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Higher Dimensional Asymptotic Cycles

Sol Schwartzman

Abstract. Given a p-dimensional oriented foliation of an n-dimensional compact manifold Mn and a

transversal invariant measure τ , Sullivan has defined an element of Hp(Mn, R). This generalized the

notion of a µ-asymptotic cycle, which was originally defined for actions of the real line on compact

spaces preserving an invariant measure µ. In this one-dimensional case there was a natural 1–1 corre-

spondence between transversal invariant measures τ and invariant measures µ when one had a smooth

flow without stationary points.

For what we call an oriented action of a connected Lie group on a compact manifold we again

get in this paper such a correspondence, provided we have what we call a positive quantifier. (In the

one-dimensional case such a quantifier is provided by the vector field defining the flow.) Sufficient

conditions for the existence of such a quantifier are given, together with some applications.

1 Introduction

Let Mn be a smooth compact oriented manifold and suppose we are given a smooth

action of the additive group of the real line on Mn. We will denote by v the velocity

field on Mn corresponding to this flow and assume that we are given a finite measure

µ on the Borel subsets of Mn that is invariant with respect to the flow. If ω is any

smooth one-form on Mn and we let λv(ω) be defined to be
∫

Mn ωcv dµ (where ωcv is

the interior product of ω with v), then λv is a one-dimensional current in the sense

of De Rham. If ω = d f then (ωcv)(x) = (
d f
dt

)(x) = lim∆t→0
f (x∆t)− f (x)

∆t
. Since µ is

assumed to be invariant,
∫

Mn

f (x∆t)− f (x)
∆t

dµ = 0, so
∫

d f cv dµ = 0.

This just says that λv is closed; that is to say that if ω is closed
∫

Mn ωcv dµ just

depends on the class in the De Rham group H1(Mn, R) to which ω belongs. Thus

we get from v and µ an element of Hom
(

H1(Mn, R), R
)

which corresponds to the

element of H1(Mn, R) that was called the asymptotic cycle Aµ in [5]. Given v and µ,

to evaluate Aµ the most direct method would be to choose a basis for H1(Mn, R), let

ω1, . . . , ωk be one-forms corresponding to this basis, and evaluate
∫

Mn ωicv dµ. If µ
comes from a positive n-form α then it is known that αcv is a closed (n − 1)-form

and Aµ is the one-dimensional homology class arising from the (n − 1)-dimensional

cohomology class of αcv by Poincaré duality. If there is no point on Mn at which

v vanishes, the orbits of our action of R1 on Mn yield a one-dimensional oriented

foliation of Mn. Using the notion of a transversal invariant measure as defined in [6],

a generalization of the µ asymptotic cycle was given that applies to arbitrary smooth

oriented foliations of a compact manifold [6].

We will sketch the definition of a transversal invariant measure. Suppose we are

given a smooth p-dimensional oriented foliation of Mn and that on each closed

(n − p)-dimensional disc D in Mn that is transverse to the foliation we are given
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Higher Dimensional Asymptotic Cycles 637

a finite measure τD on the Borel subsets of the interior of D. If D1 and D2 are two

such discs with x1 ∈ interior D1 and x2 ∈ interior D2 linked by a path A lying in a

single leaf of the foliation, then A determines the germ of a homeomorphism from

a neighborhood of x1 in D1 to a neighborhood of x2 in D2. If this always makes the

germ of τD1
at x1 correspond to the germ of τD2

at x2 we say that our system τ of

measures is a transversal invariant measure. If we are given any collection {Dα} of

closed transversal discs such that each leaf intersects the interior of at least one of the

Dα and we are given a system of finite measures {τα} on the interiors of the Dα that

satisfy the above compatibility condition, this is enough to determine a transversal

invariant measure.

If D1, . . . , Dk and τ1, . . . , τk determine a transversal invariant measure and if

F1, . . . , Fk are flow boxes of the foliation centered on D1, . . . , Dk whose interiors

cover all of Mn, and if in addition ω is any smooth p-form on Mn, we can find forms

ω1, . . . , ωk such that the support of ωi is contained in the interior of the image of Fi

and ω = ω1 + · · · + ωk. (By a flow box we mean a map F of Bn−p × Bp, the cartesian

product of the closed unit (n − p) ball in Rn−p centered at the origin with the closed

unit p-ball in Rp, homeomorphically onto a subset of Mn such that for any a ∈ Bn−p,

F(a × Bp) is contained in a single leaf of our foliation. We say that F is centered on

the closed transversal disc F
(

Bn−p × (0, . . . , 0)
)

.

If q = Fi

(

a, (0, . . . , 0)
)

let Lq be Fi(a × Bp). Denote by fi(q) the number
∫

Lq
ωi .

