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Arthur R-groups, classical R-groups, and

Aubert involutions for SO(2n + 1)

Dubravka Ban and Yuanli Zhang

Abstract

For the special orthogonal group G = SO(2n + 1) over a p-adic field, we consider a
discrete series representation of a standard Levi subgroup of G. We prove that the Arthur
R-group and the classical R-group of π are isomorphic. If π is generic, we consider the
Aubert involution π̂. Under the assumption that π̂ is unitary, we prove that the Arthur
R-group of π̂ is isomorphic to the R-group of π̂ defined by Ban (Ann. Sci. École Norm.
Sup. 35 (2002), 673–693; J. Algebra 271 (2004), 749–767). This is done by establishing
the connection between the A-parameters of π and π̂. We prove that the A-parameter of
π̂ is obtained from the A-parameter of π by interchanging the two SL(2,C) components.

1. Introduction

Let G be a connected reductive quasi-split algebraic group defined over a p-adic field F . Let M be
a Levi subgroup of a parabolic subgroup P of G defined over F .

Suppose that π is a discrete series representation of M(F ), and I(π) = IndG(F )
P (F ) π the representa-

tion of G(F ) parabolically induced from π. The classical R-group R(π) associated with π has been
defined for studying the irreducible composition factors of I(π). The R-group is a subquotient of
the Weyl group and the normalized intertwining operators, corresponding to elements of R(π),
form a basis of the commuting algebra HomG(F )(I(π), I(π)) [Sil78, Har74]. In essence, R(π) is
characterized by Plancherel measures of π. The R-group can also be defined in terms of the L-group
and Langlands’ correspondence. In this context, Arthur proposed a conjectural description of
R-groups for some nontempered unitary representations. On the other hand, the classical
definition of the R-group can also be extended to some nontempered unitary representations.
Suppose that π is a unitary representation such that the Aubert involution π̂ is discrete series.
According to [Ban02, Ban04], it is natural to define R(π) = R(π̂), and the R-group R(π) has the
right basic properties. We call R(π) the classical R-group of π.

Let WF be the Weil group of F , and W ′
F = WF × SL2(C) be the Weil–Deligne group [Tat79].

Let LG = LGo �WF be the L-group of G, cf. [Bor79]. Langlands defined certain homomorphisms of
W ′
F to LG, called L-parameters. The local Langlands correspondence predicts that the set of equiv-

alence classes of irreducible admissible representations of G(F ) can be partitioned into finite sets,
called L-packets. Each L-packet should be parametrized by an L-parameter of W ′

F , in accordance
with the natural functorial principle (see [Art89a]). This is another aspect of the decomposition
of a parabolically induced representation and it is natural to ask what is the corresponding
aspect of the classical R-group. Arthur outlined the answer in [Art89a]. To deal with nontempered
representations, he first extended the definition of L-parameters to Arthur parameters (or briefly
A-parameters). Then he defined the R-group associated with an A-parameter and a representation
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in the Arthur packet of this A-parameter. Arthur expects that his R-groups should be intimately
related to the classical R-groups. For example, when the L-packet corresponding to the parameter
consists of discrete series representations, then these two R-groups should be the same. This was
proved by Shelstad [She82] for real groups, and by Keys [Key87] when M is a maximal torus over F
and π is a unitary character of M(F ). Actually, as long as the Langlands correspondence is estab-
lished, the equality of R-groups would follow, as one can see from our proof of Theorem 3.1, in the
case when G is split over F . Indeed, the Plancherel measures determine the classical R-group of π,
while the Plancherel measures are essentially determined by Langlands–Shahidi L-functions. On the
other hand, one can associate certain L-functions, called Artin L-functions, with every L-parameter
of G (see [Tat79]). Under the Langlands correspondence, the Langlands–Shahidi L-functions should
be equal to the corresponding Artin L-functions. So the Arthur R-group of π is expected to be
isomorphic to the classical R-group of π. The Langlands correspondence for GL, due to Harris and
Taylor [HT01] and Henniart1 [Hen00] and the result of Jiang and Soudry [JS04] on SO(2n + 1),
allow us to prove Arthur’s expectation for SO(2n + 1). This is our Theorem 3.1.

As Arthur pointed out in [Art89a], things seem to get out of control when we step to the
nontempered situation. A significant discovery made by Zelevinsky [Zel80] relates a discrete series
representation of GL to the corresponding Langlands quotient. These two representations are
associated with each other by Zelevinsky involution. From our point of view, the link is the
following: the L-parameter of the former and the A-parameter of the latter have the same image
in the L-group. Consequently, the Arthur R-groups for these two representations are equal.
Aubert generalized the idea of Zelevinsky and defined a duality operator [Aub95], for any
p-adic group. For GL, Zelevinsky built all irreducible admissible representations and defined the
Zelevinsky involution for every irreducible admissible representation, by starting with segments.
For other classical groups, segments also have fundamental meaning (see Muić [Mui98]). Although
the L-parameter and A-parameter of π and its Aubert involution generally do not relate to each
other so obviously, there are still important links inside. Moeglin’s work [Moe00] already provided
some evidence. As our first understanding of these matters, we look in this paper at the simplest
case, i.e. the situation when π is a generic discrete series representation (see Theorem 5.3 and
Corollary 5.1). To exploit the links between L-parameters and A-parameters of an irreducible
admissible representation and its Aubert involution, more general situations will be dealt with
in our future work.

Theorems 3.1 and 5.3 are our main results, and we state them here. We work on SO(2n + 1).

Theorem 1.1. Let φ be an elliptic tempered L-parameter of M and π be an element of the
L-packet of φ. Assume that all the members of the packet have the same Plancherel measures.
Then the Arthur R-group and the classical R-group of π are isomorphic and depend only on the
L-parameter φ.

We should point out that the assumption in the theorem on Plancherel measures for a discrete
packet is a conjecture made by Shahidi in [Sha90].

Theorem 1.2. Let π be a generic discrete series representation ofM(F ) and π̂ the Aubert involution
of π. Assume that π̂ is unitary. Then the Arthur R-group and the classical R-group of π̂ are
isomorphic.

Let us mention that the representation π̂ in Theorem 1.2 is generally nontempered
(see Corollary 4.1). It is tempered only in the case when π is supercuspidal, that is, π̂ = π.

1See also Correspondance de Langlands et fonctions L des carres exterieur et symétrique, an unfinished manuscript
by G. Henniart.
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As we pointed out above, the results on Langlands correspondence of Harris and Taylor [HT01]
and Henniart [Hen00], and the result of Jiang and Soudry [JS04] are the main ingredients for
Theorem 3.1. This theorem together with the precise expressions of L-parameters of a generic
discrete representation and its Aubert involution in Theorem 5.2, imply Theorem 5.3. The com-
putation in Theorem 5.2 of L-parameters is based on the work of Muić [Mui98] and Jiang and
Soudry [JS04].

The proof of Theorem 5.3 is based on the fact that the A-parameters of π and π̂ have the
same image in LG. Actually, Corollary 5.1 proves that the A-parameter of π̂ is obtained from
the A-parameter of π by switching the two SL(2,C) components. We state Corollary 5.1 here.

Corollary 1.1. Let π be a generic discrete series representation of G(F ) = SO(2n+1, F ). Let ψ :
WF × SL(2,C) × SL(2,C) → LG be the A-parameter of π and ψ̂ the A-parameter of π̂. Then,

ψ̂(w, x, y) = ψ(w, y, x).

In particular, ψ̂ and ψ have the same image in LG.

This corollary is related to a general conjecture on the action of the Aubert involution on
A-packets. Barbasch conjectured that the Aubert involution sends an A-packet to an A-packet.
This raises the question of the action of the involution on A-parameters. It is conjectured that
the involution acts on A-parameters of G by interchanging two copies of SL(2,C). Although this
conjecture was known previously, the precise statement is due to Hiraga [Hir04].

We now give a short summary of the paper. In § 2, we recall some basic definitions and prop-
erties of L-parameters, A-parameters, and Arthur R-groups. In § 3, we prove Theorem 3.1, after a
lemma on the correspondence of Weyl groups and another on Artin L-functions. Langlands data
of the Aubert involution of generic representations are described in § 4. In § 5, we first compute
the L-parameters of generic discrete representations and their Aubert involutions and then prove
Theorem 5.3.

2. L-parameters and A-parameters
In this section, we recall some basic definitions and properties of L-parameters, A-parameters and
Arthur R-groups. Our presentation follows Arthur’s paper [Art89a].

