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DECOMPOSITIONS OF THE CONGRUENCE LATTICE
OF A SEMIGROUP

by W. D. MUNN

(Received 27th October 1978)

The purpose of this note is to extend the results of Reilly and Scheiblich (6) (see also
Scheiblich (7) and Hall (2)) on the 0-class decomposition of the congruence lattice of a
regular semigroup and, at the same time, to provide an alternative proof of these results.

Except where otherwise stated, the notation and terminology is that of Howie (4).
We begin with some lattice-theoretic definitions. Let (L, ^ , A , v) be a complete

lattice. A nonempty subset S of L is called a complete meet [join] subsemilattice of L if and
only if, for every nonempty family (a,), e / of elements of S,

V a, e S [ v a,e s \ .
ie I L , e / J

Clearly, every complete meet [join] subsemilattice of L must contain a least [greatest]
element under S . A nonempty subset of L is called a complete sublattice of L if and only if
it is both a complete meet subsemilattice and a complete join subsemilattice of L.

An equivalence 4> on L is called a complete meet [join] congruence on L if and only if,
for every nonempty family (a,-, 6,), e / of elements of <f>,

(V. ah V b) e<f> [ ( v a» V b) e J .
Ni e / ie I ' L \ j s ; ie I ' J

Further, </> is called a complete lattice congruence on L if and only if it is both a complete
meet congruence and a complete join congruence. It is readily seen that if <j> is a complete
meet [join] congruence on L then each 0-class is a complete meet [join] subsemilattice of
L.

The set of all congruences on a semigroup S is a complete lattice with respect to
inclusion: it will be denoted by ^(S). The meet of any given nonempty family (p,), 6 7 of
congruences on S is the intersection D p< while the join V p, of the family is the least

i e / i e /

equivalence containing every p, (4, pp. 27-28). We shall denote these by Dp, and v p,
respectively, for typographical simplicity. The identity congruence on S will be denoted by

Let Xdenote any one of the symbols Z£, 01, dX, 2>, $ and let S be an arbitrary semigroup.
Corresponding to each p e 'S(S) we define an equivalence e(X, p) on S, in terms of 3/Cs/p

(Green's equivalence % on Sip), by prescribing that

(a, b) e e(X, p) O (ap, bp) e
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194 W. D. MUNN

and we denote the greatest congruence on S contained in e{% p) by n,{% p) (4, p. 27).
Evidently

(Vpe

Also, it is easily verified that

(Vp, or e <g(S)) pQo- ^ eiX P) £ c(5T, <r)
and hence that

(Vp, a e «(S)) p S cr => M(% p) £ p.{% a).

These properties will be used without further comment below.
We now define an equivalence 0x on <g(S) by the rule that

This is the central concept in the present investigation. We note immediately that since
e{% SxS) = Sx5, the 0%-dass (SxS)0x comprises all congruences on S such that Sip is
5Sf-simple (that is, consists of a single 3if-class). In particular, (Sx S) 0% is the set of all group
congruences on S.

In preparation for Theorem 1, which deals with the four cases 3fT= 5£, 31, Sif and ^ we
have

Lemma 1. Let S be a semigroup and let 3C denote !£, % ffl or £. Then
(i) (Vp, a € <€(S)) P^cr^ e{% p) ^ (p, or) e 0X;
(ii) (Vp e <#(S)) /x(Sf, p) is the greatest element in pdx.

Proof. We establish the result for the case 3C= i£. The argument is easily adapted to
cover each of the remaining cases.

(i) Let p,ae <g(S) and suppose that p s o-c e(&, p). Let (a, b) e e(&, a). Then
(acr, bo) e i£s/p and so there exist x, y e S1 such that (xa, b) e a and (a, yb) e a. Thus
(xa, b) e e(i?, p) and (a, yb) e e(i?, p). This means, in particular, that there exist u, v e
S1 such that (uxa, b) e p and (a, uyb) e p. Hence (ap, fcp) e i£slp and so (a, b) e e(J£, p).