Then
∑k

i=1

∫

Di
fi(q) dτi(q) turns out to be unchanged if we substitute for D1, . . . , Dk,

τ1, . . . , τk and ω1, . . . , ωk any other collection D ′

1, . . . , D ′

k with measures τ ′

1 , . . . , τ ′

k

determining the same transversal invariant measure τ and forms ω ′

1, . . . , ω
′

l with the

same
∑

ω ′

i . Thus if τ is a transversal invariant measure, τ determines a current

(which we will denote by λτ such that λτ (ω) =
∑K

i=1

∫

Di
fi(q) dτi(q). This current

can be shown to be closed and thus yields an element Aτ of Hp(Mn, R). This element

is called the Ruelle-Sullivan class of τ . Let us now go back to the situation where we

had a one-dimensional oriented foliation associated with a smooth flow. As before

let v be the velocity field associated with the flow. On any orbit O of the flow the

one-form dual to v determines a measure µO on O.

Suppose that F is any flow box, that F is centered on the (n − 1) disc D, and that

µ is any finite measure defined on the Borel subsets of Mn. For any x ∈ D let O(x)

be the orbit through x and let a ∈ Bn−1 be such that x = F(a, 0). Then there is one

and only one measure τD on the Borel subsets of the interior of D such that if f is any

continuous function whose support is contained in the interior of the image of F,
∫

Mn

f (x) dµ(x) =

∫

D

(
∫

F(a×B1)

f (y) dµO(p)(y)

)

dτD(a).

Since F(a, B1) is contained in O(p), the integral
∫

F(a×B1)
f (y) dµO(p)(y) has an obvi-

ous meaning. If µ is an invariant measure then τD depends only on D and not on

the particular flow box F we used. Moreover in this case we get a transversal invari-

ant measure τ , and given a transversal invariant measure τ , we can go backwards

and get a finite invariant measure µ defined on the Borel subsets of Mn. If µ is any

finite invariant measure and τ is the-corresponding transversal invariant measure,

then Aµ = Aτ .
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The Ruelle-Sullivan class plays an essential role in the index theorem Connes has

given for families of elliptic operators acting along the leaves of a p-dimensional ori-

ented foliation of a smooth manifold Mn [3]. However for p > 1 it is not easy to

describe a specific transversal invariant measure for a concretely given p-dimensional

foliation. In the one-dimensional case, where the foliation can be specified by giving

a smooth vector field v (which determines a flow) it is much easier to give specific ex-

amples, because of the connection between transversal invariant measures and mea-

sures invariant with respect to the flow, and because in many cases one can specify an

invariant measure by giving an n-form on Mn.

If we are given a smooth action of a connected Lie group L on a compact oriented

manifold Mn we will say that the action is oriented provided all the orbits are of the

same dimension and we are given a continuously varying orientation of the tangent

spaces to the orbits. Obviously an oriented action determines an oriented foliation.

In this paper we will see how, under favorable conditions, one can get a 1–1 cor-

respondence between transversal invariant measures τ and finite measures µ defined

on the Borel subsets of Mn that are invariant under the action of L such that Aτ = Aµ,

where Aµ is given a suitable definition.

In what follows we will assume that Mn is a smooth compact oriented manifold

and that we are given a smooth oriented action of a connected Lie group L on Mn

whose orbits have dimension p. (The action will be on the right.)

Definition A quantifier is a continuous field of p-vectors on Mn, everywhere tangent

to the orbits and invariant under the action of L. A quantifier is said to be positive if

it is nowhere zero and at each point of Mn determines an orientation of the tangent

space to the orbit through that point that agrees with the orientation associated with

our oriented action.

Definition A preferred action is an oriented action of a connected Lie group L such

that for any x ∈ Mn the isotropy group Dx of x (the set of elements of L leaving

x fixed) is a normal subgroup of L and L/Dx is unimodular. Thus a free action of

a unimodular group is preferred as is any oriented action of a commutative group,

assuming these groups are connected.

2 Statement of Results

We will prove:

Theorem 1 Every preferred action possesses a positive quantifier.

Given a positive quantifier v, every quantifier is of the form f v, where f is a con-

tinuous invariant realvalued function. Thus if our action possesses no non-constant

continuous invariant functions and a positive quantifier exists, the vector space of

quantifiers is one-dimensional.

Suppose we are given a positive quantifier v.

Theorem 2 We can, given v, define a canonical 1–1 correspondence between finite in-

variant measures µ defined on the Borel subsets of Mn and transversal invariant mea-

sures τ .

https://doi.org/10.4153/CJM-2003-026-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-026-0


Higher Dimensional Asymptotic Cycles 639

For any invariant measure µ define a linear functional λv
µ on the space of C∞ p-

forms ω by λv
µ(ω) =

∫

Mn ωcv dµ. Then we will show that λv
µ is a closed current in the

sense of De Rham and therefore defines an element Av
µ in Hp(Mn, R) which we will

call the asymptotic cycle associated with the pair (µ, v). If τ is the transversal invariant

measure associated with µ the Ruelle-Sullivan class Aτ = Av
µ.