Let F be a nonarchimedean local field of characteristic zero, WF the Weil group of F , W ′
F =

WF × SL2(C) the Weil–Deligne group of F . Let r be a finite-dimensional semisimple continuous
complex representation of WF , and V the representation space of r. One associates with r a com-
plex function L(s, r), called the Artin L-function, and ε-factor ε(s, r, ψF ) with ψF a fixed additive
character of F , called the Artin ε-factor. The Artin L-function is defined by

L(s, r) = det(I − r(ΦF )q−s|V IF )−1,

where ΦF is a Frobenius element of WF , IF is the inertia group of WF , V IF is the subspace of V
pointwise fixed by the action of IF , and q is the cardinality of the residue field of F . Every irreducible
finite-dimensional continuous complex representation of W ′

F is of the form of r ⊗ Sn, with r an
irreducible representation of WF and Sn the n-dimensional irreducible complex representation of
SL2(C). One can define the Artin L-function associated with r ⊗ Sn by

L(s, r ⊗ Sn) = L(s+ (n− 1)/2, r).

Let G be a quasi-split connected reductive algebraic group defined over F . We define the L-group
by

LG = LGo �WF ,

where LGo is the connected reductive complex group whose root datum is dual to that of G.
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The action of WF on LGo is induced from the action of the Galois group Gal(F̄ /F ) on G, where F̄
is the algebraic closure of F (see [Bor79]).

We fix a maximal torus T and a Borel subgroup B of G containing T , both defined over F .
We also fix a maximal torus LT o and a Borel subgroup LBo containing LT o of LGo, both invariant
under the action of WF corresponding to the duality between the root datum of G and LGo.
Let Σ(T,G) be the roots of T in G, and Σ(LT o, LGo) the roots of LT o in LGo. It is well known
that the two Weyl groups are isomorphic, i.e. W (T,G) � W (LT o, LGo), under the map sending
sα to sα∨ . Here α∨ ∈ Σ(LT o, LGo) is the coroot of α ∈ Σ(T,G) and sα, sα∨ are the corresponding
reflections on the spaces generated by Σ(T,G) and Σ(LT o, LGo), respectively. Let Td be the maximal
split torus of G contained in T , and LT o

d the maximal subtorus pointwise fixed by WF contained
in LT o. Then W (LT o

d ,
LGo) is the subgroup of W (LT o, LGo) consisting of the elements fixed by WF .

So, we have an isomorphism between W (Td, G) and W (LT o
d ,
LGo).

Let M be a Levi subgroup of a standard parabolic subgroup of G defined over F with respect
to B, and A the split component of Z(M), the center of M . Let LM denote the L-group of M .
Then LM is a Levi subgroup of LG, by the bijection [Bor79] between the set of conjugacy classes
of the parabolic subgroups over F of G and the set of conjugacy (in LGo) classes of parabolic
subgroups of LG. Let LAo be the maximal torus of the center of LMo, and let U be the maximal
subtorus of LAo pointwise fixed by WF . It is well known that W (A,G) can be identified with
the subgroup of W (Td, G) whose elements stabilize the set of positive roots of Td in M with respect
to the Borel subgroup B. Indeed, let W ′(Td, G) be the subgroup of W (Td, G) consisting of the
elements that stabilize Σ(Td,M), the roots of Td in M . Then W (Td,M) is a normal subgroup of
W ′(Td, G). The group W (A,G) is isomorphic to W ′(Td, G)/W (Td,M). By Lemma 1.1.2 in [Cas74],
every coset of W ′(Td, G)/W (Td,M) has a unique element that stabilizes the set of positive roots
of Td in M . Let W+(Td, G) be the set of all such elements. Then W+(Td, G) is the subgroup
of W (Td, G) whose elements stabilize the set of the positive roots of Td in M . So, W ′(Td, G) =
W (Td,M) � W+(Td, G). Therefore, W (A,G) is identified with W+(Td, G). The same is true for
W (U, LGo) in W (LT o

d ,
LGo). So the isomorphism between W (Td, G) and W (LT o

d ,
LGo) induces an

isomorphism between W (A,G) and W (U, LGo).

A homomorphism

φ : WF × SL2(C) → LG = LGo �WF

that commutes with the projections to WF is called a Langlands parameter, or L-parameter of G,
if conditions (1)–(5) on pages 41–42 of [Lan83] are satisfied by φ.

The parameter φ is elliptic, if its image is not contained in any proper Levi subgroup of LG. It is
tempered if the image of the projection of φ(WF ) to LGo is bounded. We say that two L-parameters
φ and φ′ are equivalent, and write φ ∼ φ′, if they are conjugate in LGo. We denote by Φ(G) the set
of equivalence classes of L-parameters of G.

Let π be an irreducible admissible representation of G(F ) and r be a continuous finite-dimen-
sional semisimple complex representation of LG. There are a conjectural L-function L(s, π, r) and
ε-factor ε(s, π, r, ψF ) attached to π and r. Here ψF is a fixed additive character of F . Denote the
set of equivalence classes of irreducible admissible representations of G(F ) by Π(G). Langlands
correspondence predicts that Π(G) can be partitioned into finite sets, called L-packets, such that
there is a bijection between the set of L-packets of G and Φ(G). Let Πφ(G) be the L-packet of G
corresponding to an L-parameter φ. Then, for any r as above and any π ∈ Πφ(G), one should have
the equalities

L(s, r ◦ φ) = L(s, π, r),
ε(s, r, ψF ) = ε(s, π, r, ψF ).
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It is expected that the L-packet of a tempered L-parameter consists of tempered representations,
and that of an elliptic L-parameter consists of discrete series representations.

To deal with Langlands quotients, Arthur extended the definition of L-parameters to a more
general kind of parameters called Arthur parameters, or A-parameters. A homomorphism

ψ : W ′
F × SL2(C) → LG

commuting with the projections on WF is called an A-parameter, if:

(1) the restriction of ψ to W ′
F is tempered;

(2) ψ is also analytic on the second copy of SL2(C).

The definitions of elliptic A-parameters and equivalent A-parameters are similar to those of
L-parameters. We write Ψ(G) for the set of equivalence classes of A-parameters of G. It is
expected that, like L-parameters, every A-parameter ψ determines a finite set Πψ(G) in Π(G),
and the map

ψ �→ Πψ(G)
satisfies some nice properties (see [Art89a]). Πψ(G) is called the Arthur packet (or A-packet)
associated with ψ. We should recall that, unlike L-packets, two A-packets of two distinct
A-parameters may have a nonempty intersection. Tempered L-parameters are naturally embed-
ded in Ψ(G): a tempered L-parameter φ becomes an A-parameter if we let φ(w, x, y) = φ(w, x),
and for ψ ∈ Ψ(G), Arthur defined an L-parameter φψ by letting

φψ(w, x) = ψ

(
w, x,

(|w|1/2
|w|−1/2

))
(1)

for every (w, x) ∈ W ′
F . The map ψ �→ φψ is injective, see Proposition 1.3.1 in [Art89b]. Suppose

that φ is the L-parameter of the L-packet containing π. Then ψ is called the A-parameter of π if
φψ is the L-parameter of π, i.e., φψ = φ. It is expected that Πφ(G) ⊂ Πψ(G) (see [Art89a]).

Suppose that ψ is an A-parameter that factors through a Levi subgroup LM = LMo � WF

of LG, but not any proper Levi subgroup of LM . Since G is quasi-split over F , there is a Levi
subgroup M of G defined over F such that LM is the L-group of M . Therefore, ψ is an elliptic
A-parameter of M . Arthur associated several related groups with ψ. Let Sψ be the centralizer in
LGo of the image of ψ, and let So

ψ be the identity component of Sψ and Tψ be a maximal torus
of So

ψ. Define

Wψ = NSψ(Tψ)/ZSψ(Tψ),

W o
ψ = NSo

ψ
(Tψ)/ZSo

ψ
(Tψ),

Rψ = Wψ/W
o
ψ.

Here we write NG(H) for the normalizer of H in G, and ZG(H) for the centralizer of H in G. W o
ψ is

normal in Wψ, since So
ψ is normal in Sψ. The following Lemma 2.2 tells us that Wψ is a subgroup

of W (U, LGo).

Lemma 2.1. Suppose that

ψ : W ′
F × SL2(C) → LG

is an A-parameter. Then:

(1) ZLG(Tψ) is a Levi subgroup of LG;

(2) Let LM = ZLG(Tψ). Then ψ is an elliptic A-parameter of M .

