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AN INTERNAL CHARACTERIZATION OF 
REALCOMPACTNESS 

DOUGLAS HARRIS 

1. Introduction. A space is realcompact if it is a homeomorph of a closed 
subspace of a product of real lines. Many external characterizations of real-
compactness have appeared, but there seems to be no simple internal char­
acterization. We provide such a characterization in terms of the existence of 
a collection of covers of a certain type and use it to examine realcompact 
extensions of a space and to characterize the Ç-closure of a space in a 
compac tification. 

2. Structures. A structure on X is a collection of covers of X that forms 
a filter under refinement ordering; the members of a structure are called 
gauges. A balanced refinement of a gauge a is a gauge fi with cardinal not 
greater than that of a such that for each B £ fi there is A 6 a such that 
{A, X — B] is also a gauge; thus a balanced refinement is certainly a refine­
ment. A structure is balanced if every gauge has a balanced refinement. A 
structure is distinguishing if when x and y are distinct points of X the cover 
{X - {x}, X - {y}} is a gauge. 

A filter on X is Cauchy if it contains a member of every gauge. A structure 
is complete if for every Cauchy filter, there is a point x £ X such that if 
A C X and {A,X — {x}} is a gauge, then A is a member of the filter. 
Equivalently, every Cauchy filter converges in the topology induced by the 
structure (see § 3). 

3. Proximity and topology. A structure induces a proximity relation < 
between subsets of X given by A < B if {B> X — A] is a gauge. 

THEOREM A. The < -relation induced by a balanced structure is a completely 
regular proximity relation. 

Proof. It must be shown that A (Z X implies 0 < A, A < B implies A C B, 
CCA < B C D implies C < D, A < B and A < C implies A < B Pi C, 
A < B implies X — B < X — A, and that if A < B then there is C with 
A < C < B. Of these six conditions the first five are readily shown, and in 
fact they hold for the <-relation of any structure (see [1, § 25A ff.]). To show 
the sixth, observe that if A < B, then the gauge {B, X — A) has a balanced 
refinement {£, D] with E < B and D < X - A ; on setting C = X - D 
and using the third and fifth conditions, it follows that A < C < B. 
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The converse of Theorem A also holds as will be seen in § 7. 
In view of Theorem A there is a completely regular topology induced by 

a balanced structure via the operator int^4 = {x: {A, X — {x}} is a gauge} ; 
this topology is Hausdorff if and only if the structure is distinguishing. 

An admissible balanced structure on a space is a balanced structure that 
induces the topology of the space. There may of course be many admissible 
balanced structures on a space. 

4. Realcompact structures. A realcompact structure is a structure that is 
balanced, distinguishing, and has a base of countable gauges. 

THEOREM B. A space is realcompact if and only if it admits a complete 
realcompact structure. 

Proof. Suppose that X is realcompact, so that it can be embedded as a 
closed subspace of a product of lines. I t is easy to see that the collection of 
all open covers of the line is an admissible complete realcompact structure 
for the line. Now the product structure formed on the product of lines, using 
inverse images of open covers of the factors under the projection maps, is 
readily seen to be an admissible complete realcompact structure on the 
product. Finally it is straightforward to show that the subspace structure 
induced on the closed subspace X, using inverse images of product gauges 
under the inclusion map, is a complete admissible realcompact structure on X. 

Conversely, suppose that there is an admissible complete realcompact 
structure for X. Then, in view of Theorem A and the remarks following that 
theorem, the space X is completely regular and Hausdorff: thus X can be 
considered to be a subspace of the product of lines Rc^ under the parametric 
embedding. Now let p be in the closure of X but not in X and let y be the 
trace on X of the neighbourhood filter of p. Since the structure is complete 
and 7 does not converge, the filter y is not Cauchy; thus there is a gauge a 
such that 7 contains no member of a. The gauge a has a countable balanced 
refinement fi; thus for each Bn G fi, there is An G a with Bn < An, and in 
view of Theorem A, and the properties of completely regular proximities, 
there is, for each n, a function fn G C(X) that has the value 1 on Bn and the 
value 0 on X — An. Since An g y for each n it follows that for each F G y 
there is x G F with fn(x) = 0, and therefore the /w-th coordinate of p must 
be 0. From this it follows that X — Bn G y for each n. Also, since {Bn} is a 
cover of X, there is for each x G X an n such that ^0*0 = 1. 