For smooth actions of the additive group of the real line without stationary points

we recover the situation described in the opening paragraphs of this introduction by

taking v to be the velocity field of the flow.

We will also prove

Theorem 3 If v is a positive quantifier and the invariant measure µ arises from a pos-

itive n-form ω, then ωcv is closed and Av
µ can be gotten by Poincaré duality from the

element of Hn−p(Mn, R) determined by ωcv.

Next we will assume we are given a preferred action that preserves some smooth

Riemannian metric. Suppose that v1 and v2 are positive quantifiers and that µ1 and

µ2 are invariant measures for this action. Then we will prove:

Theorem 4 There exists a positive constant λ such that Av2
µ2

= λAv1
µ1

.

Corollary If O1 and O2 are compact orbits and a1 and a2 are the images in Hp(Mn, R)

of their fundamental homology classes, then a1 is a scalar times a2.

Now suppose that G is a connected Lie group and that K is a closed subgroup of

G such that the space G/K of right cosets is compact.

Definition A p-dimensional jacket for K is a closed normal subgroup H of G con-

taining K such that the natural map of H p(G/H, R) into H p(G/K, R) is surjective.

Let L be a subgroup of G corresponding to some subalgebra ` of the Lie algebra

g of G, and allow L to act on the right on G/K in the usual way. Suppose that there

are no non-constant continuous invariant functions for this action of L on G/K and

suppose further that this is an oriented action with p-dimensional orbits and that v

is a positive quantifier for this action.

Theorem 5 If µ1 and µ2 are any two invariant probability measures for the action of L

on G/K, Av
µ1

= Av
µ2

, provided K possesses a p-dimensional jacket.

Moreover, as we will see, the asymptotic cycle can be found in this case without

performing any integrations.

3 The Main Theorems

We are now ready to prove:

Theorem 1 A preferred action possesses a positive quantifier.

Proof We will say that a quantifier v on Mn is semipositive provided that at each x ∈
Mn such that v(x) 6= 0 the orientation of the tangent space at x given by v(x) agrees

with that associated with our oriented action. Since Mn is compact, to prove that our
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action possesses a positive quantifier it is enough to show that for each x ∈ Mn there

is a semipositive quantifier v such that v(x) 6= 0.

Suppose that for a given x0 ∈ Mn we have any quantifier v0 such that v0(x0) 6= 0.

Define ε(x) to equal one if v0(x) 6= 0 and the orientation of the tangent space to

the orbit at x induced by v0(x) agrees with that associated with our oriented action.

Otherwise if v0(x) 6= 0 define ε(x) to equal minus one, and if v0(x) = 0 define ε(x)

to equal zero. Let v(x) = ε(x)v0(x). Clearly v(x) is continuous wherever ε(x) 6= 0.

Put a Riemannian metric on Mn and introduce the associated norm on the space

of p-vectors at each point. Then |v(x)| = |v0(x)| for all x. Since limx→a |v(x)| =

limx→a |v0(x)| = |v0(a)|, if ε(a) = 0, limx→a|v(x)| = 0. Therefore if ε(a) = 0,

limx→a v(x) = 0 so limx→a v(x) = v(a). Thus v(x) is continuous everywhere and is

a semipositive quantifier. Hence to prove the existence of a positive quantifier, it is

enough to show that for any x ∈ Mn there is a quantifier v such that v(x) 6= 0.

Next let ω0 be any element in the space of p-vectors over the tangent space at the

identity element e in our Lie group L. For any x ∈ Mn let fx be the map of L into

Mn that sends ` ∈ L into x`. Define v(x) to be the image of ω0 under the map of

p-vectors induced by fx. Then for any x ∈ Mn, we can choose ω0 so that v(x) is a

non-zero p-vector at x tangent to the orbit through x. To prove that any preferred

action possesses a positive quantifier it is enough to prove the following:

Lemma 1 If we are given a preferred action of L on Mn and all the orbits have dimension

p, for any ω0 the corresponding v(x) is invariant under the action of L.

Proof We will first establish this in the case in which Mn consists of a single orbit. We

therefore assume that we have a connected Lie group G with identity element e and a

closed normal subgroup K such that G/K is unimodular. G will act on the right on

the space of right cosets mod K.