Proof. Since the projection of ZLG(Tψ) to WF is onto, ZLG(Tψ) is a Levi subgroup of LG, by Borel’s
Lemma 3.5 in [Bor79].
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Let LM = ZLG(Tψ), where M is a Levi subgroup of G over F . Then the image of ψ is contained
in LM . Suppose that LMo is a Levi subgroup of LM also containing the image of ψ. By the same
lemma of Borel, LMo = ZLG(S), where S is a torus of LGo. Since the image of ψ is contained
in LMo, it follows that S is contained in So

ψ. So, S is contained in a conjugate of Tψ in So
ψ. We have

LM ⊂ s−1
o

LMoso, for an so ∈ So
ψ. We also have that LMo ⊂ LM implies LMo = LM . Therefore, ψ is

elliptic for M .

We denote the subgroup of W (LAo, LGo) consisting of the elements that can be represented by
elements of Sψ by Wψ(LAo, LGo).

Lemma 2.2. Let M be a Levi subgroup of G defined over F and let ψ be an elliptic A-parameter
of M . Suppose that LAo is the maximal torus of the center of LMo and U is the maximal subtorus of
LAo pointwise fixed by WF . Then:

(1) (LAo ∩ Sψ)o is a maximal torus of So
ψ;

(2) LAo ∩ Sψ = (LAo)WF (the WF fixed points of LAo), and U = (LAo ∩ Sψ)o;

(3) Wψ can be identified with Wψ(LAo, LGo).

Proof. (1) Let Tψ be a maximal torus of So
ψ, and LMo = ZLG(Tψ). Then Lemma 2.1 states that ψ

is elliptic for LMo. From Proposition 3.6 of [Bor79], there is an so ∈ So
ψ such that s−1

o
LMoso = LM .

So, LM = ZLG(s−1
o Tψso). Hence, LMo = ZLGo(s−1

o Tψso). Since s−1
o Tψso is contained in the center of

LMo, s−1
o Tψso is contained in LAo. We claim that s−1

o Tψso = (LAo∩Sψ)o. In fact, s−1
o Tψso ⊂ LAo∩So

ψ

implies s−1
o Tψso ⊂ (LAo ∩So

ψ)o = (LAo ∩Sψ)o. Since s−1
o Tψso is also a maximal torus of So

ψ, we have
s−1
o Tψso = (LAo ∩ Sψ)o. Therefore, (LAo ∩ Sψ)o is a maximal torus of So

ψ.

(2) We write ψ(w, x, y) = g(w, x, y)w with g(w, x, y) ∈ LGo and w ∈ WF , for (w, x, y) ∈
W ′
F × SL2(C) . For any a ∈ LAo ∩ Sψ, we have

ag(w, x, y)w = g(w, x, y)wa = g(w, x, y)aww.

Therefore, a ∈ LAo implies

g(w, x, y)aw = g(w, x, y)aww, for (w, x, y) ∈W ′
F × SL2(C).

It follows that a ∈ (LAo)WF , thus LAo ∩ Sψ ⊂ (LAo)WF . On the other hand, (LAo)WF ⊂ LAo ∩ Sψ.
Therefore, LAo ∩ Sψ = (LAo)WF . This implies U = (LAo ∩ Sψ)o.

(3) Now, we let Tψ = (LAo ∩ Sψ)o, a maximal torus of So
ψ. We set the map

f : Wψ(LAo, LGo) →W (Tψ, Sψ)

as follows: if ω is represented by s ∈ Sψ, we define f(ω) to be the coset of s in W (Tψ, Sψ). First, we
have to show that f is well defined. Note that s normalizes LAo ∩ Sψ. It follows that s normalizes
(LAo ∩ Sψ)o and s ∈ NSψ(Tψ). Therefore, f(ω) ∈W (Tψ, Sψ). Suppose that ω = 1 in Wψ(LAo, LGo).
Then s ∈ LMo, hence s ∈ ZSψ(Tψ). Therefore f(ω) = 1. So far, we have proved that f is well
defined. Observe that f is a homomorphism of groups. For isomorphism, suppose that f(ω) = 1.
Then s ∈ ZLGo(Tψ) = LMo, so s ∈ ZLGo(LAo) and ω = 1. This proves that f is injective. Let s ∈
NSψ(Tψ). We have

NLGo(Tψ) ⊂ NLGo(LMo) = NLGo(LAo).

This implies that s ∈ NLGo(LAo) ∩ Sψ, so f is surjective. Therefore, f is an isomorphism of the
groups.
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Remarks. Let ψ be an elliptic A-parameter of M .

(1) When G is split over F , LAo is a maximal torus of So
ψ.

(2) Wψ is a subgroup of W (U, LGo), from (1) and (2) of Lemma 2.2, and Wψ(LAo, LGo) can be
identified with a subgroup of W (U, LGo), from Lemma 2.2(3).

The group W (A,G) acts on the set of isomorphic classes of irreducible admissible representations
of M(F ). From Lemma 6.2 of [Bor79], every element of W (U, LGo) can be represented by an
element of NLGo(U) fixed by WF . Therefore, W (U, LGo) acts on Ψ(M). Suppose that ψ is
an elliptic A-parameter of M , and π ∈ Πψ(M). We define

Wψ,π = {ω ∈Wψ; ωπ � π}
W o
ψ,π = {ω ∈W o

ψ; ωπ � π}
Rψ,π = Wψ,π/W

o
ψ,π.

Lemma 2.3. Let ψ be an elliptic A-parameter of M . Then

Wψ = {ω ∈W (U, LGo); ωψ ∼ ψ in LMo}.
Proof. Note that

Wψ ⊂ {ω ∈W (U, LGo); ωψ ∼ ψ in LMo}.
Let ω ∈ W (U, LGo) such that ωψ ∼ ψ in LMo. Suppose that ω is represented by an element n in
NLGo(U) and n is fixed by WF . Then there is an m ∈ LMo depending on n such that n−1ψ(w, x, y)n
= m−1ψ(w, x, y)m, for every (w, x, y) ∈W ′

F × SL2(C). Therefore mn−1 ∈ Sψ. So ω ∈Wψ.

Now suppose that G is split over F . Let β ∈ Σr(A,P ). We denote by Aβ the maximal subtorus
of A contained in the kernel of β, and Mβ = ZG(Aβ). Set Pβ = MNβ, where Nβ = Mβ ∩ N .
Then Mβ is a Levi subgroup of G over F and Pβ is a maximal parabolic subgroup of Mβ over F
with a Levi subgroup M . Let LMβ and LPβ be the L-groups of Mβ and Pβ , respectively. Then LMβ

is a Levi subgroup of LG, LPβ is a maximal parabolic subgroup of LMβ and LM is a Levi subgroup
of LPβ . The set Σ(LAo, LP o

β ) has a unique reduced root, and we denote this unique reduced root
by β∨. We have LMo

β = (LMo)β∨ , where (LMo)β∨ = ZLGo((LAo)β∨) and (LAo)β∨ = (ker(β∨))o.

Lemma 2.4. Suppose that G is split over F . Let β ∈ Σr(A,G). Then,

η(W (A,Mβ)) = W (LAo, LMo
β).

Proof. We first note the fact that for ω ∈ W (T,G), α ∈ Σ(T,G), we have η(ω)(α∨) = (ω(α))∨.
Indeed, when ω = sγ , γ ∈ Σ(T,G), this can be verified by computing 〈χ, (sγ(α))∨〉 = 〈χ, sγ∨(α∨)〉,
for any χ ∈ X(T ). Here 〈·, ·〉 is the duality between X(T ) and X∗(T ), which are characters and
co-characters of T , and we identify X(T ) and X∗(T ) with X∗(LT o) and X(LT o), respectively.
For general ω ∈W (T,G), the fact can be proved by induction on the length of ω.

Observe that η(W (T,M)) = W (LT o, LMo), and η(W (T,Mβ)) = W (LT o, LMo
β). W (A,Mβ) (re-

spectively, W (LAo, LMo
β)) is the subgroup of W (T,Mβ) (respectively, W (LT o, LMβ)) whose

elements stabilize the set of positive roots of Σ(T,M) (respectively, Σ(LT o, LMo) ). So, the fact
above implies η(W (A,Mβ)) = W (LAo, LMo

β).

It is known that W (A,Mβ) has order one or two. Lemma 2.4 states that W (A,Mβ) has order two
if and only if W (LAo, LMo

β) has order two. When W (A,Mβ) has order two, we denote the non-trivial
elements of W (A,Mβ) and W (LAo, LMo

β) by sβ and sβ∨, respectively.
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3. R-groups for discrete series representations of SO(2n + 1)

From this section, G = Gn = SO(2n + 1) over F , the odd special orthogonal group. Then LGo =
Sp2n(C). Since G is split over F , WF acts on LGo trivially.

