ1,Ψ2)) <∞.
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Denote by B(a, r) a ball of radius r centred at a and by χA the characteristic function
of the set A. Then

µ × µ(Wn(Tβ,Ψ1,Ψ2)) =

∫ 1

0

∫ 1

0
χB(x0,Ψ1(n))(T nx)χB(y0,Ψ2(n))(T ny) dµ(x) dµ(y)

=

∫ 1

0
χB(x0,Ψ1(n))(T nx) dµ(x)

∫ 1

0
χB(y0,Ψ2(n))(T ny) dµ(y).

By the invariance property of µ under T ,

µ × µ(Wn(Tβ,Ψ1,Ψ2)) =

∫ 1

0
χB(x0,Ψ1(n))(x) dµ(x)

∫ 1

0
χB(y0,Ψ2(n))(y) dµ(y)

= µ(B(x0,Ψ1(n)))µ(B(y0,Ψ2(n))).

Combining this estimate with Proposition 2.4,

C−2Ψ1(n)Ψ2(n) ≤ µ × µ(Wn(Tβ,Ψ1,Ψ2)) ≤ 4C2Ψ1(n)Ψ2(n). (3.2)

Thus, under the condition that
∑∞

n=1 Ψ1(n)Ψ2(n) <∞, we conclude that

µ × µ(W(Tβ,Ψ1,Ψ2)) = 0,

which is equivalent to L2(W(Tβ,Ψ1,Ψ2)) = 0.

3.2. The divergent case. It is clear that µ × µ(W(Tβ,Ψ1,Ψ2)) ≤ 1. To prove that
µ × µ(W(Tβ,Ψ1,Ψ2)) ≥ 1, first notice that, in view of (3.2) and the given divergent
sum condition,

∞∑
n=1

µ × µ(Wn(Tβ,Ψ1,Ψ2)) ≥ C−2
∞∑

n=1

Ψ1(n)Ψ2(n) =∞.

Next we show that the measurable sets Wn(Ψ1,Ψ2) are quasi-pairwise independent,
so that Lemma 2.6 gives the desired conclusion. So, we estimate

µ × µ(Wn(Tβ,Ψ1,Ψ2) ∩Wm(Tβ,Ψ1,Ψ2)).

For convenience, write Wn(Tβ,Ψ1,Ψ2) := Wn. Without loss of generality, we assume
that n > m. Then

µ × µ(Wn ∩Wm) =

∫ 1

0

∫ 1

0
χB(x0,Ψ1(n))(T nx)χB(y0,Ψ2(n))(T ny)

× χB(x0,Ψ1(m))(T mx)χB(y0,Ψ2(m))(T my) dµ(x) dµ(y)
= µ(T−n

β B(x0,Ψ1(n)) × T−m
β B(x0,Ψ2(m)))

× µ(T−n
β B(y0,Ψ1(n)) × T−m

β B(y0,Ψ2(m))).

By the invariance of µ under T and Lemma 2.5,

µ × µ(Wn ∩Wm) = [ µ(B(x0,Ψ1(n)))µ(B(x0,Ψ1(m))) + O( ρn−m)µ(B(x0,Ψ1(n)))]
× [ µ(B(y0,Ψ2(n)))µ(B(y0,Ψ2(m))) + O( ρn−m)µ(B(y0,Ψ2(n)))]

= µ × µ(Wn) · µ × µ(Wm) + O( ρn−m)µ × µ(Wn).
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Thus, by Lemma 2.6,

µ × µ(W(Tβ,Ψ1,Ψ2)) = µ × µ
(
lim sup

n→∞
Wn

)
≥ lim sup

N→∞

(
∑N

n=1 µ × µ(Wn))2∑
1≤n,m≤N µ × µ(Wn ∩Wm)

= lim sup
N→∞

(
∑N

n=1 µ × µ(Wn))2

2
∑

1≤m<n≤N(µ × µ(Wn) · µ × µ(Wm) + O( ρn−m)µ(Wn))
≥ 1.

Since µ × µ is the Parry measure, by Proposition 2.4, it is equivalent to the two-
dimensional Lebesgue measure L2. Hence, L2(W(Tβ,Ψ1,Ψ2)) = 1, as required.

4. Proof of Theorem 1.2

4.1. The upper bound. As is common in obtaining upper bounds for the Hausdorff
dimension, we first construct a natural cover for the lim sup set W(Tβ,Ψ1,Ψ2) and
then show that the s-dimensional Hausdorff measure of this set is zero whenever
s > dimH W(Tβ,Ψ1,Ψ2).

Let Ψ1(n) = β−nτ1 and Ψ2(n) = β−nτ2 with τ1 ≤ τ2. From (2.2), for any n ∈ N,

[0, 1] × [0, 1] =
⋃

w,v∈Σn
β

In(w) × In(v).

For any w = (w1, . . . ,wn), v = (v1, . . . , vn) ∈ Σn
β, write

xn(w) =
w1

β
+

w2

β2 + · · · +
wn + x0

βn , yn(v) =
v1

β
+

v2

β2 + · · · +
vn + y0

βn . (4.1)

Then, for any x ∈ In(w),

|x − xn(w)| =
1
βn |T

n
β x − x0|.