We will need some notations. For any vector space V , ∧p(V ) will denote the vector

space of p-vectors over V . For any linear map T of a vector space V1 into a vector

space V2 we will denote by T̄ the induced map of ∧p(V1) into ∧p(V2). For any g0 ∈ G

we will let dg0
be the differential at g0 of the projection of G onto G/K sending g into

Kg. For any Lie group and any element a of that group Ra will be the differential at

the identity element e of the map sending g into ga and La will be the differential at e

of the map sending g into ag.

Given ω0 we now define v to be the p-vector field whose value at any Kg ∈ G/K

is R̄Kg

(

d̄e(ω0)
)

. This p-vector field is obviously invariant under the action of G on

G/K. To complete the proof that in the special case of a homogeneous space our

lemma holds we need to show that for any x ∈ G, v(Kx) is the image of ω0 under the

map of p-vectors induced by the function fKx sending g ∈ G into Kxg. We see that

this means we have to show that v(Kx) = d̄xL̄x(ω0).

However RKx = LKx AdG/K (Kx), so R̄Kx = L̄KxAdG/K (Kx). Since we are assum-

ing G/K is unimodular, AdG/K (Kx) is the identity map for any x so R̄Kx = L̄Kx.

Then v(Kx) = R̄Kxd̄e(ω0) = L̄Kxd̄e(ω0). However LKxde = dxLx, so we get v(Kx) =

d̄xL̄x(ω0) as we wished.

To complete the proof of Lemma 1 and therefore that of Theorem 1, we note that

for any x ∈ Mn there is a homogeneous space L/Dx of the kind we have considered
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and a 1–1 equivariant continuous map of L/Dx onto the orbit containing x. The p-

vector ω0 induces a p-vector field both on L/Dx and on Mn and the fact that the field

on L/Dx is invariant implies that the field on Mn is invariant.

This establishes Lemma 1 and therefore concludes the proof of Theorem 1.

If we are given a preferred action of L on Mn such that no non-constant invariant

continuous function exists, then if we choose ω0 such that the corresponding v is not

identically zero, either v or −v will be a positive quantifier. Thus in this case we can

hope to construct the (essentially unique) positive quantifier.

Before proceeding to the proof of Theorem 2 we need to cite a result that appears

in [6, Theorems I.12 and I.13].

Assume we have given a particular positive quantifier v. If µ is any finite non-

negative measure on the Borel subsets of Mn, the map which assigns to any p-form

ω the value
∫

Mn ωcv dµ is called a structure current in [6].

It is a current in the sense of De Rham and we will denote it by λv
µ. Recall also that

in the introduction we associated with any transversal invariant measure τ a current

that we denoted by λτ .

Using a partition of unity it is easy to see that every continuous real valued func-

tion on Mn is of the form ωcv, so two different measures µ1 and µ2 determine differ-

ent structure currents, and moreover if τ1 6= τ2 then λτ1 6= λτ2.

The result we need from [6] asserts that there is a 1–1 correspondence between

closed structure currents λv
µ and transversal invariant measures τ such that λv

µ = λτ

when λv
µ and τ correspond.

What we are going to do is prove that λv
µ is closed if and only if µ is an invari-

ant measure. This will give us a canonical 1–1 correspondence between transversal

invariant measures and finite invariant measures defined on the Borel subsets of Mn

given a positive quantifier v.

First we will prove:

Theorem 2A λv
µ is closed if and only if µ is an invariant measure.

Proof Assume λv
µ is closed; let τ be the corresponding transversal invariant measure.

If f is a given real valued continuous function on Mn, then as was noted previously

we can find a p-form ω such that f = ωcv. Then

λτ (ω) =

∫

ωcv dµ =

∫

f (x) dµ(x).

For any function or tensor on Mn we will indicate its translate by an element ` ∈ L

by adjoining a subscript `. Thus f`(x) will equal f (x`).

We next note that simce τ is a transversal invariant measure, λτ (ω) = λτ (ω`) =
∫

ω`cv dµ and since v = v`, we see that
∫

f (x) dµ(x) =
∫

f (x`) dµ(x). Thus µ is an

invariant measure.

Next we want to show that if µ is an invariant measure λv
µ is closed. This just says

that for any (p − 1) form α,
∫

Mn dαcv dµ is zero.

If F1, . . . , Fk are flow boxes the union of whose interiors is all of Mn we can get

smooth functions f1, . . . , fk such that the support of each fi is contained in the inte-

rior of Fi and
∑

fi = 1. Then dα =
∑

d( fiα). Therefore it is enough to show that
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∫

Mn dαcv dµ = 0 whenever α is a smooth (p − 1) form whose support is contained

in the interior of a flow box.

Suppose then that we have a smooth closed (n − p) disc D transverse to our foli-

ation and let F : Bn−p × Bp → Mn be a smooth map sending Bn−p × Bp diffeomor-

phically into Mn. Assume further that for any a ∈ Bn−p, F(a × Bp) is contained in a

single orbit, and that F
(

Bn−p × (0, . . . , 0)
)

is D.