We realize G as a closed subgroup of GL(2n+ 1) as the following. Let Jn be the n by n matrix
whose entries of the second diagonal are 1 and the other entries are zero. Then

G = {g ∈ GL(2n+ 1); tgJ2n+1g = J2n+1,det(g) = 1}.
Let T be the maximal torus of G consisting of elements

x = diag(x1, . . . , xn, 1, x−1
n , . . . , x−1

1 ); xi ∈ GL(1).

T is defined over F . Let B be the set of upper-triangular matrices in G. Then B is a Borel subgroup
of G over F , and B = TU , where U is the unipotent radical of B. Let ei be the character of T
sending x to xi. Then the root basis with respect to T and B is ∆ = {α1, . . . , αn}, with αi = ei−ei+1

for 1 � i � n − 1 and αn = en. Let P be a standard parabolic subgroup of G over F with respect
to B, and P = MN the Levi decomposition of P , where

M = {diag(x1, . . . , xr, x0,
τx−1
r , . . . , τx−1

1 ); xi ∈ GLmi , x0 ∈ Gm0}
� GLm1 × · · · × GLmr ×Gm0 ,

∑
0�i�r

mi = n.

Here τxi is the transpose of xi with respect to the second diagonal, and we allow the situation of
m0 = 0. The maximal subtorus of Z(M) is

A = {x = diag(x1Im1 , . . . , xrImr , I2m0+1, x
−1
r Imr , . . . , x

−1
1 Im1); xi ∈ GL(1)}.

Let Ei be the character of A sending x to xi for 1 � i � r. Then

Σr(A,P ) = {Ei ± Ej; 1 � i < j � r} ∪ {Ei; 1 � i � r}.
Now we consider the L-group of G. We realize LGo as a closed subgroup of GL2n(C) by letting

LGo = {g ∈ GL2n(C); tgJ ′
2ng = J ′

2n, },
where J ′

2n =
(

Jn
−Jn ). Fix a maximal torus LT o of LGo,

LT o = {diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 ); xi ∈ GL1(C)},
and the Borel subgroup LBo of LGo containing LT o, which consists of all upper-triangular matrices
in LGo. We still use ei for the character of LT o sending x to xi. Then the root base with respect
to LT o and LBo is ∆∨ = {α∨

1 , . . . , α
∨
n}, where α∨

i = ei − ei+1 for 1 � i � n − 1 and α∨
n = 2en.

The L-group LM of M is a Levi subgroup of LG and
LMo = {diag(x1, . . . , xr, x0,

τx−1
r , . . . , τx−1

1 ); xi ∈ GLmi(C), 1 � i � r, x0 ∈ LGo
m0

}
� GLm1(C) × · · · × GLmr(C) × LGo

m0
,

∑
0�i�r

mi = n.

Let LAo be the maximal torus of Z(LMo). We have
LAo = {diag(x1Im1 , . . . , xrImr , I2m0 , x

−1
r Imr , . . . , x

−1
1 Im1); xi ∈ C×}.

We also use Ei for the characters of LAo sending x to xi. Then

Σr(LAo, LP o) =

{
{Ei ± Ej ; 1 � i < j � r} ∪ {Ei; 1 � i � r} if m0 
= 0
{Ei ± Ej ; 1 � i < j � r} ∪ {2Ei; 1 � i � r} if m0 = 0.
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For β ∈ Σr(A,P ), it can be verified that

β∨ =


Ei ± Ej, if β = Ei ± Ej for 1 � i < j � r

Ei, if β = Ei, 1 � i � r and m0 > 0
2Ei, if β = Ei, 1 � i � r and m0 = 0.

For β ∈ Σr(A,P ), W (A,Mβ) has order two if and only if β = Ei ± Ej with mi = mj for
1 � i < j � r or β = Ei for 1 � i � r.

We now describe the actions of W (A,G) and W (LAo, LAo) on M and LMo, respectively. Let β ∈
Σr(A,P ) such that W (A,Mβ) has order two, and let x ∈ M and y ∈ LMo. The element sβ (re-
spectively, sβ∨) acts on M (respectively, LMo) by exchanging xi and xj (respectively, yi and yj) if
β = Ei − Ej , by changing xi to τx−1

j and xj to τx−1
i (respectively, yi to τy−1

j and yj to τy−1
i )

if β = Ei + Ej , by changing xi to τx−1
i (respectively, yi to τy−1

i ) if β = Ei. The group W (A,G) is
generated by sβ, β ∈ Σr(A,G), such that W (A,Mβ) has order two. So, for ω ∈W (A,G), ω acts on
M by a permutation p on x1, . . . , xr and changing xi1, . . . , xik to τx−1

i1
, . . . , τx−1

ik
, if and only if η(ω)

acts on LMo by the same permutation p on y1, . . . , yr and changing yi1, . . . , yik to τy−1
i1
, . . . , τy−1

ik
,

for x ∈M , y ∈ LMo. We record this fact in the following lemma.

Lemma 3.1. The group W (LAo, LGo) acts on LMo in the same way (in the sense above) as W (A,G)
acts on M .

Let π be a discrete series representation of M(F ). Set

W (π) = {ω ∈W (A,G); ωπ � π}.
For β ∈ Σr(A,G), we denote the Plancherel measure for β and π by µβ(·, π), see [Sil79]. We call

β a special root of π if µβ(0, π) = 0. It is known that the set of special roots of π forms a root
system. Suppose that β is a special root for π. Then W (A,Mβ) has order two and sβ is in W (π)
[Sil79]. We define W o(π) as the subgroup of W (π) generated by sβ, where β ∈ Σr(A,P ) and is
special for π. The subgroup W o(π) is a normal subgroup of W (π), since µωβ(0, π) = µβ(0, π) for
ω ∈W (π). The classical R-group R(π) of π satisfies R(π) �W (π)/W o(π) (see [Sil78]).

Suppose that β ∈ Σr(A,P ). Let Lg and Lnβ be the Lie algebras of LGo and LNo
β , respectively.

Denote by rβ the adjoint representation of LM on Lnβ. Since G is split over F , WF acts on Lg

trivially. The representation rβ has a one form of the following forms:

rβ =


ρmi ⊗ ρ̃mj or ρmi ⊗ ρmj , 1 � i < j � r, or
ρmi ⊗ ρ̃′m0

⊕ Sym2 ρmi , 1 � i � r, or
Sym2 ρmi , 1 � i � r.

The third situation only happens when m0 = 0. Here ρm and ρ′m are the standard representations of
GLm(C) and Sp2m(C), respectively, Sym2 ρm is the symmetric square of ρm. Shahidi [Sha81, Sha90]
defined the L-function L(s, π, rβ) and ε-factor for each irreducible generic admissible representation
π of M(F ) and each rβ for β ∈ Σr(A,P ). The Plancherel measures are closely related to the
L-functions and ε-factors, see § 3.1 of [Sha81].

For each β∨ ∈ Σ(LAo, LGo), we define
Lgβ∨ = ⊕Lgα∨

where α∨ runs over the roots of LT o in LGo restricting to β∨, and Lgα∨ is the root space of α∨ in
Lg. Then

Lnβ =

{
Lgβ∨ ⊕ Lg2β∨ if rβ = ρmi ⊗ ρ̃′m0

⊕ Sym2 ρmi ,
Lgβ∨ otherwise.
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When rβ = ρmi ⊗ ρ̃′m0
⊕ Sym2 ρmi ,

Lgβ∨ is the space that ρmi ⊗ ρ̃′m0
acts on, and Lg2β∨ is the space

that Sym2 ρmi acts on. One can see this from [Sha88], or by direct computation.
To continue, we need the following lemma on Artin L-functions. Here we adopt the proof due

to Alan Roche, rather than our own which invokes the result of local Langlands correspondence for
GL.

Lemma 3.2. Let r = r′ ⊗ Sn be an irreducible finite-dimensional representation of W ′
F with r′

bounded. Then the Artin L-function L(s, r) has a pole at s = 0 if and only if r is the trivial
representation of W ′

F , i.e. n = 1 and r′ is the one-dimensional trivial representation of WF .

Proof. (Roche) Recall that
L(s, r) = L(s+ (n− 1)/2, r′).