We have thus shown that e(i£, cr)s S(£B, o). But the reverse inclusion holds, since p^a.
Therefore e(£, p) = e{%, a); that is, (p, a) e 6%.

(ii) Let p e <£(S). Then p s M(i?, p)c e(if, p) and so, by (i), (p, ix(<£, p)) e Qx. Since
fji(J£, p) contains every congruence contained in s{5£, p), the result follows.

The proof of (i) above closely resembles that of Theorem 13 of (3). In addition, the
example cited by Hall (3, p. 174) to show that this theorem does not hold for % = 3) also
shows that (i) does not hold for 3C= 3>, as we shall demonstrate. Let S be a simple
idempotent-free semigroup containing at least two minimal right ideals. (The existence of
such semigroups is established in (1, §8.2).) Then it can be shown that S)(= 01) is a
congruence on S and that SIQs is a nontrivial left zero semigroup (1, Exercise 1 for §8.2).
Hence we have that ts £ ® = e(% «*), while (is, @) si 0® (for e{% 3)) = SxS^ 2).

We now come to the first main result.

Theorem 1. Let S be a semigroup and let JC denote !£, $L, $f or $. Then
(i) 0x is a complete join congruence on ^(S);
(ii) each Ojc-dass is a convex complete join subsemilattice of
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Proof. For brevity, we shall denote e(% p) and ii(% p) by e(p) and /u,(p) respec-
tively.

(i) We first show that, for any nonempty family (T,), 6 7 of congruences on S,

(v 7v, v fi(Ti)) e 6X. (a)

Let (Tj)ie / be such a family and let T denote v TV. Then /U-(TJ) e /A(T) for all i e I and so
v /X(T,)S /X(T). Also, T £ V/LI(TJ); hence £ ( T ) £ e( V /A(T;)) and therefore pt(r)s e( v /A(T;)).
Combining these facts, we have that

v /X(T,) S M ( T ) s £( V /X(TJ)).

Thus, by Lemma 1 (i), (v /ACT;), /X(T)) e 6X. But, by Lemma 1 (ii), (T, /X(T)) e dx. Hence
(a) holds.

Now let (p,, a-,), e , be a nonempty family of elements of dx and let p = v p,, a = v er,.
Since e(p;) = e(o-,) for all / G i it follows that /x(p,-) = /x(o-,) for all i e land so v /x(p;) =
v ^(cr,). But, from (a), (p, v /x(p,)) e 0^ and (a, v /x((r,)) e 6X. Hence (p, (r) e 6X. Thus
0X is a complete join congruence on ^(S).

(ii) It follows from (i) that each fl^-class is a complete join subsemilattice of ^(S). To
complete the proof we show that each fe-class is also convex. Let p, £ a- e ^(S) be such
that p^ij^cr and (p, a) e 6X. Then (pv^( rv^) e 6X; that is, (£ a-) e fl^, as required.

Let S and 5if be as in the statement of the theorem. Evidently e(5Sf, ts) = 5if( = Xs);
hence if p € tsfe then p s 9if. Conversely, if p e ^(S) is such that p c 3if then i s c p c
e(3£ is) and so, by Lemma 1 (i), p e i s^ . Thus is6xconsists of all congruences contained
in %. It follows that isBx is a complete sublattice of ^(S), with least element ts and greatest
element fi(3>C, is).

In general, however, a 6^-class need not be a complete sublattice of ^(S). (To see this
we need only consider (S~xS)dx, where S is any semigroup that does not possess a least
group congruence.) It may even happen that the meet of two elements of a ^c l a s s does
not itself lie in that 6^-class — a possibility that is illustrated for JK=$ by the example that
follows Theorem 2 below.

We next supplement the results of Lemma 1 and Theorem 1 for the case %= Wwith an
extension of a theorem due to Lallement (5).

Lemma 2. For all congruences pon a semigroup S

is a convex modular complete sublattice of ^(S) contained in pdx.