For any x = F
(

a, (0, . . . , 0)
)

in D let Lx equal F(a, Bp). We let Π be the map of

F(Bn−p × Bp) onto D sending F(a, b) onto F
(

a, (0, . . . , 0)
)

. Define the measure τD

on D to equal Π
?µ̄, where µ̄ is the restriction of µ to F(Bn−p × Bp). Then we will

need the following standard result:

We can associate with each x in the interior of D a probability measure µ̄x whose

support is contained in Lx so that

(a) For each continuous function f whose support is contained in the interior of

F(Bn−p×Bp) the function k : x →
∫

Lx
f (q) dµ̄x(q) is a Borel measurable function

on the interior of D.

(b)
∫

F(Bn−p
×Bp)

f (q) dµ̄(q) =

∫

k(x) dτD(x).

Moreover if µ̄1
x and µ̄2

x are two such sets of measures there is a set N contained in the

interior of D such that τD(N) = 0 and for any x in the interior of D and outside N ,

µ̄1
x = µ̄2

x.

The space of p-vectors tangent to any Lx is one dimensional so there is an unam-

biguous meaning attached to the p-form v?
x defined on Lx and dual to v along Lx.

We are going to show that for x in D (except for a set of τD-measure zero) µ̄x is a

scalar multiple of the measure on the interior of Lx arising from v?
x .

If α is a smooth (p − 1) form whose support is contained in the interior of our

flow box,
∫

Lx

(dαcv)v?
x =

∫

Lx

dα = 0.

Therefore we will have showed that for x outside a set of τD measure zero,

∫

Lx

(dαcv) dµ̄x = 0

and hence that
∫

F(Bn−p×Bp)

(dαcv) dµ̄ = 0.

By what we have said previously this will suffice to prove that λv
µ is closed.

We will need the following:

Lemma 2 Suppose ` ∈ L and f is a continuous function such that for q outside a

compact subset of the interior of F(Bn−p × Bp) both f (q) and f (q`) vanish. Then there

is a set N
f
` in the interior of D such that
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(a) τD(N
f
` ) = 0.

(b) If x /∈ N
f
` but x is in the interior of D

∫

Lx

f (q) dµ̄x(q) =

∫

Lx

f (q`) dµ̄x(q).

Proof To prove this we note that since µ is an invariant measure,

∫

F(Bn−p
×Bp)

f (q) dµ̄(q) =

∫

F(Bn−p
×Bp)

f (q`) dµ̄(q).

By the same token if g is any continuous function on the interior of D

∫

F(Bn−p×Bp)

g(Πq) f (q) dµ̄(q) =

∫

F(Bn−p×Bp)

g(Πq) f (q`) dµ̄(q).

Therefore
∫

D

(
∫

Lx

(

f (q) − f (q`)
)

dµ̄x(q)

)

g(x) dτD(x) = 0.

Thus if h(x) =
∫

Lx

(

f (q) − f (q`)
)

dµ̄x(q), h(x) = 0 except on a set of τD measure

zero, which proves our lemma.

Now let C(Mn) be the Banach space of continuous real valued functions on Mn

and let S be the set of all pairs ( f , `) in C(Mn) × L such that both f (x) and f (x`)

vanish for x outside a compact subset of the interior of F(Bn−p × Bp). Let {( fi , `i)}

be a countable dense subset of S. If we let ND =
⋃

N
fi

`i
, then τD(ND) = 0.

Lemma 3 For any f and any `, if x is outside ND and both f (q) and f (q`) vanish for

q outside a compact subset of the interior of F(Bn−p × Bp) then

∫

Lx

f (q) dµ̄x(q) =

∫

Lx

f (q`) dµ̄x(q).

Proof Obvious.

We are now ready to prove Theorem 2A. We need only show that for x in the

interior of D but outside ND the measure µ̄x is a scalar multiple of the measure on Lx

determined by v?
x .

If we put the leaf topology on the orbit O(x) containing x, O(x) becomes a homo-

geneous space of the Lie group L. The p-form v?
x on O(x) determined a σ-finite mea-

sure on O(x) invariant under the action of L. However a σ-finite invariant measure

on a homogeneous space of a connected Lie group is unique up to a multiplicative

constant. Therefore we need only show that µ̄x on Lx extends to a σ-finite invariant

measure on O(x).

We first note that for any ` ∈ L the collection of all bounded functions g on

O(x) such that g(y) and g(y`) both vanish outside the interior of Lx and such that
∫

g(y) dµ̄x(y) and
∫

g(y`) dµ̄x(y) are defined and equal is closed under bounded
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pointwise convergence. It follows from Lemma 3 that if S is any Borel subset of the

interior of Lx such that S` is contained in the interior of Lx then µ̄x(S) = µ̄x(S`).