Suppose that L(s, r) has a pole at s = 0. Let V be the representation space of r′. V IF is a
WF invariant subspace of V , since IF is normal in WF . Since (r′, V ) is irreducible, V IF = 0 or V .
In the first case, we get L(s, r′) = 1, hence L(s, r) = 1 has no poles. In the second case, (r′, V ) is an
irreducible representation of WF /IF � Z. So, r′ must be one-dimensional and unramified. Since r′ is
bounded and L(s+(n−1)/2, r′) has a pole at s = 0, we see that n = 1 and r′ is the one-dimensional
trivial representation of WF .

Conversely, if n = 1 and r′ is the one-dimensional trivial representation of WF , then L(s, r) =
(1 − q−s)−1 has a pole at s = 0.

At this point, we make a comment on Theorem 2.2 of Jiang and Soudry in [JS04]. In Theorem 4.2
of [JS04], the authors proved that there is a bijection between the set of tempered L-parameters
of SO(2n + 1) and the set of equivalence classes of generic irreducible tempered representations
such that the Rankin–Selberg L-functions and ε-factors for SO(2n + 1) and GL are preserved.
In Theorem 2.2 of [JS04], the authors proved that generic discrete series representations correspond
to a subset of elliptic tempered L-parameters. We comment that this subset is actually the whole
set of elliptic tempered L-parameters. In fact, if φ is a tempered L-parameter corresponding to
an irreducible generic tempered representation that is not a discrete series representation, then φ
must factor through a proper Levi subgroup of Sp2n(C), by the construction of such a tempered
L-parameter in the proof of Theorem 4.2 of [JS04].

Theorem 3.1. Let φ be an elliptic tempered L-parameter ofM . Assume that all members of Πφ(M)
have the same Plancherel measures. Then, for any π ∈ Πφ(M):

(1) Wφ = Wφ,π �W (π);
(2) W o

φ = W o
φ,π �W o(π);

(3) Rφ = Rφ,π � R(π).

Proof. Theorem 3.1(3) comes from (1) and (2).
Let

φ = φ1 ⊕ · · · ⊕ φr ⊕ φ0

be an elliptic tempered L-parameter of M , and

π = π1 ⊗ · · · ⊗ πr ⊗ π0

be a discrete series representation of M(F ) in the L-packet Πφ(M).
The group W (A,G) acts on π by taking a permutation on π1, . . . , πr and taking some of the fac-

tors πi to their contragredients. So does W (LAo, LGo) on φ. Let ω ∈W (A,G). Then by Lemma 3.1,
the permutation of η(ω) on φ1, . . . , φr is the same permutation of ω on π1, . . . , πr, and ω takes πi
to its contragredient if and only if η(ω) takes φi to its contragredient.
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The action of W (A,G) has nothing to do with the L-packet of Gm0 containing π0. Since every
L-packet of GL consists of one element, we have that W (π) = W (π′) for π and π′ in a same L-packet
of M . Therefore, η(ω)(φ) ∼ φ if and only if ω ∈W (π). Lemma 2.3 now implies Theorem 3.1(1).

Since all the members of Πφ(M) have the same Plancherel measures, W o(π) = W o(π′) for
π, π′ ∈ Πφ(M).

Theorem 2.2 of [JS04] implies that there is a unique generic member in Πφ0(SO(2m0 + 1)).
We assume that π0 is generic. So π is generic, since every discrete series representation of GL is
generic. For a root β in Σr(A,P ), µβ(0, π) = 0 if and only if L(s, π, rβ) has a pole at s = 0 (see
[Zha99]).

By the results on Langlands correspondence proved by Harris and Taylor [HT01] and Henniart
[Hen00] for GL,

L(s, π, ρmi ⊗ ρ̃mj ) = L(s, ρmi ⊗ ρ̃mj ◦ φ),
L(s, π, ρmi ⊗ ρmj ) = L(s, ρmi ⊗ ρmj ◦ φ).

Theorem 2.2 in [JS04] for SO(2n + 1) states that

L(s, π, ρmi ⊗ ρ̃′m0
) = L(s, ρmi ⊗ ρ̃′m0

◦ φ)

and the recent work of Henniart tells us that

L(s, π,Sym2 ρmi) = L(s,Sym2 ρmi ◦ φ).

Thus,

L(s, π, rβ) = L(s, rβ ◦ φ).

Therefore, µβ(0, π) = 0 if and only if L(s, rβ ◦ φ) has a pole at s = 0.

By Lemma 3.2, the Artin L-function L(s, rβ◦φ) has a pole at s = 0 if and only if rβ◦φ contains the
one-dimensional trivial representation ofW ′

F . Let sφ be the Lie algebra of So
φ. Therefore, µβ(0, π) = 0

if and only if there is a nonzero vector Xo in Lgβ∨ or Lg2β∨ such that (rβ◦φ(W ′
F ))(Xo) = Xo. We can

always choose Xo in a neighborhood U of 0 in Lg, where the exponential map exp of Lg to LGo

exists and is bijective. So Xo ∈ sφ if and only if exp(Xo) ∈ So
φ. Since exp(rβ(x)(X)) = x−1 exp(X)x

for x ∈ LMo and X ∈ U , we see that µβ(0, π) = 0 if and only if sφ ∩ Lnβ 
= 0, and if and
only if sφ ∩ Lgβ∨ 
= 0 or sφ ∩ Lg2β∨ 
= 0. Therefore, β∨ or 2β∨ is in Σ(LAo, So

φ), depending on
sφ∩Lgβ∨ 
= 0 or sφ∩Lg2β∨ 
= 0. Remark (1) following Lemma 2.1 states that LAo is a maximal torus
of So

φ, so Σ(LAo, So
φ) is a reduced root system. Therefore, β∨ and 2β∨ are not both in Σ(LAo, So

φ).
Conversely, by reversing the argument above, for each positive root γ in Σ(LAo, So

φ), we can associate
a unique reduced root β ∈ Σr(A,P ) that is special for π and such that β∨ or 2β∨ is equal to γ.
The group W (LAo, So

φ) is generated by the reflections rγ , where γ ∈ Σ(LAo, So
φ). Lemma 2.4 states

that η(sβ) = sβ∨ . We need to prove that sβ∨ = rγ , where γ = β∨ or 2β∨. Let Sγ = ZSo
φ
((LAo)γ).

Since LAo is a maximal torus of So
φ, W (LAo, Sγ) has order two and W (LAo, Sγ) = {1, rγ}. Note that

Sγ ⊂ (LMo)β∨ . So, W (LAo, Sγ) ⊂ W (LAo, (LMo)β∨) = W (LAo, LMo
β). Both of them have order two,

thus W (LAo, Sγ) = W (LAo, LMo
β). It follows that sβ∨ = rγ . Therefore, W o(π) is isomorphic to W o

φ

under η. We have finished the proof of (2).

Remark. The proof of Theorem 3.1(2) can actually be applied to connected reductive split groups,
as long as the equalities between Langlands–Shahidi L-functions and corresponding Artin
L-functions are established.
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4. Generic representations and the Aubert involution

A basic step in computing Langlands parameters for nontempered representations is to find cor-
responding Langlands data. Lemma 4.2 describes Langlands data for the Aubert involution of a
generic representation.

Let us first introduce some notation related to parabolic induction and segments. For admissible
representations ρ1, ρ2 of GL(k1, F ), GL(k2, F ) respectively, we define

ρ1 × ρ2 = IndG(F )
P (F )(ρ1 ⊗ ρ2),

where P (F ) is the standard parabolic subgroup of G(F ) = GL(k1+k2, F ) corresponding to the stan-
dard Levi subgroupM(F ) ∼= GL(k1, F )×GL(k2, F ) (see [BZ77]). If ρ is an admissible representation
of GL(k, F ) and π is an admissible representation of SO(2m+ 1, F ), then we define

ρ� π = IndG(F )
P (F )(ρ⊗ π),

where P (F ) is the standard parabolic subgroup of G(F ) = SO(2(k +m) + 1, F ) corresponding to
the standard Levi subgroup M(F ) ∼= GL(k, F ) × SO(2m+ 1, F ) (see [Tad95]).

Let ν denote |det|. Let ρ be an irreducible supercuspidal representation of GL(k, F ) and n a
nonnegative integer. The set [ρ, νnρ] = {ρ, νρ, . . . , νnρ} is called a segment. We know from [Zel80]
that the representation νnρ× νn−1ρ× · · · × ρ has a unique irreducible subrepresentation δ[ρ, νnρ].
This subrepresentation is square integrable if the segment is balanced, i.e. of the form [ν−mρ, νmρ],
where ρ is unitary and m is half an integer. As in [JS04], we define

∆(ρ,m) = δ[ν−mρ, νmρ],

for a balanced segment. The representation νnρ× νn−1ρ× · · · ×ρ has a unique irreducible quotient,
which we denote by ζ[ρ, νnρ].