Consider the function f(x) = £n=.i°° min (/„(*), 1/2"). T h e n / G C(X) and 
fix) > 0 for each x ^ I , therefore there is the function g = 1/f G C(X). 
Now since each X — Bn G 7, it follows that no finite union of An's belongs 
to 7, because \JAn is disjoint from the corresponding H (X — Bn). T h u s / has 
arbitrarily small values on members of y and so the g-th coordinate of p is 
arbitrarily large, which is a contradiction. 
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5. Compact structures. A structure is compact if it is balanced, dis­
tinguishing, and has a base of finite gauges. 

The following result is readily established. 

THEOREM C. A space is compact Hausdorff if and only if it admits a complete 
compact structure. 

It is in fact the case that the compact structures are precisely the totally 
bounded uniform structures; this gives a simple characterization of totally 
bounded uniform structures. This topic will again be considered in § 7. 

6. Completions. Just as uniform spaces have completions, so there is a 
completion of a space in a balanced structure. The following result is the key 
to the construction, as it is in uniform space theory. 

6.1. In a balanced structure every Cauchy filter contains a minimal Cauchy 
filter. 

Proof. Let X be a Cauchy filter and define 

7 = {E G X: for some F G X, F < E} ; 

then 7 is a filter and y C X. If a is a gauge and £ is a balanced refinement, 
then X contains some member of (3, and therefore y contains some member 
of a; thus y is Cauchy. Suppose that f is Cauchy and f C 7- If E G 7, there 
is F G X with F < E; since f C X and F G X, the member X — F of the 
gauge {E, X — F} is not in the Cauchy filter f, and thus E G f. Clearly, 
if X is itself minimal Cauchy, then X = y and it follows that for each A G X 
there is C G X with 4̂ > C. 

The proof of the following result is straightforward. 

6.2. In a balanced structure, the filter {A: A > {x}} is minimal Cauchy for 
each x G X. 

The completion cX of X in the balanced structure £f can now be defined. 
Its points are an index set for the family {Op: p G cX\ of minimal Cauchy 
filters on X. For each A <Z_ X there is the subset A' of cX defined by 
A' — {p G cX: A G Ov\, and for each gauge a ^ y there is the cover 
a = {A': A G a) of cX. The collection {c/: a G 5^} of covers of cX generates 
a structure on cX, called the structure of the completion cX and written as c ¥\ 

The canonical map c of X into cX is given by letting c{x) be the index 
of the minimal Cauchy filter {A: A > {x}}. 

THEOREM D. Let S^ be an admissible balanced distinguishing structure on 
the space X. Then the completion structure cS^ is a complete balanced dis­
tinguishing structure on cX and the map c is an embedding of X into cX with 
the structure topology. 
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Proof. The proof of the theorem is quite similar to the usual proofs used in 
proximity theory and uniform space theory; thus only an outline need be 
given here. 

It is clear from the fact t h a t j ^ is distinguishing that the map c is one-to-one, 
and since ^ is admissible, the filter Oc(x) is the neighbourhood filter of x G X. 
Given ACX define A* = c(A) U A' C cX. Then A* Pi c(X) = c(A). 
Given a filter 7 on X, there is an associated filter 7* = {A*: A G 7} on cX. 
Writing ^ for the proximity relation of the structure cS^ one can establish 
(as in [3, Lemma 4]) the following results: 

6.3. A < B if and only if A* ^ B*. 

6.4. The structure cSf is balanced. 

6.5. The function 7 ^ 7 * is a bijection from the set of minimal Cauchy filters 
on X onto the set of minimal Cauchy filters on cX. 

6.6. The structure c *f is complete. 

6.7 The structure cSf is distinguishing. 

Proof of 6.7. Suppose that p, q G cX and that {cX — {p}, cX — {q}} is 
not a gauge of cjf. Let A, C G 0Q with 4 > C; then M ' , (X - C)'\ G c ^ 
and (X - CY C cX - {g}, so that A' (£ cX - {p\ and therefore 4 G (F. 
I t follows that Op = Off; thus /> = g. 