By virtue of the homeomorphism x → x` we can put a measure on (Lx)` that is

the translate by ` of µ̄x. By what we established above, for any Borel subset of the

interior of (Lx)`1 ∩ (Lx)`2, the measures we get are the same.

Now suppose K is any compact subset of O(x). We can choose a finite set `1, . . . , `n

in L such that K is contained in
⋃

(interior Lx)`i . Consider the collection of all sets

K ∩B1 ∩ · · · ∩Bn where each Bi equals either (interior Lx)`i or its complement. If we

exclude the case where each Bi is the complement of (interior Lx)`i , we get 2n −1 sets

that cover K and on each of these sets we have a countably additive measure gotten

by translating µ̄x. Thus we get a countably additive measure on K.

If ` ′1, . . . , `
′

n is another set such that K is contained in
⋃

(interior Lx)` ′i , we need

to show that the measure we get on K from this set is the same as that which we got

from `i , . . . , `n. However if we take the union of these two finite sets and consider the

measure we get on K from this finite set, it is clear that this measure coincides both

with the one we got from `1, . . . , `n and the one we got from ` ′1, . . . , `
′

n.

It is also clear that if S is a Borel subset of K and S` is also a subset of K their

measures are equal.

Finally, choose an increasing sequence K1, . . . , Kn, . . . of compact sets whose in-

teriors cover O(x). This enables us to define an extension of µ̄x from the collection of

Borel subsets of Lx to the collection of all Borel sets with compact closure. This can

be seen to extend to a countably additive measure on O(x) which is invariant under

the action of L and is σ-finite. Thus the proof of Theorem 2A is completed.

By what was said previously this establishes:

Theorem 2 There is a 1–1 correspondence between transversal invariant measures τ
and finite invariant measuers µ on the Borel subsets of Mn such that λτ = λv

µ if τ and

µ correspond.

Corollary An oriented action of a connected commutative Lie group always possesses a

transversal invariant measure.

Proof It follows from Theorem 1 that such a action always has a positive quantifier.

It is well known that any commutative group of homeomorphisms of a compact

metric space possesses an invariant Borel measure. Thus our corollary follows from

Theorem 2.

4 The Applications

We are now ready to prove:

Theorem 3 If v is a positive quantifier and the invariant measure µ arises from a pos-

itive n-form ω then ωcv is closed and Av
µ can be gotten by Poincaré duality from the

element of Hn−p(Mn, R) determined by ωcv.
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Proof Suppose we are given a smooth flow box centered at the transversal D. If α
is any p-form whose support is contained in the interior of the image of F and τ ′

D

is the transversal invariant measure associated with (v, µ) then
∫

F(Bn−p
×Bp (αcv)ω =

∫

D
(
∫

Lx
α) dτ ′

D(x). However, since ωcv is invariant under the action of our Lie group,

by introducing coordinates we see that
∫

D
(
∫

Lx
α) dτ ′

D(x) =
∫

(ωcv) ∧ α.

Any p-form α is a finite sum of p-forms whose supports are contained in the

interiors of the images of smooth flow boxes and in our discussion of the Ruelle-

Sullivan class we saw that we could use this to define λ(α) for any p-form α. We

said that if we started with any transverse invariant measure τ , the λτ (α) we got was

zero for any bounding p-form α. Thus
∫

Mn (ωcv) ∧ α = 0 for any bounding p-form

α, which implies that ωcv is closed. Moreover the equality λ(α) =
∫

Mn (ωcv) ∧ α
precisely tells us that the Ruelle-Sullivan class Aτ and consequently the asymptotic

cycle Av
µ arises from ωcv by Poincaré duality.

Theorem 4 Suppose we are given a preferred action that preserves a Riemannian metric

and that v1 and v2 are positive quantifiers for this action. Then if µ1 and µ2 are finite

invariant measures, there is a positive constant λ such that Av2
µ2

= λAv1
µ1

.

We are going to associate with a suitably chosen p-vector w0 over the tangent

space at the identity of our original Lie group L a positive quantifier v0. For a positive

quantifier v0 gotten in this way we will be able to establish two properties that, taken

together, will imply Theorem 4. First we will show that if µ1 and µ2 are any two finite

invariant measures then

Av0
µ1

/µ1(Mn) = Av0
µ2

/µ2(Mn).

We will also see that if v is any positive quantifier and µ is any finite invariant

measure there exists a positive constant α such that Av
µ = αAv0

µ . It is clear that once

we have established these two properties of v0, Theorem 4 will have been proved.