So,

W(Tβ,Ψ1,Ψ2) =

∞⋂
N=1

∞⋃
n=N

Wn(Tβ,Ψ1,Ψ2)

=

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β

{(x, y) : x ∈ In(w), y ∈ In(v),

|T n
β x − x0| < Ψ1(n), |T n

βy − y0| < Ψ2(n)}

⊂

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β

B
(
xn(w),

Ψ1(n)
βn

)
× B

(
yn(v),

Ψ2(n)
βn

)

=

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β

B(xn(w), β−n(1+τ1)) × B(yn(v), β−n(1+τ2)).
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4.1.1. Case I. Recall that τ1 ≤ τ2. The rectangle

B(xn(w), β−n(1+τ1)) × B(yn(v), β−n(1+τ2))

can be covered by a ball of radius β−n(1+τ1). Thus, for any s > 0, the s-dimensional
Hausdorff measureH s can be estimated as

H s(W(Tβ,Ψ1,Ψ2)) ≤ lim inf
N→∞

∞∑
n=N

∑
w,v∈Σn

β

( β−n(1+τ1))s

≤

(
β

β − 1

)2
lim inf

N→∞

∞∑
n=N

β2nβ−n(1+τ1)s.

If s > 2/(1 + τ1), it follows thatH s(W(Tβ,Ψ1,Ψ2)) = 0, which shows that

dimH W(Tβ,Ψ1,Ψ2) ≤
2

1 + τ1
.

4.1.2. Case II. We cover the rectangle

B(xn(w), β−n(1+τ1)) × B(yn(v), β−n(1+τ2))

by balls of radius β−n(1+τ2). Then each rectangle can be covered by at most

β−n(1+τ1)

β−n(1+τ2) + 1 ≤ 2βn(τ2−τ1)

balls of radius β−n(1+τ2). Thus, for any s > 0,

H s(W(Tβ,Ψ1,Ψ2)) ≤ 2 lim inf
N→∞

∞∑
n=N

∑
w,v∈Σn

β

βn(τ2−τ1)( β−n(1+τ2))s

≤ 2
(

β

β − 1

)2
lim inf

N→∞

∞∑
n=N

β2nβn(τ2−τ1)β−n(1+τ2)s.

Therefore, for any s > (2 + τ2 − τ1)/(1 + τ2), we have H s(W(Tβ,Ψ1,Ψ2)) = 0, which
shows that

dimH W(Tβ,Ψ1,Ψ2) ≤
2 + τ2 − τ1

1 + τ2
.

4.2. The lower bound. Fix δ > 0. Let n0 be an integer such that, for all n ≥ n0,

(n + 1)β−n ≤ β−n(1−δ) and 1
2 ≥ β

−nδ.

For any w = (w1, . . . ,wn) ∈ Σn
β, define

Jn(Ψ1,w, x0) = {x ∈ In(w) : |T n
β (x) − x0| < Ψ1(n)} = In(w) ∩ B

(
xn(w),

Ψ1(n)
βn

)
,
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where xn(w) is given in (4.1). It is possible that the cylinder In(w) may be very small,
so that Jn(Ψ1,w, x0) is an empty set. So, one should focus on cylinders whose length
is large. In view of Proposition 2.3, we know that the full cylinders are in abundance
and therefore should play a major role in determining the Hausdorff dimension of
W(Ψ1,Ψ2).

Fix w = (w1, . . . ,wn) ∈ Σn
β for which In(w) is full. Then

In(w) =

[w1

β
+ · · · +

wn

βn ,
w1

β
+ · · · +

wn + 1
βn

)
and xn(w) ∈ In(w). It follows that Jn(Ψ1,w, x0) contains an interval of length at least
Ψ1(n)β−n = β−n(1+τ1). We denote this interval by

B(x′n(w), 1
2β
−n(1+τ1)) for some x′n(w) ∈ In(w).

As a result,

W(Tβ,Ψ1,Ψ2) =

∞⋂
N=1

∞⋃
n=N

Wn(Tβ,Ψ1,Ψ2)

=

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β

Jn(Ψ1,w, x0) × Jn(Ψ2, v, y0)

⊃

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β,In,β(w),In,β(v) full

B
(
x′n(w),

1
2
β−n(1+τ1)

)
× B

(
y′n(v),

1
2
β−n(1+τ2)

)

⊃

∞⋂
N=1

∞⋃
n=N

⋃
w,v∈Σn

β,In,β(w),In,β(v) full

B(x′n(w), β−n(1+τ1+δ)) × B(y′n(v), β−n(1+τ2+δ))

:= Wa with a =

(1 + τ1 + δ

1 − δ
,

1 + τ2 + δ

1 − δ

)
.

On the other hand, since the interval [0, 1] can be partitioned disjointly by (2.2),
from Proposition 2.3, for any x ∈ [0, 1], among n + 1 consecutive cylinders of order n,
there is at least one full cylinder of order n around x. So, there exists w ∈ Σn

β for which
In(w) is full and such that

|x − x′| ≤ (n + 1)β−n ≤ β−n(1−δ)

for any x′ ∈ In(w). Thus,

[0, 1] =
⋃

w∈Σn
β,In(w) full

B(x′n(w), β−n(1−δ)).

Clearly, the set

W1 :=
∞⋂

N=1

∞⋃
n=N

⋃
w,v∈Σn

β,In(w),In(v) full

B(x′n(w), β−n(1−δ)) × B(y′n(v), β−n(1−δ))

equals [0, 1]2, so it is of full Lebesgue measure.
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Finally, we use the mass transference principle generated by rectangles
(Lemma 2.7) to conclude that

dimH W(Tβ,Ψ1,Ψ2) ≥ min
{ 2

1 + τ1 + δ
,

2 + τ2 − τ1

1 + τ2 + δ

}
.

By letting δ→ 0, we reach the desired lower bound.
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