I t is now clear that the map c is an embedding; thus the proof of Theorem D 
is complete. 

Clearly if the structure S? has a base of countable (finite) gauges, then 
the structure cS^ also has a base of countable (finite) gauges. Applying 
Theorems B, C, and D, the following result is obtained. 

THEOREM E. The completion of a space in an admissible realcompact (compact) 
structure is realcompact (compact). 

The completion is unique among complete balanced distinguishing struc­
tures in the obvious sense; the exact statement will not be formulated here, 
since it is a special instance of the more general theory developed in [2]. 

7. Compactifications, proximities, and Ç-closures. Given a compacti-
fication Z of X (where X and Z are completely regular spaces), there is the 
associated completely regular proximity defined by A < B if clz A C Z — 
clz(X — B). Conversely, given a completely regular proximity < on X, 
there is the Smirnov compactification Z of X for which the associated completely 
regular proximity is precisely < . The Q-closure of X in Z is defined to be the 
set of points z G Z such that for each / G C(Z) wi th/(s) = 0, there is x G X 
with/ (x) = 0; it is known to be a realcompact embedding of X. 
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Suppose that < is a completely regular proximity for X. The realcompact 
{compact) structure of < is the collection of all covers a of X such that for 
some countable (finite) cover /3 there is for each B Ç £ an A G a such that 
B < A. It is readily shown using the axioms of completely regular proximities 
that the realcompact (compact) structure of < is indeed a realcompact 
(compact) structure. The compact structure of < is in fact the totally 
bounded uniform structure defined by < , as is shown by Smirnov in [7]. 

A filter 7 on X is round if for each A G y there is B G y such that B < A. 
The following result is readily obtained: 

7.1. (a) [7] A filter is minimal Cauchy in the compact structure of < if and 
only if it is maximal round. 

(b) A filter is minimal Cauchy in the realcompact structure of < if and only 
if it is maximal round and has the countable intersection property. 

The following result is a characterization of the Q-closure of a space in a 
compactification, expressed in terms of the induced proximity. 

THEOREM F. Let < be a completely regular proximity that induces the topology 
ofX. 

(a) [7] The completion of X in the compact structure of < is the Smirnov 
compactification. 

(b) The completion of X in the realcompact structure of < is the Q-closure 
of X in the Smirnov compactification. 

Proof of (b). Let Z be the Smirnov compactification and let Y be the 
Q-closure of X in Z. For each z G Z let Nz be the trace on X of the neighbour­
hood filter of z. Then, by (a), the maximal round filters on X are precisely the 
filters Nz for z G Z. It follows from 7.1 (b) that the completion W of X in the 
realcompact structure of < is a subspace of Z. 

Suppose that z G Z — Y\ then there is / 6 C(Z) with f(z) = 0 and / > 0 
on X. Setting An = {x G X: f(x) < 1/n}, it follows that An G Nz and 
An+\ < An for each n, while O f ^ } = 0. Thus Nz does not have the countable 
intersection property, and so, by 7.1(b), z (£ W. 

Conversely, suppose that z € Z — W. Then Nz does not have the countable 
intersection property; thus there are members An of Nz with An+i < An for 
each n. It follows that there is, for each n, a function fn G C(Z), that is 0 on 
An+i and 1 on X — An. On defining/ as in the proof of Theorem B, it follows 
t h a t / G C(Z),/(g) = 0, a n d / > 0 on X. Thus z G Y. 

8. Other internal characterizations. Shirota [6] has characterized real-
compact spaces as the spaces that are complete in the uniform structure 
whose basis consists of all countable normal coverings. In this connection it 
is clear that any uniform structure with a base of countable covers is a real-
compact structure; however a realcompact structure need not be a uniform 
structure, as follows from an example given (for another purpose) by Smirnov 
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[7, p. 32]. Shirota's famous theorem regarding spaces that are complete in a 
uniform structure is also a characterization, if spaces with measurable cardinal 
are excluded. 

Internal characterizations in terms of closed sets have recently been given 
by Johnson and Mandelker [4] and by McArthur [5], 
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