For a representation π, we denote the contragredient of π by π̃. If π̃ ∼= π, we say that π is
self-dual. For a segment Σ = [ρ, νnρ], we define

Σ̃ = [ν−nρ̃, ρ̃].

Let DM(F ) be the Aubert duality operator [Aub95] (also, cf. [SS97]). If π is an irreducible represen-
tation of M(F ), we denote the representation ±DM(F )(π) by π̂, taking the sign + or − so that π̂ is
a positive element in the Grothendieck group. We call π̂ the Aubert involution of π. For GL(n,F ),
the Aubert involution coincides with the Zelevinsky involution and

δ̂(Σ) = ζ(Σ), ν̂αδ(Σ) = ναζ(Σ). (2)

Suppose ρ is an irreducible supercuspidal unitary representation of GL(k, F ) and π a generic
supercuspidal representation of SO(2m+ 1, F ). If ρ � ρ̃, then νβρ� π is irreducible, for any β ∈ R.
If ρ ∼= ρ̃, there exists α ∈ {0, 1

2 , 1} such that ν±αρ � π is reducible and νβρ � π is irreducible for
|β| 
= α (see [Sha90]). We say that the pair (ρ, π) satisfies (Cα).

We refer to [Rod73] for the definition of a generic representation, i.e. an irreducible admissible
representation having a Whittaker model. We extend this definition to an admissible representation
π by saying that π is generic if it has an irreducible generic subquotient. An irreducible admissi-
ble representation admits at most one Whittaker model with respect to the generic character θ.
A ‘heredity’ property of Whittaker models with respect to parabolic induction is described by
Theorem 2 of [Rod73]. We interpret these results for SO(2n+ 1, F ) in the following lemma.

Lemma 4.1. Let ρi, i = 1, . . . , q, be an irreducible admissible representation of GL(ki, F ) and τ an
irreducible admissible representation of SO(2n′ + 1, F ). Then the induced representation

ρ1 × · · · × ρq � τ
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has at most one generic component. The representation ρ1 × · · · × ρq � τ is generic if and only if ρi,
i = 1, . . . , q, and τ are generic.

Proof. The proof follows from [Rod73, Theorems 2 and 3], using the fact that all generic characters
of SO(2n + 1, F ) are T -equivalent.

Before we proceed, let us review the Langlands classification for SO(2n+1, F ). Suppose that ρi is
an irreducible square integrable representation of GL(ni, F ), i = 1, . . . , k and α1 � · · · � αk > 0 are
real numbers. Let τ be a tempered representation of SO(2�+1, F ). Then the induced representation
να1ρ1 × · · ·× ναkρk � τ has a unique irreducible quotient, which we call the Langlands quotient and
denote by L(να1ρ1, . . . , ν

αkρk, τ). For any irreducible admissible representation π of SO(2n+ 1, F ),
there exist Langlands data να1ρ1, . . . , ν

αkρk, τ as above, such that π = L(να1ρ1, . . . , ν
αkρk, τ).

Equivalently, we could formulate the Langlands classification with ρ1, . . . , ρk tempered and α1 >
· · · > αk > 0, which is the usual form of Langlands data. The connection between two forms of
Langlands data comes from the irreducibility of induced-from-unitary representations of GL(n,F ).
In particular, if ρ is a tempered representation of GL(n,F ), then ρ ∼= δ1 × · · · × δs, for some square
integrable representations δ1, . . . , δs.

Lemma 4.2. Let π be an irreducible generic representation of SO(2n + 1, F ) and π̂ its Aubert
involution. Let

να1ρ1 ⊗ · · · ⊗ ναqρq ⊗ τ

be the Langlands data of π̂: α1 � · · · � αq > 0, ρi is an irreducible square integrable representation
of GL(ki, F ), τ is an irreducible tempered representation of SO(2n′ + 1, F ) and π̂ is the unique
quotient of the induced representation

να1ρ1 × · · · × ναqρq � τ.

Then ρi, i = 1, . . . , q, is supercuspidal and τ is a subrepresentation of

ρq+1 × · · · × ρr � σ,

where ρi, i = q + 1, . . . , r, is a supercuspidal unitary representation of GL(ki, F ) and σ is a super-
cuspidal representation of SO(2n′′ + 1, F ), kq+1 + · · · + kr + n′′ = n′.

Proof. In the Grothendieck group, the Aubert involution commutes with parabolic induction
[Aub95, Theorem 1.7]. By applying the Aubert involution to να1ρ1 × · · · × ναqρq � τ , we conclude
that π = ˆ̂π is a component of

να1 ρ̂1 × · · · × ναq ρ̂q � τ̂ .

This representation is generic, because it has the generic subquotient π. Lemma 4.1 tells us that
ρ̂i, i = 1, . . . , q, and τ̂ are generic. Let i ∈ {1, . . . , q}. The representation ρi is a square integrable
representation of GL(ki, F ), therefore ρi = δ(Σi) for a balanced segment Σi. According to [Zel80,
Theorem 9.7], ρ̂i = ζ(Σi) is generic if and only if ρ̂i is supercuspidal. It follows that ρi is supercus-
pidal.

The tempered representation τ is a subrepresentation of a representation induced from a square
integrable representation. Therefore, τ is a subrepresentation of

δ(Σq+1) × · · · × δ(Σr) � τ0

where the segments Σq+1, . . . ,Σr are balanced and τ0 is square integrable. We apply Theorem 1.1
of [Jan00], which describes square integrable representations of odd-orthogonal groups. It follows
that τ is a subrepresentation of

δ(Σq+1) × · · · × δ(Σr) × δ(Σr+1) × · · · × δ(Σs) � σ, (3)
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where the segments Σq+1, . . . ,Σr are balanced and Σr+1, . . . ,Σs, σ satisfy conditions from
Theorem 1.1 of [Jan00]. One of the conditions is that σ is supercuspidal. In the Grothendieck
group, the Aubert involution of (3) is equal to

ζ(Σq+1) × · · · × ζ(Σr) × ζ(Σr+1) × · · · × ζ(Σs) � σ. (4)

It is generic because it has the generic component τ̂ . It follows that δ(Σi) is supercuspidal, for all
i ∈ {q+1, . . . , r, r+1, . . . , s}, and σ is generic. In particular, for i ∈ {q+1, . . . , r}, the representation
δ(Σi) ∼= ρi is supercuspidal and unitary.

Now we follow notation of [Jan00]. According to Theorem 1.1 of [Jan00], we consider an
irreducible square integrable representation Π, which is a subrepresentation of the representation
parabolically induced from δ0(Π), where

δ0(Π) = δ[ν−c1ρ, νd1ρ] ⊗ · · · ⊗ δ[ν−ckρ, νdkρ] ⊗ σ

and conditions of Theorem 1.1 [Jan00] are satisfied. We consider the case when δ[ν−ciρ, νdiρ] is
supercuspidal, for all i, which implies −ci = di.

Suppose (ρ, σ) satisfies (Cα), i.e. α � 0 and ν±αρ� σ is reducible. Since σ is supercuspidal and
generic, α ∈ {0, 1

2 , 1}. Let β be as in [Jan00]. Then k is equal to the number of elements in the set
{−β,−β − 1, . . . ,−α}. We claim that k = 0.

(1) If (ρ, σ) satisfies (C1), then α = 1 and 0 < β � 2. If β = 1, then

δ0(Π) = νρ⊗ σ.

The representation νρ � σ has a unique generic square integrable representation δ. Then δ̂
is not generic. This contradicts the fact that (4) has a generic subquotient. If β = 2, then
{−β,−β − 1, . . . ,−α} = ∅.

(2) If (ρ, σ) satisfies (C 1
2), then α = 1

2 and 0 < β � 3
2 . The proof is similar to (1).

(3) If (ρ, σ) satisfies (C0), then α = 0 and 0 < β � 1. It follows that β = 1 and {−β,−β −
1, . . . ,−α} = ∅.

The claim follows. In particular, {r+1, . . . , s} = ∅ and the conditions of the lemma are fulfilled.

Corollary 4.1. Let π be an irreducible generic square-integrable representation of SO(2n+ 1, F )
and π̂ its Aubert involution. Suppose that π is not supercuspidal. Then π̂ is non-tempered.

Proof. The proof follows from Lemma 4.2, using Casselman’s square-integrability criterion.