Proof. Let p e <g(S) and let 5̂ (p) denote the set of all £ e ^(S) such that pcgc
, p). Evidently Sf{p) is a convex complete sublattice of %(S), with least element p and

greatest element /A(2£ p): also, by Lemma 1 (i), ^(p) Spfe.
It remains to prove that y(p) is modular. We see easily that 5̂ (p) is lattice-isomorphic

to the complete sublattice 5~(p) of ^(S/p) consisting of all congruences contained in 3£Sp.
But 3~(p) is modular (5, Theoreme 3.2); hence so also is 5 (̂p).

In particular, Lemma 2 shows that if a fe-class P has a least element then P is itself a
convex complete modular sublattice of ^(S).

For the rest of the discussion we restrict ourselves to the case of regular semigroups.

https://doi.org/10.1017/S0013091500003060 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003060


196 W. D. MUNN

The following argument, based on a result in (3), shows that the conclusions of Lemma 1
and Theorem 1 hold when S is a regular semigroup and % = 3). It suffices to establish
assertion (i) of Lemma 1 for such S and 3C. Accordingly, suppose that S is a regular
semigroup and that p, a e <£(S) are such that p c aQ e(3), p). Let (a, b) e e(3), a). Then
(aa, bo) e 3ls/a'. Hence, by (3, Theorem 10), there exist c, d e S such that (c, d) e. 3>s,
(a, c) e a and (b, d) e a. Consequently, (cp, dp) e 3)slp, (ap, cp) e 2)s/p and (bp, dp) e
2>s/p, from which it follows that (ap, bp) e 3)Sp. Thus (a, b) e e(S, p). This shows that
e(2>, o) £ e(3), p). But the reverse inclusion holds since p s a and so (p, o) e 0®.

A substantially stronger result than Theorem 1 holds for regular semigroups in the
three cases dC=<£,$l, 26.

Theorem 2. Let S be a regular semigroup and let % denote <£, 01 or %£ Then
(i) 6X is a complete lattice congruence on ^(S);
(ii) each 6X-class is a convex complete sublattice of ^(S) and is modular tf%=%€.

Proof. Again, for brevity, we denote e(3C, p) and /u.(5Sf, p) by s(p) and p,(p) respec-
tively.

We begin by showing that, for an arbitrary nonempty family (TJ )^ / of congruences
on S,

(T,)J e / be such a family and let T denote DT,. First, JU,(T) C /X(T,) for all i e I and so
/A(T) e ri/A(T,). We now establish the reverse inclusion.

Consider the case 3if = ££. Let (a, b) e n/x(r,) and let a', b' denote inverses in S of a, b
respectively. Now (a, b) e rie(T,) and so (aTh bri) e <£slTi for all i e I. Hence (ab'b, a) e
T, and (ba'a, b) e r, for all / e /. It follows that (ab'b, a) e T and (ba'a, b) e T. Con-

sequently, (ar, br) e S£s/T; that is, (a, b) e e(r). We have thus shown that D/ACT;) S £(T).
Hence nyx(Ty)c /X(T). A similar argument shows that this result also holds for the cases
2f= m and 3C= 5K Thus (p) holds.

From Theorem 1, 8X is a complete join congruence on ^(S) and each fe-class is a
convex complete join subsemilattice of "^(5). Now let (p,, <r,-),- e / be a nonempty family of
elements of 0x. For all i e /, g(p,) = e(o-,) and so p-(p,) = /i(a-i). Hence r)p,(pi) = n/u.(a,).
Thus, from (/3), /i(p) =/i(cr), where p = C\pi and cr = n<r,. But (p, /x(p)) G fe and
(<r, /x(o-)) e 03K, by Lemma l(ii). Hence (p, <r) e 0 .̂ This shows that 6X is also a complete
meet congruence on ^(S). It follows that ## is a complete lattice congruence on ^(S) and
that each 0^-class is a convex complete sublattice of ^(S). Moreover, from Lemma 2, if
9C=df£ then each 6^-class is modular. This completes the proof.

The following example, again taken from (3), shows that we cannot extend the
hypotheses of Theorem 2 to include the cases %= 3) or °K = $. Let B denote the bicyclic
semigroup: specifically, take B = NxN, where TV is the set of all non-negative integers and
multiplication is given by

(m, n)(p, q) = (m-n + t,q-p+t), t = max(n,p).