Proof Recall that the group of isometries of the compact manifold Mn is a Lie group

that acts smoothly on Mn. The action of L on Mn gives a 1–1 continuous homomor-

phism of L into this group. Let the closure of the image of L be denoted by L̄. It is a

compact Lie group that acts smoothly on Mn.

Any orbit under the action of L̄ on Mn determines a conjugacy class of subgroups

of L̄, namely the isotropy groups of points in the orbit. Theorem 3.1 of [2] asserts:

There exists a maximum orbit type L̄/H for L̄ on Mn (i.e., H is conjugate to a

subgroup of each isotropy group). The union Mn
(H) of the orbits of type L̄/H

is open and dense in Mn and its image M?
(H) in the orbit space M?

= Mn/L̄ is

connected.

An orbit of type L̄/H is called a principal orbit.

We will also need the following consequence of Theorem 5.8 of [2].

If q ∈ M?
(H) there is an open neighborhood U of q in M?

(H) for which there

exists an equivariant diffeomorphism of U × L̄/H → onto F−1(U ), where F is

the projection of Mn onto Mn/L̄. (Here L̄ acts on U × L̄/H so that g ∈ L̄ sends

(q, Hg0) into (q, Hg0g).)
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Now suppose that ω0 is any element in the space of p-vectors over the tangent

space at the identity e in our original Lie group L. For any x ∈ Mn let fx be the map

of L into Mn that sends ` ∈ L into x`. Define v0(x) to be the image of ω0 under the

map of p-vectors induced by fx. Then Lemma 1 tells us that v0 is a quantifier for the

action of L, because this is a preferred action.

Since the image of L is dense in L̄, v0 is invariant under the action of L̄. By the

Theorem of [2] cited above it follows that if v0 is zero on F−1(z) where z ∈ M?
(H),

there is an open set V in M?
(H) containing z such that v0 is zero on F−1(V ). However

the set of all q ∈ M?
(H) such that v0 is zero on F−1(q) is closed in M?

(H). Since M?
(H)

is connected it would follow that v0 is zero on F−1(M?
H), and since M?

(H) is dense in

Mn/L̄ it would follow that v0 is identically zero.

Since v0 is invariant under the action of L̄ and L̄ is connected, it follows that if v0

is not identically zero it vanishes nowhere on F−1(M?
(H)). By the same theorem from

[2] we used above we see that if z ∈ M?
(H), either there is an open set W ⊆ M?

(H)

such that z ∈ W and v0 is a positive quantifier on F−1(W ) or the same holds for −v0.

Since M?
(H) is connected and v0 vanishes nowhere on F−1(M?

(H)) it follows that either

v0 is a positive quantifier on F−1(M?
(H)) or the same holds for −v0.

Since M?
(H) is dense in Mn/L̄, it follows that there are only three possibilities:

(a) v0 is identically zero,

(b) v0 is semipositive,

(c) −v0 is semipositive.

Now we wish to prove:

Lemma 4 We can choose ω0 so that the corresponding v0 is a positive quantifier.

Proof By the compactness of Mn and the fact that v0 depends linearly on ω0, we

see that it is enough to show that for any x ∈ Mn we can choose ω0 so that v0 is

semipositive and v0(x) 6= 0. We can certainly pick ω0 so that v0(x) is positive.

Since possibilities (a) and (c) above cannot hold, v0 is semipositive. Thus our

lemma is proved.

Next let f be any continuous real valued function on Mn and let m be a probability

measure on L̄.

Lemma 5
∫

Mn f (x) dµ(x) =
∫

Mn

(∫

L̄
f (xg) dm(g)

)

dµ(x).

Proof By the fact that µ is an invariant measure this must hold if m is concentrated

at a single point. It follows that it is still true if the support of µ is finite. However

if we let hx(g) = f (xg), the family of function hx is equiuniformly continuous and

uniformly bounded. It follows that we can get a sequence mi of probability measures

such that the support of each mi is finite and
∫

hx(g) dmi(g) converges uniformly in

x to
∫

hx(g) dm(g). Our lemma follows.

If we let m be Haar measure on L̄ with m(L̄) = 1 and if λx is the invariant measure

on xL̄ such that λx(xL̄) = 1, we note that
∫

L̄
f (xg) dm(g) =

∫

xL̄
f (y) dλx(y). (We

know that such an invariant measure λx exists because L̄ is compact.)

https://doi.org/10.4153/CJM-2003-026-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-026-0


Higher Dimensional Asymptotic Cycles 647

Now suppose ω is a closed p-form on Mn and q ∈ M?
H . We know there is equivari-

ant diffeomorphism between F−1(U ) and U × L̄/H for some connected open set U

containing q. Via this diffeomorphism ω corresponds to a closed form ω̄ on U× L̄/H.