5. L-parameters and R-groups of generic discrete series and their involutions

We first review the description of all irreducible generic square integrable representations of
SO(2n+ 1, F ) in [Mui98, Tad02].

Theorem 5.1 Muić [Mui98] and Tadić [Tad02].

(a) Let σ be a generic supercuspidal representation of SO(2n′ + 1, F ) and

Σi = [ν−aiρi, νbiρi], 2bi ∈ Z+, 2ai ∈ Z, ρi ∼= ρ̃i, i = 1, . . . , k

a set of segments satisfying the following.

(i) bi > ai.
(ii) (1) If (ρi, σ) satisfies (C 1

2), then bi ∈ 1
2 + Z, ai � −1

2 .

(2) If (ρi, σ) satisfies (C0), then bi ∈ Z, ai � 0.
(3) If (ρi, σ) satisfies (C1), then bi ∈ Z, ai � −1, ai 
= 0.

336

https://doi.org/10.1112/S0010437X04001113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001113


Arthur R-groups and classical R-groups for SO(2n+ 1)

(iii) If ρi ∼= ρj for i 
= j, then either bi < aj or bj < ai.

Then, the representation δ(Σ1 ∩ Σ̃1) × · · · × δ(Σk ∩ Σ̃k) � σ has a unique irreducible generic
subrepresentation, denote it by τ . The representation δ(Σ1 \ Σ̃1) × · · · × δ(Σk \ Σ̃k) � τ has a
unique irreducible subrepresentation which we denote by

δ(Σ1, . . . ,Σk, σ)τ .

The representation δ(Σ1, . . . ,Σk, σ)τ is square integrable, generic.

(b) Suppose that π is an irreducible square integrable generic representation of SO(2n + 1, F ).
Then there exists a unique σ and a unique set of segments {Σ1, . . . ,Σk} satisfying (i)–(iii) such
that π ∼= δ(Σ1, . . . ,Σk, σ)τ .

We fix π ∼= δ(Σ1, . . . ,Σk, σ)τ as in Theorem 5.1. Let

P = {1, . . . , k}.
Denote by r the local Langlands reciprocity map for GL(F ) [HT01, Hen00]. Let φi be the Langlands
parameter for ρi, i.e. r(φi) = ρi. For α = 0, 1

2 , 1, define the following subsets of P :

Cα = {i ∈ P | (ρi, σ) satisfies (Cα), ai � 0},
C−1 = {i ∈ P | ai = −1},
C− 1

2
= {i ∈ P | ai = −1

2},
P0 = {i ∈ P | ai � 0} = C0 ∪ C 1

2
∪ C1.

Lemma 5.1. Let π = δ(Σ1, . . . ,Σk, σ)τ . Let {l1, . . . , lt} be the multiset

{|ji| | i ∈ P, ji ∈ {−ai,−ai + 1, . . . , bi} \ {0}}
written in a nonincreasing order. For ls = |ji|, let ρls = ρi. Let τ0 be the unique generic component
of (

×
i∈C0∪C1

ρi

)
� σ.

Then π̂ is the Langlands quotient of the induced representation

νl1ρl1 × · · · × νltρlt � τ̂0.

Proof. Let

Π = (νb1ρ1 ⊗ νb1−1ρ1 ⊗ · · · ⊗ ν−a1ρ1) ⊗ · · · ⊗ (νbkρk ⊗ νbk−1ρk ⊗ · · · ⊗ ν−akρk) ⊗ σ.

Denote by P (F ) the standard parabolic subgroup corresponding to Π. We consider the full-induced
representation IndG(F )

P (F ) Π. Then π is a subrepresentation of IndG(F )
P (F ) Π and, by Corollary 4.2 of

[Ban02], π̂ is a quotient of IndG(F )
P (F ) Π. Lemma 4.2 tells us that π̂ is a quotient of

να1δ1 × · · · × ναqδq × δq+1 × · · · × δr � σ,

where α1 � · · · � αq > 0 and δi are supercuspidal unitary representations. It follows from [Cas74,
Corollary 6.3.7] and from the description of the Weyl group for odd-orthogonal groups [Tad95] that
να1δ1 ⊗ · · · ⊗ ναqδq ⊗ δq+1 ⊗ · · · ⊗ δr ⊗ σ can be obtained from Π by permutations and taking
contragredients. The condition on α1, . . . , αq implies that {α1, . . . , αq} = {l1, . . . , lt}. Therefore, π̂
is a quotient of

νl1ρl1 × · · · × νltρlt ×
(

×
i∈C0∪C1

ρi

)
� σ.

In particular, π̂ is a quotient of the induced representation

νl1ρl1 × · · · × νltρlt � τ ′, (5)
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where τ ′ is a component of (
×

i∈C0∪C1

ρi

)
� σ.

Note that (5) is Langlands data. It has the unique quotient π̂. Then π is a component of (νl1ρl1 ×
· · · × νltρlt � τ ′)̂, which has the same irreducible factors as νl1ρl1 × · · · × νltρlt � τ̂ ′. We conclude
that τ̂ ′ is generic, so τ ′ = τ̂0.

Theorem 5.2. Let π be an irreducible generic square integrable representation of SO(2n + 1, F ).
Write π ∼= δ(Σ1, . . . ,Σk, σ)τ as in Theorem 5.1. Let

�(π) = ρk+1 × · · · × ρl

be the local Langlands functorial lift of π defined in [JS04]. Define

A = {k + 1, . . . , l},
A0 = A \ {j ∈ A | ρj ∼= ρi for some i ∈ C−1}.

Then

�(π) =
(

×
i∈P

∆(ρi, bi)
)
×

(
×
i∈P0

∆(ρi, ai)
)
×

(
×
i∈A0

ρi

)
.

The Langlands parameter for π is(⊕
i∈P

φi ⊗ S2bi+1

)
⊕

( ⊕
i∈P0

φi ⊗ S2ai+1

)
⊕

( ⊕
i∈A0

φi ⊗ S1

)
. (6)

The Langlands parameter for π̂ is(⊕
i∈P

bi⊕
j=−ai
j �=0

(| · ||j|φi⊗S1⊕|· |−|j|φi⊗S1)
)
⊕

( ⊕
i∈C0∪C1

φi⊗S1

)
⊕

( ⊕
i∈A

φi⊗S1

)
⊕

( ⊕
i∈C0∪C1

φi⊗S1

)
,

which is equal to (⊕
i∈P

bi⊕
j=−ai

(| · ||j|φi ⊗ S1 ⊕ | · |−|j|φi ⊗ S1)
)
⊕

(⊕
i∈A

φi ⊗ S1

)
. (7)

Proof. According to [JS03, Theorem 6.1] and [JS04, proof of Theorem 2.1] (cf. also [Zha99, Propo-
sition 4.1]), we have:

(i) if i, j ∈ A, i 
= j, then ρi � ρj;
(ii) {ρi | i ∈ A} = {ρ | (ρ, σ) satisfies (C1)}.

The local Langlands functorial lift of σ follows from [JS04, proof of Theorem 2.1]. According to
[JS04, (2.32)], the lift �(π) is the generic constituent of

×
i∈P

(δ(Σi) × δ(Σ̃i)) × �(σ). (8)

The proof of Theorem 2.1 in [JS04] describes different pieces of (8) and corresponding generic
constituents. The P0-piece comes from (2.39), (2.43) and (2.45) of [JS04]:

×
i∈P0

(∆(ρi, ai) × ∆(ρi, bi)). (9)

We obtain the C−1-piece from (2.41) of [JS04], by eliminating the part that is included in (9).
The C−1-piece is

×
i∈C−1

∆(ρi, bi). (10)
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In a similar way, we obtain the C− 1
2
-piece from (2.47) of [JS04]:

×
i∈C−1/2

∆(ρi, bi). (11)

Now the lift �(π) follows from (9), (10) and (11):

�(π) =
(

×
i∈P

∆(ρi, bi)
)
×

(
×
i∈P0

∆(ρi, ai)
)
×

(
×
i∈A0

ρi

)
.

Let C∗
0 be a subset of C0 such that {ρi | i ∈ C∗

0} contains exactly one copy of ρ, for each
ρ ∈ {ρi | i ∈ C0}. Let C∗∗

0 = C0 \ C∗
0 . Denote by τ0 the unique generic constituent of(

×
i∈C0∪C1

ρi

)
� σ =

(
×

i∈C1∪C∗∗
0

ρi

)
×

(
×
i∈C∗

0

ρi

)
� σ. (12)

The representation (×i∈C∗
0
ρi)�σ has a unique generic subrepresentation τ1, which is elliptic. Then by

[JS04, proof of Theorem 3.1, (3.12)],

�(τ1) =
(

×
i∈C∗

0

ρi

)
×

(
×
i∈A

ρi

)
×

(
×
i∈C∗

0

ρi

)
.