Now let S denote the subset

n),(p,q)):m + p=n + q}

https://doi.org/10.1017/S0013091500003060 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003060


THE CONGRUENCE LATTICE OF A SEMIGROUP 197

of the direct product BxB (an inverse semigroup). Then S is a (full) inverse subsemigroup
of Bxfi, gi = / o n Sand S has infinitely many ©-classes (3, §6). (In fact, S=&#\, where
3r$i is the free inverse semigroup of rank 1.) Next, let i/fj and i/>2 denote the homomorph-
isms of S onto B defined by the rules

((m, n), (p, q))^ = (m, n), ((m, n), (p, q))^2 = (p, q)

and let p, = i/»,°i/>7x('= 1, 2). Clearly S/pi = Slpz = B and piflp2 — is- Hence, since B is
bisimple [simple] while S is not, it follows that (SxS)0a, [ = (SxS)0#] is not closed under
intersection.

To conclude, we restrict our attention to the case 5Sf = X. Let S be a regular semigroup
and let E denote its set of idempotents. As in (6), we define a relation 0 on <€(S) as follows:

(p,or)ed » pn(£x£) = an(Ex E).

Then we have

Lemma 3. Let S be a regular semigroup. Then 0&= 6 on ^(S).

Proof. Let E denote the set of all idempotents of 5. For all T 6 ^(S), denote
TH(EXE) by T |E and e(5if, T) by S{T).

First, suppose that (p, a) e 0^. Let (e, f) e p \E. Then (e, /) e e(p) and so (e, /) e e(a).
Thus (ea, fa) e 5ifs/<T. Hence, since eo- and fa are idempotents in S/cr, ea = fa and so
(e, f) e a \E. Thus p |E £ a |E. Similarly, <r |E e p \E. Hence p\E = a |E; that is, (p, a) e 6.

Conversely, suppose that (p, a) e 6. Let (a, b) e e(p) and let a', b' denote inverses in S
of a, b respectively. Since (ap, bp) e 3€slp it follows, in particular, that (ab'b, a) e p.
Hence,

(1) {a'ab'b, a'a) e p.

Now, by Lallement's lemma (5; 4, Lemma II 4.6) there exist e e E and x e S such that

(2) (a'ab'b, e) e p, (3) e = xa'ab'b.

By (1) and (2), (e, a'a) e p |E and so, by hypothesis, (e, a'a) e cr |E. Hence (ae, a) e a and
therefore, by (3), (axa'ab'b, a) e a. Thus Lao. ^ Lbcr in SI a. Interchanging a and b, we see
that Lbo- g La(r. It follows that (aa, bo) e £S/<T. A dual argument shows that (aa, ba) 6
9isl<r. Hence (aa, bo) e tXst<J; that is, (a, b) e e{a). We have thus proved that e(p)£
E(CT-). Similarly, e(cr) c e(p). Hence e(p) = e(a) and so (p, a) e 6X.

Combining Lemma 3 with Theorem 2 for the case % = %€, we obtain the following
well-known theorem on 0-classes established by Reilly and Scheiblich (6), Scheiblich (7)
and Hall (2).

Theorem 3. Let S'be a regular semigroup. Then
(i) 0 is a complete lattice congruence on ^(S);

(ii) each 0-class is a convex modular complete sublattice o

Note added in proof. Suppose that S and jfC are as in Theorem 1. Then, for all
p e ^(S), /i(5if, p) is the greatest element in p6br-Thus the mapping pi-^u,(3f,p) is a closure
operation on ^(S) and so the set of greatest elements of the ^-classes is a complete meet
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subsemilattice of <£(S). The same conclusions hold if S is a regular semigroup and 3if = 2).
For S and 3STas in Theorem 2, 0x is a complete lattice congruence on <#(S) and it follows

that the set of least elements of the fe-classes is a complete join subsemilattice of ^(S). I
am grateful to Dr. T. E. Hall for pointing out the corresponding result for 0-classes.
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