If v0 is a positive quantifier on Mn arising from a p-vector ω0 over the tangent space

to L at its identity element, the restriction of v0 to F−1(U ) corresponds via this dif-

feomorphism to the positive quantifier v̄0 on the L space U × L̄/H arising from ω0.

The form ω1 on L̄/H that arises from the imbedding of L̄/H into U × L̄/H that sends

Hg into (q1, Hg) for any q1 ∈ U is cohomologous to the form ω2 we get using any

other q2 ∈ U . Here we are assuming, as we may, that U is arcwise connected so that

these two imbeddings are homotopic. Therefore the integral of ω1cv̄0 with respect

to any invariant measure λ on the L space L̄/H is the same as the integral of ω2cv̄0,

as follows from the fact that these integrals depend only on the cohomology class

determined by our forms, a fact that we learn from Lemma 2.

Thus if on each L̄ orbit xL̄ we place the invariant measure λx, then
∫

xL̄
ωcv0dλx is a

function on M/L̄ that is locally constant on the connected set M?
H . Thus

∫

xL̄
ωcv0 dλx

is constant on M?
H . Since

∫

L̄
(ωcv0)(xg) dm(g) =

∫

xL̄
ωcv0 dλx is a continuous func-

tion of x ∈ Mn that is constant on the dense subset F−1(M?
(H)) it is constant on all of

Mn. By Lemma 5 we see that for any finite invariant measure µ on Mn,

∫

Mn

(ωcv0)(x) dµ(x) =

∫

Mn

k(ω) dµ(x) = k(ω)µ(Mn)

where k(ω) =
∫

L̄
(ωcv0)(xg) dm(g) for any x ∈ Mn. Thus if we identify Av0

µ with the

element of Hom
(

H p(Mn, R), R
)

that it determines, k(ω) =
1

µ(Mn)
times the value of

Av0
µ at the cohomology class of ω. Therefore Av0

µ1
=

µ1(Mn)
µ2(Mn)

Av0
µ2

for any two invariant

measures µ1 and µ2. This establishes the first of the two properties of v0 that we need

to have in order to prove Theorem 4.

Now if v2 is any positive quantifier on Mn, there is a continuous function β on

Mn/L̄ such that v2(x) = β
(

F(x)
)

v0(x).

Thus by Lemma 5, for any invariant measure µ

∫

Mn

ωcv2 dµ =

∫

Mn

(
∫

L̄

(ωcv2)(xg) dm(g)

)

dµ(x)

=

∫

Mn

β
(

F(x)
)

k(ω) dµ(x) = k(ω)

∫

Mn

β
(

F(x)
)

dµ(x).

From this it follows that Av2
µ equals a positive constant times Av0

µ . This establishes

the second property of v0 that we needed and therefore the proof of Theorem 4 is

completed.

In this connection it is worth proving the following:

Proposition If v is a positive quantifier for an oriented flow and O is any compact orbit,

there is an invariant measure µ such that Av
µ is the element of Hp(Mn, R) arising from

the fundamental homology class of the oriented orbit O.
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Proof We need only show that there is a transversal invariant measure τ such that

this is true for Aτ .

Any transversal disc intersects O in only a finite number of points. For any trans-

versal D of our action and any Borel subset of the interior of D we define τD(S) to be

the number of points of O that lie in S. Then it follows from the way we defined Aτ

that for any closed p-form ω the element of Hom
(

H p(Mn), R
)

determined by Aτ ,

when applied to the cohomology class of ω, is
∫

O
ω. This proves our proposition.

Finally, suppose G is a connected Lie group and K is a closed subgroup such that

the space of right cosets G/K is compact. Let L be a subgroup of G corresponding to

a Lie subalgebra ` of the Lie algebra g of G. Suppose that there are no non-constant

continuous invariant functions for the action of L on the right on G/K. Suppose fur-

ther that v is a positive quantifier for the action and that K possesses a p-dimensional

jacket H, where p is the dimension of each orbit under the action of L on G/K.

Theorem 5 If µ1 and µ2 are two invariant probability measures, Av
µ1

= Av
µ2

.

Proof The compact group G/H is acted on by L and the projection of G/K onto

G/H is equivariant. Each p-dimensional cohomology class over the reals on G/H

is represented by a p-form that is invariant under the action of G/H on itself on

the right and therefore is invariant under the action of L. Given a p-dimensional

cohomology class λ on G/K, choose such an invariant form in a cohomology class

on G/H that lifts to λ. If ω is the lifting of this form to G/K, ω is invariant under the

action of L because the map of G/K to G/H is equivariant. Then ωcv is an invariant

function on G/K and therefore is a constant. Hence
∫

G/K
ωcv dµ is the same for all

invariant probability measures µ. This proves our theorem.
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