The representation (×i∈C1∪C∗∗
0
ρi) � τ1 is irreducible, generic and it is equal to τ0. According to

[JS04, proof of Theorem 4.1, (4.25)],

�(τ0) =
(

×
i∈C1∪C∗∗

0

ρi

)
× �(τ1) ×

(
×

i∈C1∪C∗∗
0

ρi

)
=

(
×

i∈C0∪C1

ρi

)
×

(
×
i∈A

ρi

)
×

(
×

i∈C0∪C1

ρi

)
.

The parameter for τ0 is( ⊕
i∈C0∪C1

φi ⊗ S1

)
⊕

(⊕
i∈A

φi ⊗ S1

)
⊕

( ⊕
i∈C0∪C1

φi ⊗ S1

)
.

Let {l1, . . . , lt} be the multiset

{|ji| | i ∈ P, ji ∈ {−ai,−ai + 1, . . . , bi} \ {0}}
written in a nonincreasing order. Then π̂ is the Langlands quotient of the induced representation
νl1ρl1 × · · · × νltρlt � τ̂0. The Langlands parameter of a Langlands quotient (for SO(2n + 1, F )) is
described in [JS04, Proposition 6.1 and Theorem 6.1]. According to (6.5), (6.9) and (6.2) of [JS04],
the Langlands parameter of π̂ is( t⊕

s=1

(| · |lsr−1(ρls) ⊗ S1 ⊕ | · |−lsr−1(ρls) ⊗ S1)
)
⊕ ϕ(τ̂0)

=
( ⊕
i∈P

bi⊕
j=−ai
j �=0

(| · ||j|φi ⊗ S1 ⊕ | · |−|j|φi ⊗ S1)
)
⊕ ϕ(τ̂0),

which is equal to(⊕
i∈P

bi⊕
j=−ai
j �=0

(| · ||j|φi ⊗ S1 ⊕ | · |−|j|φi ⊗ S1)
)
⊕

( ⊕
i∈C0∪C1

φi ⊗ S1

)

⊕
(⊕
i∈A

φi ⊗ S1

)
⊕

( ⊕
i∈C0∪C1

φi ⊗ S1

)
.
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Here, we use the fact that τ0 and τ̂0 have the same parameter, which can be explained as follows.
From (12), τ0 is the unique generic constituent of(

×
i∈C0∪C1

ρi

)
� σ. (13)

Corollary 4.2 of [Ban02] tells us τ̂0 is a component of (13). Therefore, τ0 and τ̂0 are tempered
representations induced from the same discrete series representation. Langlands’ original construc-
tion of L-packets for real groups, from discrete series L-packets, based on the Langlands classification
[Lan89], can be repeated for p-adic groups. Tempered L-packets are then defined by inducing from
discrete series L-packets on Levi factors [Sha90, § 9]. In particular, tempered representations coming
from a single discrete series are a part of the same L-packet.

Corollary 5.1. Let π be a generic discrete representation of G(F). Let

ψ : WF × SL(2,C) × SL(2,C) → Sp(2n,C)

be the A-parameter of π and ψ̂ the A-parameter of π̂. Then,

ψ̂(w, x, y) = ψ(w, y, x).

In particular, ψ̂ and ψ have the same image in Sp(2n,C).

Proof. First, let us consider an A-parameter of the form

ψ1 = φ⊗ Sm ⊗ Sn. (14)

Let φψ1 denote the L-parameter corresponding to ψ1, defined by (1). From the definition of Sn,
which is the n-dimensional irreducible complex representation of SL2(C), we see that

φ(w) ⊗ Sn

((|w|1/2
|w|−1/2

))
=

⊕
−(n−1)/2�j�(n−1)/2

φ(w)|w|j .

It follows that

φψ1 =
(n−1)/2⊕

j=−(n−1)/2

| · |jφ⊗ Sm. (15)

Now, let Σ1, . . . ,Σk, σ and π = δ(Σ1, . . . ,Σk, σ)τ be as in Theorem 5.2. The L-parameters of π
and π̂ are computed in Theorem 5.2. Denote by ψ the A-parameter of π. Since π is tempered, we
read ψ directly from (6):

ψ =
(⊕
i∈P

φi ⊗ S2bi+1 ⊗ S1

)
⊕

( ⊕
i∈P0

φi ⊗ S2ai+1 ⊗ S1

)
⊕

( ⊕
i∈A0

φi ⊗ S1 ⊗ S1

)
. (16)

Define

ψ̂ =
(⊕
i∈P

φi ⊗ S1 ⊗ S2bi+1

)
⊕

( ⊕
i∈P0

φi ⊗ S1 ⊗ S2ai+1

)
⊕

( ⊕
i∈A0

φi ⊗ S1 ⊗ S1

)
. (17)

We claim ψ̂ is the A-parameter of π̂. Indeed, (15) and (17) imply that

φψ̂ =
(⊕
i∈P

bi⊕
j=−bi

| · |jφi ⊗ S1

)
⊕

( ⊕
i∈P0

ai⊕
j=−ai

| · |jφi ⊗ S1

)
⊕

( ⊕
i∈A0

φi ⊗ S1

)

=
(⊕
i∈P

bi⊕
j=−ai

(| · ||j|φi ⊗ S1 ⊕ | · |−|j|φi ⊗ S1)
)
⊕

(⊕
i∈A

φi ⊗ S1

)
.
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This is precisely the L-parameter of π̂, given by (7). Therefore, ψ̂ is the A-parameter of π̂. If we
compare (16) and (17), we see that ψ̂(w, x, y) = ψ(w, y, x). It follows that ψ and ψ̂ have the same
image in LG.

Theorem 5.3. Let G = SO(2n + 1), M = GLm1 × · · · × GLmr × Gm0 a Levi subgroup of G, and
π = π1 ⊗ · · · ⊗ πr ⊗ π0 a generic discrete representation of M(F ). Assume that all the members in
the L-packet containing π have same Plancherel measures. In addition, assume π̂ is unitary. Then

Rψ,π̂ � R(π̂), where ψ = ψ(π̂).

Proof.
ψ(π̂) = ψ(π̂1) ⊕ · · · ⊕ ψ(π̂r) ⊕ ψ(π̂0).

By Corollary 5.1, ψ(π̂0) and φ(π0) have the same image. Let i ∈ {1, . . . , r}. Since πi is square
integrable, it is of the form πi = ∆(ρi, (bi − 1)/2), where bi ∈ Z and ρi is a unitary supercuspidal
representation of GLbi(F ). Then φ(πi) = φ(ρi) ⊗ Sbi [Zel80, § 10]. It follows from (2) that π̂i is
the Langlands quotient of the induced representation ν(bi−1)/2ρi × · · · × ν−(bi−1)/2ρi. According to
[Zel80, § 10], the L-parameter of π̂i is

φ(π̂i) = | · |(bi−1)/2φ(ρi) × · · · × | · |−(bi−1)/2φ(ρi).

Equations (14) and (15) imply that

ψ(π̂i) = φ(ρi) ⊗ Sbi ⊗ S1.

So ψ(π̂i) and φ(πi) have the same image. Therefore, ψ(π̂) and φ(π) have the same image in LG.
Let ψ = ψ(π̂), φ = φ(π). It follows that

Wψ = Wφ, W o
ψ = W o

φ .

The Aubert involution π̂ is certainly an element in the A-packet Πψ(M) of ψ [Art89a]. By definition,

Wψ,π̂ = {ω ∈Wψ; ωπ̂ � π̂},
W o
ψ,π̂ = {ω ∈W o

ψ; ωπ̂ � π̂}.
Theorem 3.1 states that Wφ �W (π) and W o

φ �W o(π). Since for ω ∈W (A,G), ωπ � π if and only
if ωπ̂ � π̂, we see

Wψ,π̂ �W (π), W o
ψ,π̂ �W o(π).

This gives Rψ,π̂ � R(π). The classical R-group R(π̂) of π̂ is defined in [Ban02] by putting
R(π̂) = R(π). So Rψ,π̂ � R(π̂).
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(Université de Paris VII, Paris, 1983),
available at: http://www.sunsite.ubc.ca/DigitalMathArchive/Langlands/endoscopy.html#debuts.

Lan89 R. Langlands, On the classification of irreducible representations of real algebraic groups, in
Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr.
31 (1989), 101–170.
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